Skip to main content
Erschienen in: Optical and Quantum Electronics 1/2022

01.01.2022

Analytical solutions to the fractional Lakshmanan–Porsezian–Daniel model

verfasst von: H. Yépez-Martínez, Hadi Rezazadeh, Mustafa Inc, Mehmet Ali Akinlar, J. F. Gómez-Aguilar

Erschienen in: Optical and Quantum Electronics | Ausgabe 1/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A new local fractional-order derivative operator is introduced and the Lakshmanan–Porsezian–Daniel (LPD) model is interpreted via this operator. New analytical solutions to the LPD equation is presented by Jacobi elliptic functions and an anzätz method. The complex-valued LPD equation includes a nonlinear term which is considered from three different cases: Kerr, parabolic and anti-cubic law of nonlinearities. For each case, dark, bright, singular optical soliton solutions related with optical fibers are presented. Simulations representing behavior of these solutions for different parameter values are provided.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Akbar, L., Akinyemi, M.A., Yao, S.-W., Jhangeer, A., Rezazadeh, H., Khater, M.M.A., Ahmad, H., Inc, M.: Soliton solutions to the Boussinesq equation through sine-Gordon method and Kudryashov method. Results Phys. 25, 104228 (2021)CrossRef Akbar, L., Akinyemi, M.A., Yao, S.-W., Jhangeer, A., Rezazadeh, H., Khater, M.M.A., Ahmad, H., Inc, M.: Soliton solutions to the Boussinesq equation through sine-Gordon method and Kudryashov method. Results Phys. 25, 104228 (2021)CrossRef
Zurück zum Zitat Akinyemi, L.: Two improved techniques for the perturbed nonlinear Biswas–Milovic equation and its optical solitons. Optik 243, 167477 (2021)ADSCrossRef Akinyemi, L.: Two improved techniques for the perturbed nonlinear Biswas–Milovic equation and its optical solitons. Optik 243, 167477 (2021)ADSCrossRef
Zurück zum Zitat Akinyemi, L., Hosseini, K., Salahshour, S.: The bright and singular solitons of (2+1)-dimensional nonlinear Schrödinger equation with spatio-temporal dispersions. Optik 242, 167120 (2021a)ADSCrossRef Akinyemi, L., Hosseini, K., Salahshour, S.: The bright and singular solitons of (2+1)-dimensional nonlinear Schrödinger equation with spatio-temporal dispersions. Optik 242, 167120 (2021a)ADSCrossRef
Zurück zum Zitat Akinyemi, L., Rezazadeh, H., Yao, S.-W., Akbar, M.A., Khater, M.M.A., Jhangeer, A., Inc, M., Ahmad, H.: Nonlinear dispersion in parabolic law medium and its optical solitons. Results Phys. 26, 104411 (2021b)CrossRef Akinyemi, L., Rezazadeh, H., Yao, S.-W., Akbar, M.A., Khater, M.M.A., Jhangeer, A., Inc, M., Ahmad, H.: Nonlinear dispersion in parabolic law medium and its optical solitons. Results Phys. 26, 104411 (2021b)CrossRef
Zurück zum Zitat Akram, G., Sadaf, M., Dawood, M., Baleanu, D.: Optical solitons for Lakshmanan–Porsezian–Daniel equation with Kerr law non-linearity using improved \(tan \left(\dfrac{\psi (\eta )}{2} \right)\)-expansion technique. Results Phys. 29, 104758 (2021)CrossRef Akram, G., Sadaf, M., Dawood, M., Baleanu, D.: Optical solitons for Lakshmanan–Porsezian–Daniel equation with Kerr law non-linearity using improved \(tan \left(\dfrac{\psi (\eta )}{2} \right)\)-expansion technique. Results Phys. 29, 104758 (2021)CrossRef
Zurück zum Zitat Almeida, R., Guzowska, M., Odzijewicz, T.: A remark on local fractional calculus and ordinary derivatives. Open Math. 14, 1122–1124 (2016)MathSciNetMATHCrossRef Almeida, R., Guzowska, M., Odzijewicz, T.: A remark on local fractional calculus and ordinary derivatives. Open Math. 14, 1122–1124 (2016)MathSciNetMATHCrossRef
Zurück zum Zitat Arshed, S., Biswas, A., Majid, F.B., Zhou, Q., Moshokoa, S.P., Belic, M.: Optical solitons in birefringent fibers for Lakshmanan–Porsezian–Daniel model using \(exp(-\phi ( ))\)-expansion method. Optik 168, 555–560 (2018)ADSCrossRef Arshed, S., Biswas, A., Majid, F.B., Zhou, Q., Moshokoa, S.P., Belic, M.: Optical solitons in birefringent fibers for Lakshmanan–Porsezian–Daniel model using \(exp(-\phi ( ))\)-expansion method. Optik 168, 555–560 (2018)ADSCrossRef
Zurück zum Zitat Aslan, E.C., Tchier, F., Inc, M.: On optical solitons of the Schrödinger–Hirota equation with power law nonlinearity in optical fibers. Superlattices Microstruct. 105, 48–55 (2017)ADSCrossRef Aslan, E.C., Tchier, F., Inc, M.: On optical solitons of the Schrödinger–Hirota equation with power law nonlinearity in optical fibers. Superlattices Microstruct. 105, 48–55 (2017)ADSCrossRef
Zurück zum Zitat Atangana, A., Baleanu, D.: New fractional derivatives with nonlocal and non-singular kernel. Theory and application to heat transfer model. Therm. Sci. 20(2), 763–769 (2016)CrossRef Atangana, A., Baleanu, D.: New fractional derivatives with nonlocal and non-singular kernel. Theory and application to heat transfer model. Therm. Sci. 20(2), 763–769 (2016)CrossRef
Zurück zum Zitat Atangana, A., Secer, A.: A note on fractional order derivatives and table of fractional derivatives of some special functions. Abstr. Appl. Anal. 2013, 279681 (2013)MathSciNetMATHCrossRef Atangana, A., Secer, A.: A note on fractional order derivatives and table of fractional derivatives of some special functions. Abstr. Appl. Anal. 2013, 279681 (2013)MathSciNetMATHCrossRef
Zurück zum Zitat Biswas, A.: Solitary wave solution for KdV equation with power-law nonlinearity and time-dependent coefficients. Nonlinear Dyn. 58(1–2), 345–348 (2009)MathSciNetMATHCrossRef Biswas, A.: Solitary wave solution for KdV equation with power-law nonlinearity and time-dependent coefficients. Nonlinear Dyn. 58(1–2), 345–348 (2009)MathSciNetMATHCrossRef
Zurück zum Zitat Biswas, A.: Solitary waves for power-law regularized long-wave equation and \({R}(m, n)\) equation. Nonlinear Dyn. 59(3), 423–426 (2010)MathSciNetMATHCrossRef Biswas, A.: Solitary waves for power-law regularized long-wave equation and \({R}(m, n)\) equation. Nonlinear Dyn. 59(3), 423–426 (2010)MathSciNetMATHCrossRef
Zurück zum Zitat Biswas, A., Konar, A.: Introduction to Non-Kerr Law Optical Solitons. CRC Press, Boca Raton (2006)MATHCrossRef Biswas, A., Konar, A.: Introduction to Non-Kerr Law Optical Solitons. CRC Press, Boca Raton (2006)MATHCrossRef
Zurück zum Zitat Biswas, A., Yıldırım, Y., Yaşar, E., Alqahtani, R.T.: Optical solitons for Lakshmanan–Porsezian–Daniel model with dual-dispersion by trial equation method. Optik 168, 432–439 (2018a)ADSCrossRef Biswas, A., Yıldırım, Y., Yaşar, E., Alqahtani, R.T.: Optical solitons for Lakshmanan–Porsezian–Daniel model with dual-dispersion by trial equation method. Optik 168, 432–439 (2018a)ADSCrossRef
Zurück zum Zitat Biswas, A., Yıldırım, Y., Yaşar, E., Zhou, Q., Moshokoac, S.P., Belic, M.: Optical solitons for Lakshmanan–Porsezian–Daniel model by modified simple equation method. Optik 160, 24–32 (2018)ADSCrossRef Biswas, A., Yıldırım, Y., Yaşar, E., Zhou, Q., Moshokoac, S.P., Belic, M.: Optical solitons for Lakshmanan–Porsezian–Daniel model by modified simple equation method. Optik 160, 24–32 (2018)ADSCrossRef
Zurück zum Zitat Caputo, M., Fabricio, M.: A new definition of fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 1(2), 73–85 (2015) Caputo, M., Fabricio, M.: A new definition of fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 1(2), 73–85 (2015)
Zurück zum Zitat Caputo, M., Mainardi, F.: A new dissipation model based on memory mechanism. Pure Appl. Geophys. 91, 134–147 (1971)ADSMATHCrossRef Caputo, M., Mainardi, F.: A new dissipation model based on memory mechanism. Pure Appl. Geophys. 91, 134–147 (1971)ADSMATHCrossRef
Zurück zum Zitat Dai, C.Q., Wang, Y.Y., Fan, Y., Yu, D.G.: Reconstruction of stability for Gaussian spatial solitons in quintic-septimal nonlinear materials under \({{{\cal{P}}}}{{\cal{T}}}\)-symmetric potentials. Nonlinear Dyn. 92(3), 1351–1358 (2018)CrossRef Dai, C.Q., Wang, Y.Y., Fan, Y., Yu, D.G.: Reconstruction of stability for Gaussian spatial solitons in quintic-septimal nonlinear materials under \({{{\cal{P}}}}{{\cal{T}}}\)-symmetric potentials. Nonlinear Dyn. 92(3), 1351–1358 (2018)CrossRef
Zurück zum Zitat Dowluru, R.K., Bhima, P.R.: Influences of third order dispersion on linear birefringent optical soliton transmission systems. J. Opt. 40(3), 132–142 (2011)CrossRef Dowluru, R.K., Bhima, P.R.: Influences of third order dispersion on linear birefringent optical soliton transmission systems. J. Opt. 40(3), 132–142 (2011)CrossRef
Zurück zum Zitat El, G.A., Geogjaev, V.V., Gurevich, A.V., Krylov, A.L.: Decay of an initial discontinuity in the defocusing NLS hydrodynamics. Physica D 87(1–4), 186–192 (1995)ADSMathSciNetMATHCrossRef El, G.A., Geogjaev, V.V., Gurevich, A.V., Krylov, A.L.: Decay of an initial discontinuity in the defocusing NLS hydrodynamics. Physica D 87(1–4), 186–192 (1995)ADSMathSciNetMATHCrossRef
Zurück zum Zitat Fujioka, J.E., Cortés, E., Pérez-Pascual, R., Rodríguez, R.F., Espinosa, A., Malomed, B.A.: Chaotic solitons in the quadratic-cubic nonlinear Schrödinger equation under nonlinearity management. Chaos Interdiscip. J. Nonlinear Sci. 21(3), 033120 (2011)MATHCrossRef Fujioka, J.E., Cortés, E., Pérez-Pascual, R., Rodríguez, R.F., Espinosa, A., Malomed, B.A.: Chaotic solitons in the quadratic-cubic nonlinear Schrödinger equation under nonlinearity management. Chaos Interdiscip. J. Nonlinear Sci. 21(3), 033120 (2011)MATHCrossRef
Zurück zum Zitat Green, P., Biswas, A.: Bright and dark optical solitons with time-dependent coefficients in a non-Kerr law media. Commun. Nonlinear Sci. Numer. Simul. 15(12), 3865–3873 (2010)ADSMathSciNetMATHCrossRef Green, P., Biswas, A.: Bright and dark optical solitons with time-dependent coefficients in a non-Kerr law media. Commun. Nonlinear Sci. Numer. Simul. 15(12), 3865–3873 (2010)ADSMathSciNetMATHCrossRef
Zurück zum Zitat Guzman, P.M., Langton, G., Motta Bittencurt, L.M.L., Medina, J., Napoles-Valdes, J.E.: A new definition of a fractional derivative of local type. J. Math. Anal. 9(2), 88–98 (2018)MathSciNet Guzman, P.M., Langton, G., Motta Bittencurt, L.M.L., Medina, J., Napoles-Valdes, J.E.: A new definition of a fractional derivative of local type. J. Math. Anal. 9(2), 88–98 (2018)MathSciNet
Zurück zum Zitat Inc, M.: Some special structures for the generalized Nonlinear Schrödinger equation with nonlinear dispersion. Waves Random Complex Media 23(2), 77–88 (2013)ADSMathSciNetCrossRef Inc, M.: Some special structures for the generalized Nonlinear Schrödinger equation with nonlinear dispersion. Waves Random Complex Media 23(2), 77–88 (2013)ADSMathSciNetCrossRef
Zurück zum Zitat Inc, M., Ates, E.: Optical soliton solutions for generalized NLSE by using Jacobi elliptic functions. Optoelectron. Adv. Mater. Rapid Commun. 9, 1081–1087 (2015) Inc, M., Ates, E.: Optical soliton solutions for generalized NLSE by using Jacobi elliptic functions. Optoelectron. Adv. Mater. Rapid Commun. 9, 1081–1087 (2015)
Zurück zum Zitat Inc, M., Ulutas, E., Cavlak, E., Biswas, A.: Singular 1-soliton solution of the \({K}(m, n)\) equation with generalized evolutions and its subsidiaries. Acta Phys. Pol. B 44(9), 1825–1836 (2013)ADSMathSciNetMATHCrossRef Inc, M., Ulutas, E., Cavlak, E., Biswas, A.: Singular 1-soliton solution of the \({K}(m, n)\) equation with generalized evolutions and its subsidiaries. Acta Phys. Pol. B 44(9), 1825–1836 (2013)ADSMathSciNetMATHCrossRef
Zurück zum Zitat Ivanov, S.K.: Riemann problem for the light pulses in optical fibers for the generalized Chen–Lee–Liu equation. Phys. Rev. A 101(5), 053827 (2020)ADSMathSciNetCrossRef Ivanov, S.K.: Riemann problem for the light pulses in optical fibers for the generalized Chen–Lee–Liu equation. Phys. Rev. A 101(5), 053827 (2020)ADSMathSciNetCrossRef
Zurück zum Zitat Kilic, B., Inc, M.: On optical solitons of the resonant Schrödingers equation in optical fibers with dual-power law nonlinearity and time-dependent coefcients. Waves Random Complex Media 25, 245–251 (2015)MATHCrossRef Kilic, B., Inc, M.: On optical solitons of the resonant Schrödingers equation in optical fibers with dual-power law nonlinearity and time-dependent coefcients. Waves Random Complex Media 25, 245–251 (2015)MATHCrossRef
Zurück zum Zitat Lakshmanan, M., Porsezian, K., Daniel, M.: Effect of discreteness on the continuum limit of the Heisenberg spin chain. Phys. Lett. A 133(9), 483–488 (1998)ADSCrossRef Lakshmanan, M., Porsezian, K., Daniel, M.: Effect of discreteness on the continuum limit of the Heisenberg spin chain. Phys. Lett. A 133(9), 483–488 (1998)ADSCrossRef
Zurück zum Zitat Liu, W., Liu, M., OuYang, Y., Hou, H., Ma, G., Lei, M., Wei, Z.: Tungsten diselenide for mode-locked erbium-doped fiber lasers with short pulse duration. Nanotechnology 29(17), 1–8 (2018)CrossRef Liu, W., Liu, M., OuYang, Y., Hou, H., Ma, G., Lei, M., Wei, Z.: Tungsten diselenide for mode-locked erbium-doped fiber lasers with short pulse duration. Nanotechnology 29(17), 1–8 (2018)CrossRef
Zurück zum Zitat Liu, W., Zhu, Y.N., Liu, M., Wen, B., Fang, S., Teng, H., Wei, Z.: Optical properties and applications for \(mos_2\)-\(sb_2 te_3\)-\(mos_2\) heterostructure materials. Photonics Res. 6(3), 220–227 (2018)CrossRef Liu, W., Zhu, Y.N., Liu, M., Wen, B., Fang, S., Teng, H., Wei, Z.: Optical properties and applications for \(mos_2\)-\(sb_2 te_3\)-\(mos_2\) heterostructure materials. Photonics Res. 6(3), 220–227 (2018)CrossRef
Zurück zum Zitat Miller, K.S., Ross, B.: TAn Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)MATH Miller, K.S., Ross, B.: TAn Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)MATH
Zurück zum Zitat Mirzazadeh, M., Arnous, A.H., Mahmood, M.F., Zerrad, E., Biswas, A.: Soliton solutions to resonant nonlinear Schrödinger’s equation with time-dependent coefficients by trial solution approach. Nonlinear Dyn. 81(1–2), 277–282 (2015)MATHCrossRef Mirzazadeh, M., Arnous, A.H., Mahmood, M.F., Zerrad, E., Biswas, A.: Soliton solutions to resonant nonlinear Schrödinger’s equation with time-dependent coefficients by trial solution approach. Nonlinear Dyn. 81(1–2), 277–282 (2015)MATHCrossRef
Zurück zum Zitat Oldham, K.B., Spanier, J.: The Fractional Calculus. Academic Press, London (1974)MATH Oldham, K.B., Spanier, J.: The Fractional Calculus. Academic Press, London (1974)MATH
Zurück zum Zitat Rezazadeh, H., Mirzazadeh, M., Mirhosseini-Alizamini, S.M., Neirameh, A., Eslami, M., Zhou, Q.: Optical solitons of Lakshmanan–Porsezian–Daniel model with a couple of nonlinearities. Optik 164, 414–423 (2018)ADSCrossRef Rezazadeh, H., Mirzazadeh, M., Mirhosseini-Alizamini, S.M., Neirameh, A., Eslami, M., Zhou, Q.: Optical solitons of Lakshmanan–Porsezian–Daniel model with a couple of nonlinearities. Optik 164, 414–423 (2018)ADSCrossRef
Zurück zum Zitat Sirisubtawee, S.S., Koonprasert, S., Sungnul, S.: Some applications of the \((g^{\prime }/g, 1/g)\)-expansion method for finding exact traveling wave solutions of nonlinear fractional evolution equations. Symmetry 11(8), 952 (2019)CrossRef Sirisubtawee, S.S., Koonprasert, S., Sungnul, S.: Some applications of the \((g^{\prime }/g, 1/g)\)-expansion method for finding exact traveling wave solutions of nonlinear fractional evolution equations. Symmetry 11(8), 952 (2019)CrossRef
Zurück zum Zitat Sassaman, R., Biswas, A.: Topological and nontopological solitons of the Klein–Gordon equations in \(1+2\) dimensions. Nonlinear Dyn. 61(1–2), 23–28 (2010)MATHCrossRef Sassaman, R., Biswas, A.: Topological and nontopological solitons of the Klein–Gordon equations in \(1+2\) dimensions. Nonlinear Dyn. 61(1–2), 23–28 (2010)MATHCrossRef
Zurück zum Zitat Seadawy, A.R., Dianchen, L.D., Nasreen, N., Nasreen, S.: Structure of optical solitons of resonant Schrödinger equation with quadratic cubic nonlinearity and modulation instability analysis. Physica A 534(3), 122155 (2019)MathSciNetCrossRef Seadawy, A.R., Dianchen, L.D., Nasreen, N., Nasreen, S.: Structure of optical solitons of resonant Schrödinger equation with quadratic cubic nonlinearity and modulation instability analysis. Physica A 534(3), 122155 (2019)MathSciNetCrossRef
Zurück zum Zitat Sousa, J.V.D.C., de Oliveira, E.C.: A new truncated \(m\)-fractional derivative type unifying some fractional derivative types with classical properties. Int. J. Anal. Appl. 16(1), 83–96 (2018)MATH Sousa, J.V.D.C., de Oliveira, E.C.: A new truncated \(m\)-fractional derivative type unifying some fractional derivative types with classical properties. Int. J. Anal. Appl. 16(1), 83–96 (2018)MATH
Zurück zum Zitat Vega-Guzman, J., Biswas, A., Mahmood, M.F., Zhou, Q., Moshokoa, S.P., Belic, M.R.: Optical solitons with polarization mode dispersion for Lakshmanan–Porsezian–Daniel model by the method of undetermined coefficients. Optik 171, 114–119 (2018)ADSCrossRef Vega-Guzman, J., Biswas, A., Mahmood, M.F., Zhou, Q., Moshokoa, S.P., Belic, M.R.: Optical solitons with polarization mode dispersion for Lakshmanan–Porsezian–Daniel model by the method of undetermined coefficients. Optik 171, 114–119 (2018)ADSCrossRef
Zurück zum Zitat Wang, Y.Y., Dai, C.Q., Xu, Y.Q., Zheng, J., Fan, Y.: Dynamics of nonlocal and localized spatiotemporal solitons for a partially nonlocal nonlinear Schrödinger equation. Nonlinear Dyn. 92(3), 1261–1269 (2010)CrossRef Wang, Y.Y., Dai, C.Q., Xu, Y.Q., Zheng, J., Fan, Y.: Dynamics of nonlocal and localized spatiotemporal solitons for a partially nonlocal nonlinear Schrödinger equation. Nonlinear Dyn. 92(3), 1261–1269 (2010)CrossRef
Zurück zum Zitat Wang, Y.Y., Chen, L., Dai, C.Q., Zheng, J., Fan, Y.: Exact vector multipole and vortex solitons in the media with spatially modulated cubic-quintic nonlinearity. Nonlinear Dyn. 90(2), 1269–1275 (2017)MathSciNetCrossRef Wang, Y.Y., Chen, L., Dai, C.Q., Zheng, J., Fan, Y.: Exact vector multipole and vortex solitons in the media with spatially modulated cubic-quintic nonlinearity. Nonlinear Dyn. 90(2), 1269–1275 (2017)MathSciNetCrossRef
Zurück zum Zitat Yaşar, E., Yıldırım, Y., Yaşar, E.: New optical solitons of space-time conformable fractional perturbed Gerdjikov–Ivanov equation by sine-Gordon equation method. Results Phys. 9, 1666–1672 (2018)ADSCrossRef Yaşar, E., Yıldırım, Y., Yaşar, E.: New optical solitons of space-time conformable fractional perturbed Gerdjikov–Ivanov equation by sine-Gordon equation method. Results Phys. 9, 1666–1672 (2018)ADSCrossRef
Zurück zum Zitat Yépez-Martínez, H., Gómez-Aguilar, J.F.: Optical solitons solution of resonance nonlinear Schrödinger type equation with Atangana’s-conformable derivative using sub-equation method. Waves Random Complex Media 31(3), 573–596 (2021)ADSMathSciNetCrossRef Yépez-Martínez, H., Gómez-Aguilar, J.F.: Optical solitons solution of resonance nonlinear Schrödinger type equation with Atangana’s-conformable derivative using sub-equation method. Waves Random Complex Media 31(3), 573–596 (2021)ADSMathSciNetCrossRef
Zurück zum Zitat Yépez-Martínez, H., Gómez-Aguilar, J.F., Baleanu, D.: Beta-derivative and sub-equation method applied to the optical solitons in medium with parabolic law nonlinearity and higher order dispersion. Optik 155, 357–365 (2018)ADSCrossRef Yépez-Martínez, H., Gómez-Aguilar, J.F., Baleanu, D.: Beta-derivative and sub-equation method applied to the optical solitons in medium with parabolic law nonlinearity and higher order dispersion. Optik 155, 357–365 (2018)ADSCrossRef
Zurück zum Zitat Yıldırım, Y., Topkara, E., Biswas, A., Triki, H., Ekici, M., Guggilla, P., Khan, S., Belic, M.R.: Cubic-quartic optical soliton perturbation with Lakshmanan–Porsezian–Daniel model by sine-Gordon equation approach. J. Opt. 50(2), 322–329 (2021)CrossRef Yıldırım, Y., Topkara, E., Biswas, A., Triki, H., Ekici, M., Guggilla, P., Khan, S., Belic, M.R.: Cubic-quartic optical soliton perturbation with Lakshmanan–Porsezian–Daniel model by sine-Gordon equation approach. J. Opt. 50(2), 322–329 (2021)CrossRef
Zurück zum Zitat Zakharov, V.E., Shabat, A.B.: Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media. Sov. Phys. JETP 34(1), 62–69 (1972)ADSMathSciNet Zakharov, V.E., Shabat, A.B.: Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media. Sov. Phys. JETP 34(1), 62–69 (1972)ADSMathSciNet
Zurück zum Zitat Zhang, Z.Y., Liu, Z.H., Miao, X.J., Chen, Y.Z.: New exact solutions to the perturbed nonlinear Schrödinger’s equation with Kerr law nonlinearity. Appl. Math. Comput. 216, 3064–3072 (2010)MathSciNetMATH Zhang, Z.Y., Liu, Z.H., Miao, X.J., Chen, Y.Z.: New exact solutions to the perturbed nonlinear Schrödinger’s equation with Kerr law nonlinearity. Appl. Math. Comput. 216, 3064–3072 (2010)MathSciNetMATH
Metadaten
Titel
Analytical solutions to the fractional Lakshmanan–Porsezian–Daniel model
verfasst von
H. Yépez-Martínez
Hadi Rezazadeh
Mustafa Inc
Mehmet Ali Akinlar
J. F. Gómez-Aguilar
Publikationsdatum
01.01.2022
Verlag
Springer US
Erschienen in
Optical and Quantum Electronics / Ausgabe 1/2022
Print ISSN: 0306-8919
Elektronische ISSN: 1572-817X
DOI
https://doi.org/10.1007/s11082-021-03378-w

Weitere Artikel der Ausgabe 1/2022

Optical and Quantum Electronics 1/2022 Zur Ausgabe