Skip to main content
Erschienen in: Optical and Quantum Electronics 3/2022

01.03.2022

Dynamical behaviour of Chiral nonlinear Schrödinger equation

verfasst von: Lanre Akinyemi, Mustafa Inc, Mostafa M. A. Khater, Hadi Rezazadeh

Erschienen in: Optical and Quantum Electronics | Ausgabe 3/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this work, we study the exact traveling wave solutions of \((2+1)\)-dimensional Chiral nonlinear Schrödinger equation with the aid of generalized auxiliary equation method. The aforementioned model is used as a governing equation to discuss the wave in quantum field theory. The suggested technique is direct, effective, powerful, and offers constraint conditions to ensure the existence of solutions. The solutions obtained are bright solitons, dark solitons, singular solitons, mixed solitons, periodic waves, exponential, rational, and complex solutions that are relevant in various applications of applied science. Finally, some solutions are depicted in two and three dimensional to better understand the behavior of the considered model.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abdou, M.A.: A generalized auxiliary equation method and its applications. Nonlinear Dyn. 52(1), 95–102 (2008)MathSciNetCrossRef Abdou, M.A.: A generalized auxiliary equation method and its applications. Nonlinear Dyn. 52(1), 95–102 (2008)MathSciNetCrossRef
Zurück zum Zitat Ablowitz, M.J.: Nonlinear Dispersive Waves: Asymptotic Analysis and Solitons. Cambridge University Press, Cambridge (2011)CrossRef Ablowitz, M.J.: Nonlinear Dispersive Waves: Asymptotic Analysis and Solitons. Cambridge University Press, Cambridge (2011)CrossRef
Zurück zum Zitat Ablowitz, M.J., Prinari, B., Trubatch, A.D.: Discrete and Continuous Nonlinear Schrödinger Systems. Cambridge University Press, Cambridge (2004)MATH Ablowitz, M.J., Prinari, B., Trubatch, A.D.: Discrete and Continuous Nonlinear Schrödinger Systems. Cambridge University Press, Cambridge (2004)MATH
Zurück zum Zitat Alagesan, T., Uthayakumar, A., Porsezian, K.: Painlev analysis and Backlund transformation for a three-dimensional Kadomtsev–Petviashvili equation. Chaos Solitons Fract. 8, 893–895 (1997)ADSCrossRef Alagesan, T., Uthayakumar, A., Porsezian, K.: Painlev analysis and Backlund transformation for a three-dimensional Kadomtsev–Petviashvili equation. Chaos Solitons Fract. 8, 893–895 (1997)ADSCrossRef
Zurück zum Zitat Bekir, A., Guner, O., Ünsal, Ö., Mirzazadeh, M.: Applications of fractional complex transform and \((G^{\prime }/G)\)-expansion method for time-fractional differential equations. J. Appl. Anal. Comput. 6(1), 131–144 (2016)MathSciNetCrossRef Bekir, A., Guner, O., Ünsal, Ö., Mirzazadeh, M.: Applications of fractional complex transform and \((G^{\prime }/G)\)-expansion method for time-fractional differential equations. J. Appl. Anal. Comput. 6(1), 131–144 (2016)MathSciNetCrossRef
Zurück zum Zitat Biswas, A., Jawad, A.J.M., Manrakhan, W.N., Sarma, A.K., Khan, K.R.: Optical solitons and complexitons of the Schrödinger–Hirota equation. Opt. Laser Technol. 44(7), 2265–2269 (2012)ADSCrossRef Biswas, A., Jawad, A.J.M., Manrakhan, W.N., Sarma, A.K., Khan, K.R.: Optical solitons and complexitons of the Schrödinger–Hirota equation. Opt. Laser Technol. 44(7), 2265–2269 (2012)ADSCrossRef
Zurück zum Zitat Eslami, M.: Trial solution technique to chiral nonlinear Schrödinger’s equation in \((1+2)\)-dimensions. Nonlinear Dyn. 85(2), 813–816 (2016)CrossRef Eslami, M.: Trial solution technique to chiral nonlinear Schrödinger’s equation in \((1+2)\)-dimensions. Nonlinear Dyn. 85(2), 813–816 (2016)CrossRef
Zurück zum Zitat Fan, E.G., Zhang, Q.H.: A note on the homogeneous balance method. Phys. Lett. A 246, 403–406 (1998)ADSCrossRef Fan, E.G., Zhang, Q.H.: A note on the homogeneous balance method. Phys. Lett. A 246, 403–406 (1998)ADSCrossRef
Zurück zum Zitat Gao, W., Veeresha, P., Prakasha, D.G., Baskonus, H.M.: New numerical simulation for fractional Benney–Lin equation arising in falling film problems using two novel techniques. Numer. Methods Partial Differ. Eqn. 37(1), 210–243 (2021)MathSciNetCrossRef Gao, W., Veeresha, P., Prakasha, D.G., Baskonus, H.M.: New numerical simulation for fractional Benney–Lin equation arising in falling film problems using two novel techniques. Numer. Methods Partial Differ. Eqn. 37(1), 210–243 (2021)MathSciNetCrossRef
Zurück zum Zitat Ghanbari, B., Inc, M., Rada, L.: Solitary wave solutions to the Tzitzeica type equations obtained by a new efficient approach. J. Appl. Anal. Comput. 9(2), 568–589 (2019)MathSciNetMATH Ghanbari, B., Inc, M., Rada, L.: Solitary wave solutions to the Tzitzeica type equations obtained by a new efficient approach. J. Appl. Anal. Comput. 9(2), 568–589 (2019)MathSciNetMATH
Zurück zum Zitat Hosseini, K., Mirzazadeh, M.: Soliton and other solutions to the \((1+2)\)-dimensional chiral nonlinear Schrödinger equation. Commun. Theor. Phys. 72(12), 1–6 (2020)CrossRef Hosseini, K., Mirzazadeh, M.: Soliton and other solutions to the \((1+2)\)-dimensional chiral nonlinear Schrödinger equation. Commun. Theor. Phys. 72(12), 1–6 (2020)CrossRef
Zurück zum Zitat Houwe, A., Yakada, S., Abbagari, S., Saliou, Y., Inc, M., Doka, S.Y.: Survey of third-and fourth-order dispersions including ellipticity angle in birefringent fibers on W-shaped soliton solutions and modulation instability analysis. Eur. Phys. J. Plus 136(4), 1–27 (2021)CrossRef Houwe, A., Yakada, S., Abbagari, S., Saliou, Y., Inc, M., Doka, S.Y.: Survey of third-and fourth-order dispersions including ellipticity angle in birefringent fibers on W-shaped soliton solutions and modulation instability analysis. Eur. Phys. J. Plus 136(4), 1–27 (2021)CrossRef
Zurück zum Zitat Khater, M.M., Inc, M., Attia, R.A., Lu, D., Almohsen, B.: Abundant new computational wave solutions of the GM-DP-CH equation via two modified recent computational schemes. J. Taibah Univ. Sci. 14(1), 1554–1562 (2020)CrossRef Khater, M.M., Inc, M., Attia, R.A., Lu, D., Almohsen, B.: Abundant new computational wave solutions of the GM-DP-CH equation via two modified recent computational schemes. J. Taibah Univ. Sci. 14(1), 1554–1562 (2020)CrossRef
Zurück zum Zitat Korpinar, Z., Tchier, F., Inc, M., Bousbahi, F., Tawfiq, F.M., Akinlar, M.A.: Applicability of time conformable derivative to Wick-fractional-stochastic PDEs. Alex. Eng. J. 59(3), 1485–1493 (2020)CrossRef Korpinar, Z., Tchier, F., Inc, M., Bousbahi, F., Tawfiq, F.M., Akinlar, M.A.: Applicability of time conformable derivative to Wick-fractional-stochastic PDEs. Alex. Eng. J. 59(3), 1485–1493 (2020)CrossRef
Zurück zum Zitat Ma, H.C., Yu, Y.D., Ge, D.J.: The auxiliary equation method for solving the Zakharov–Kuznetsov (ZK) equation. Comput. Math. Appl. 58(11–12), 2523–2527 (2009)MathSciNetCrossRef Ma, H.C., Yu, Y.D., Ge, D.J.: The auxiliary equation method for solving the Zakharov–Kuznetsov (ZK) equation. Comput. Math. Appl. 58(11–12), 2523–2527 (2009)MathSciNetCrossRef
Zurück zum Zitat Malfliet, W., Hereman, W.: The tanh method: I. Exact solutions of nonlinear evolution and wave equations. Phys. Scr. 54, 563–568 (1996)ADSMathSciNetCrossRef Malfliet, W., Hereman, W.: The tanh method: I. Exact solutions of nonlinear evolution and wave equations. Phys. Scr. 54, 563–568 (1996)ADSMathSciNetCrossRef
Zurück zum Zitat Rasheed, N.M., Al-Amr, M.O., Az-Zo’bi, E.A., Tashtoush, M.A., Akinyemi, L.: Stable optical solitons for the higher-order non-Kerr NLSE via the modified simple equation method. Mathematics 9(16), 1–12 (2021)CrossRef Rasheed, N.M., Al-Amr, M.O., Az-Zo’bi, E.A., Tashtoush, M.A., Akinyemi, L.: Stable optical solitons for the higher-order non-Kerr NLSE via the modified simple equation method. Mathematics 9(16), 1–12 (2021)CrossRef
Zurück zum Zitat Senol, M.: New analytical solutions of fractional symmetric regularized-long-wave equation. Revista Mexicana de Física 66(3), 297–307 (2020)MathSciNetCrossRef Senol, M.: New analytical solutions of fractional symmetric regularized-long-wave equation. Revista Mexicana de Física 66(3), 297–307 (2020)MathSciNetCrossRef
Zurück zum Zitat Sulem, C., Sulem, P.L.: The nonlinear Schrödinger equation. Springer-Verlag, New York (1999)MATH Sulem, C., Sulem, P.L.: The nonlinear Schrödinger equation. Springer-Verlag, New York (1999)MATH
Zurück zum Zitat Tasbozan, O., Çenesiz, Y., Kurt, A.: New solutions for conformable fractional Boussinesq and combined KdV-mKdV equations using Jacobi elliptic function expansion method. Eur. Phys. J. Plus 131(7), 1–14 (2016)CrossRef Tasbozan, O., Çenesiz, Y., Kurt, A.: New solutions for conformable fractional Boussinesq and combined KdV-mKdV equations using Jacobi elliptic function expansion method. Eur. Phys. J. Plus 131(7), 1–14 (2016)CrossRef
Zurück zum Zitat Vakhnenko, V.O., Parkes, E.J., Morrison, A.J.: A Bäcklund transformation and the inverse scattering transform method for the generalised Vakhnenko equation. Chaos Solitons Fract. 17(4), 683–692 (2003)ADSCrossRef Vakhnenko, V.O., Parkes, E.J., Morrison, A.J.: A Bäcklund transformation and the inverse scattering transform method for the generalised Vakhnenko equation. Chaos Solitons Fract. 17(4), 683–692 (2003)ADSCrossRef
Zurück zum Zitat Yan, Z.: Abundant families of Jacobi elliptic function solutions of the \((2+1)\)-dimensional integrable Davey–Stewartson-type equation via a new method. Chaos Solitons Fract. 18(2), 299–309 (2003)ADSMathSciNetCrossRef Yan, Z.: Abundant families of Jacobi elliptic function solutions of the \((2+1)\)-dimensional integrable Davey–Stewartson-type equation via a new method. Chaos Solitons Fract. 18(2), 299–309 (2003)ADSMathSciNetCrossRef
Zurück zum Zitat Yang, X.J., Feng, Y.Y., Cattani, C., Inc, M.: Fundamental solutions of anomalous diffusion equations with the decay exponential kernel. Math. Methods Appl. Sci. 42(11), 4054–4060 (2019)MathSciNetCrossRef Yang, X.J., Feng, Y.Y., Cattani, C., Inc, M.: Fundamental solutions of anomalous diffusion equations with the decay exponential kernel. Math. Methods Appl. Sci. 42(11), 4054–4060 (2019)MathSciNetCrossRef
Zurück zum Zitat Zhang, S., Xia, T.: A generalized new auxiliary equation method and its applications to nonlinear partial differential equations. Phys. Lett. A 363(5–6), 356–360 (2007)ADSMathSciNetCrossRef Zhang, S., Xia, T.: A generalized new auxiliary equation method and its applications to nonlinear partial differential equations. Phys. Lett. A 363(5–6), 356–360 (2007)ADSMathSciNetCrossRef
Metadaten
Titel
Dynamical behaviour of Chiral nonlinear Schrödinger equation
verfasst von
Lanre Akinyemi
Mustafa Inc
Mostafa M. A. Khater
Hadi Rezazadeh
Publikationsdatum
01.03.2022
Verlag
Springer US
Erschienen in
Optical and Quantum Electronics / Ausgabe 3/2022
Print ISSN: 0306-8919
Elektronische ISSN: 1572-817X
DOI
https://doi.org/10.1007/s11082-022-03554-6

Weitere Artikel der Ausgabe 3/2022

Optical and Quantum Electronics 3/2022 Zur Ausgabe