Skip to main content
Erschienen in: Optical and Quantum Electronics 4/2022

01.04.2022

Numerical investigation and circuit analysis of interdigitated photoconductive antenna for terahertz applications

verfasst von: Vaisshale Rathinasamy, Rama Rao Thipparaju, E. Nisha Flora Boby, Shyamal Mondal

Erschienen in: Optical and Quantum Electronics | Ausgabe 4/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Terahertz generation through photoconductive antenna (PCA) is quite popular mainly due to the advancement of nanotechnology and material research. An extensive investigation of the interdigitated photoconductive antenna (IPCA) in the terahertz (THz) frequency band has been carried out based on numerical modeling. An equivalent circuit model for IPCA based on its electrical perspective with corresponding expressions has been solved to understand the capacitive behavior of the gap between the interdigitated electrodes. This work explores the performance of IPCA with variation in structural parameters of their interdigitated electrode geometry in the active region. The interdigitated elemental periodicity, width and length of the IPCA are varied by keeping the interdigitated gap constant between the elements. The temporal behavior of generated electric field and its corresponding spectral response of the IPCAs with variation in the interdigitated electrode geometry has been compared. Moreover, the coupling behavior of the elements has been observed in the generated radiation. Finally, the results prove that the THz amplitude, frequency and efficiency can be enhanced by optimizing the structural parameters of the interdigitated electrode elements in the active region. This analysis is very useful while doing the practical experiments in spectroscopy, imaging and communication applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Aditya, R.A.N.S., Thampy, A.S.: Behavioral and modal analysis of graphene-based polygonal optical antenna for enhanced bio-molecular detection. Plasmonics 14(2), 293–302 (2019)CrossRef Aditya, R.A.N.S., Thampy, A.S.: Behavioral and modal analysis of graphene-based polygonal optical antenna for enhanced bio-molecular detection. Plasmonics 14(2), 293–302 (2019)CrossRef
Zurück zum Zitat Amlashi, Salman Behboudi, Mohsen Khalily, Tim Brown, Pei Xiao, and Rahim Tafazolli. An Efficient Plasmonic Photoconductive Antenna for Terahertz Continuous-Wave Applications. In: 2021 15th European Conference on Antennas and Propagation (EuCAP), pp. 1–5. IEEE, (2021) Amlashi, Salman Behboudi, Mohsen Khalily, Tim Brown, Pei Xiao, and Rahim Tafazolli. An Efficient Plasmonic Photoconductive Antenna for Terahertz Continuous-Wave Applications. In: 2021 15th European Conference on Antennas and Propagation (EuCAP), pp. 1–5. IEEE, (2021)
Zurück zum Zitat Auston, D.H.: Picosecond optoelectronic switching and gating in silicon. Appl. Phys. Lett. 26(3), 101–103 (1975)ADSCrossRef Auston, D.H.: Picosecond optoelectronic switching and gating in silicon. Appl. Phys. Lett. 26(3), 101–103 (1975)ADSCrossRef
Zurück zum Zitat Bardolaza, H., Afalla, J., De Los, A., Reyes, D.A., Lumantas, J.D., Vasquez, J.M., Mag-usara, V.K., et al.: Efficacy of proposed 2DEG-based photoconductive antenna using magnetic bias-controlled carrier transport. Current Appl. Phys. 19(6), 756–761 (2019)ADSCrossRef Bardolaza, H., Afalla, J., De Los, A., Reyes, D.A., Lumantas, J.D., Vasquez, J.M., Mag-usara, V.K., et al.: Efficacy of proposed 2DEG-based photoconductive antenna using magnetic bias-controlled carrier transport. Current Appl. Phys. 19(6), 756–761 (2019)ADSCrossRef
Zurück zum Zitat Bashirpour, M., Ghorbani, S., Kolahdouz, M., Neshat, M., Masnadi-Shirazi, M., Aghababa, H.: Significant performance improvement of a terahertz photoconductive antenna using a hybrid structure. RSC Adv. 7(83), 53010–53017 (2017)ADSCrossRef Bashirpour, M., Ghorbani, S., Kolahdouz, M., Neshat, M., Masnadi-Shirazi, M., Aghababa, H.: Significant performance improvement of a terahertz photoconductive antenna using a hybrid structure. RSC Adv. 7(83), 53010–53017 (2017)ADSCrossRef
Zurück zum Zitat Bashirpour, M., Forouzmehr, M., Hosseininejad, S.E., Kolahdouz, M., Neshat, M.: Improvement of terahertz photoconductive Antenna using optical Antenna Array of ZnO Nanorods. Sci. Rep. 9(1), 1–8 (2019)CrossRef Bashirpour, M., Forouzmehr, M., Hosseininejad, S.E., Kolahdouz, M., Neshat, M.: Improvement of terahertz photoconductive Antenna using optical Antenna Array of ZnO Nanorods. Sci. Rep. 9(1), 1–8 (2019)CrossRef
Zurück zum Zitat Berry, C.W., Wang, N., Hashemi, M.R., Unlu, M., Jarrahi, M.: Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes. Nat. Commun. 4, 1622 (2013)ADSCrossRefPubMed Berry, C.W., Wang, N., Hashemi, M.R., Unlu, M., Jarrahi, M.: Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes. Nat. Commun. 4, 1622 (2013)ADSCrossRefPubMed
Zurück zum Zitat Berry, C.W., Hashemi, M.R., Jarrahi, M.: Generation of high-power pulsed terahertz radiation using a plasmonic photoconductive emitter array with logarithmic spiral antennas. Appl. Phys. Lett. 104(8), 081122 (2014)ADSCrossRef Berry, C.W., Hashemi, M.R., Jarrahi, M.: Generation of high-power pulsed terahertz radiation using a plasmonic photoconductive emitter array with logarithmic spiral antennas. Appl. Phys. Lett. 104(8), 081122 (2014)ADSCrossRef
Zurück zum Zitat Burford, N.M., El-Shenawee, M.O.: Review of terahertz photoconductive antenna technology. Opt. Eng. 56(1), 010901 (2017)ADSCrossRef Burford, N.M., El-Shenawee, M.O.: Review of terahertz photoconductive antenna technology. Opt. Eng. 56(1), 010901 (2017)ADSCrossRef
Zurück zum Zitat Castaneda-Uribe, O.A., Criollo, C.A., Winnerl, S., Helm, M., Avila, A.: Comparative study of equivalent circuit models for photoconductive antennas. Opt. Express 26(22), 29017–29031 (2018)ADSCrossRefPubMed Castaneda-Uribe, O.A., Criollo, C.A., Winnerl, S., Helm, M., Avila, A.: Comparative study of equivalent circuit models for photoconductive antennas. Opt. Express 26(22), 29017–29031 (2018)ADSCrossRefPubMed
Zurück zum Zitat Emadi, R., Barani, N., Safian, R., Nezhad, A.Z.: Hybrid computational simulation and study of terahertz pulsed photoconductive antennas. J. Infrared, Milli. Terahertz Waves 37(11), 1069–1085 (2016)CrossRef Emadi, R., Barani, N., Safian, R., Nezhad, A.Z.: Hybrid computational simulation and study of terahertz pulsed photoconductive antennas. J. Infrared, Milli. Terahertz Waves 37(11), 1069–1085 (2016)CrossRef
Zurück zum Zitat Papaioannou, Evangelos Th, Garik Torosyan, Sascha Keller, Laura Scheuer, Marco Battiato, Valynn Katrine Mag-Usara, Johannes L’huillier, Masahiko Tani, and René Beigang. Efficient terahertz generation using Fe/Pt spintronic emitters pumped at different wavelengths. IEEE Trans. Magnet. 54(11): 1–5 (2018) Papaioannou, Evangelos Th, Garik Torosyan, Sascha Keller, Laura Scheuer, Marco Battiato, Valynn Katrine Mag-Usara, Johannes L’huillier, Masahiko Tani, and René Beigang. Efficient terahertz generation using Fe/Pt spintronic emitters pumped at different wavelengths. IEEE Trans. Magnet. 54(11): 1–5 (2018)
Zurück zum Zitat Fesharaki, F., Jooshesh, A., Bahrami-Yekta, V., Mahtab, M., Tiedje, T., Darcie, T.E., Gordon, R.: Plasmonic antireflection coating for photoconductive terahertz generation. ACS Photonics 4(6), 1350–1354 (2017)CrossRef Fesharaki, F., Jooshesh, A., Bahrami-Yekta, V., Mahtab, M., Tiedje, T., Darcie, T.E., Gordon, R.: Plasmonic antireflection coating for photoconductive terahertz generation. ACS Photonics 4(6), 1350–1354 (2017)CrossRef
Zurück zum Zitat Formanek, F., Brun, M.-A., Umetsu, T., Omori, S., Yasuda, A.: Aspheric silicon lenses for terahertz photoconductive antennas. Appl. Phys. Lett. 94(2), 021113 (2009)ADSCrossRef Formanek, F., Brun, M.-A., Umetsu, T., Omori, S., Yasuda, A.: Aspheric silicon lenses for terahertz photoconductive antennas. Appl. Phys. Lett. 94(2), 021113 (2009)ADSCrossRef
Zurück zum Zitat Garufo, A., Carluccio, G., Llombart, N., Neto, A.: Norton equivalent circuit for pulsed photoconductive antennas–Part I: Theoretical model. IEEE Trans. Antennas Propag. 66(4), 1635–1645 (2018)ADSCrossRef Garufo, A., Carluccio, G., Llombart, N., Neto, A.: Norton equivalent circuit for pulsed photoconductive antennas–Part I: Theoretical model. IEEE Trans. Antennas Propag. 66(4), 1635–1645 (2018)ADSCrossRef
Zurück zum Zitat Gupta, A., Rana, G., Bhattacharya, A., Singh, A., Jain, R., Bapat, R.D., Duttagupta, S.P., Prabhu, S.S.: Enhanced optical-to-THz conversion efficiency of photoconductive antenna using dielectric nano-layer encapsulation. APL Photonics 3(5), 051706 (2018)ADSCrossRef Gupta, A., Rana, G., Bhattacharya, A., Singh, A., Jain, R., Bapat, R.D., Duttagupta, S.P., Prabhu, S.S.: Enhanced optical-to-THz conversion efficiency of photoconductive antenna using dielectric nano-layer encapsulation. APL Photonics 3(5), 051706 (2018)ADSCrossRef
Zurück zum Zitat Han, S.-P., Kim, N., Ko, H., Ryu, H.-C., Park, J.-W., Yoon, Y.-J., Shin, J.-H., et al.: Compact fiber-pigtailed InGaAs photoconductive antenna module for terahertz-wave generation and detection. Opt. Express 20(16), 18432–18439 (2012)ADSCrossRefPubMed Han, S.-P., Kim, N., Ko, H., Ryu, H.-C., Park, J.-W., Yoon, Y.-J., Shin, J.-H., et al.: Compact fiber-pigtailed InGaAs photoconductive antenna module for terahertz-wave generation and detection. Opt. Express 20(16), 18432–18439 (2012)ADSCrossRefPubMed
Zurück zum Zitat Hwang, H.Y., Fleischer, S., Brandt, N.C., Perkins Jr, B.G., Liu, M., Fan, K., Sternbach, A., Zhang, X., Averitt, R.D., Nelson, K.A.: A review of non-linear terahertz spectroscopy with ultrashort tabletop-laser pulses. J. Modern Opt. 62(18), 1447–1479 (2015)ADSMathSciNetCrossRef Hwang, H.Y., Fleischer, S., Brandt, N.C., Perkins Jr, B.G., Liu, M., Fan, K., Sternbach, A., Zhang, X., Averitt, R.D., Nelson, K.A.: A review of non-linear terahertz spectroscopy with ultrashort tabletop-laser pulses. J. Modern Opt. 62(18), 1447–1479 (2015)ADSMathSciNetCrossRef
Zurück zum Zitat Neda Khiabani, Yi Huang, Yao-chun Shen, Stephen Boyes, Theoretical Modeling of a Photoconductive Antenna in a Terahertz Pulsed System. IEEE Trans. Antennas Propagat. 61(4) (2013) Neda Khiabani, Yi Huang, Yao-chun Shen, Stephen Boyes, Theoretical Modeling of a Photoconductive Antenna in a Terahertz Pulsed System. IEEE Trans. Antennas Propagat. 61(4) (2013)
Zurück zum Zitat Lepeshov, S., Gorodetsky, A., Krasnok, A., Toropov, N., Vartanyan, T.A., Belov, P., Alú, A., Rafailov, E.U.: Boosting terahertz photoconductive antenna performance with optimised plasmonic nanostructures. Sci. Rep. 8(1), 1–7 (2018)CrossRef Lepeshov, S., Gorodetsky, A., Krasnok, A., Toropov, N., Vartanyan, T.A., Belov, P., Alú, A., Rafailov, E.U.: Boosting terahertz photoconductive antenna performance with optimised plasmonic nanostructures. Sci. Rep. 8(1), 1–7 (2018)CrossRef
Zurück zum Zitat Mondal, Shyamal, Vaisshale Rathinasamy, Shriya Kapoor, Shouvik Mukherjee, and T. Rama Rao. Interdigitated Photoconductive Antenna Design and Analysis for Terahertz Wireless Applications. In: 2020 IEEE 3rd 5G World Forum (5GWF), pp. 484–487. IEEE, (2020) Mondal, Shyamal, Vaisshale Rathinasamy, Shriya Kapoor, Shouvik Mukherjee, and T. Rama Rao. Interdigitated Photoconductive Antenna Design and Analysis for Terahertz Wireless Applications. In: 2020 IEEE 3rd 5G World Forum (5GWF), pp. 484–487. IEEE, (2020)
Zurück zum Zitat Nagatsuma, T., Ducournau, G., Renaud, C.C.: Advances in terahertz communications accelerated by photonics. Nat. Photonics 10(6), 371–379 (2016)ADSCrossRef Nagatsuma, T., Ducournau, G., Renaud, C.C.: Advances in terahertz communications accelerated by photonics. Nat. Photonics 10(6), 371–379 (2016)ADSCrossRef
Zurück zum Zitat Nakanishi, H., Fujiwara, S., Takayama, K., Kawayama, I., Murakami, H., Tonouchi, M.: Imaging of a polycrystalline silicon solar cell using a laser terahertz emission microscope. Appl. Phys. Exp. 5(11), 112301 (2012)ADSCrossRef Nakanishi, H., Fujiwara, S., Takayama, K., Kawayama, I., Murakami, H., Tonouchi, M.: Imaging of a polycrystalline silicon solar cell using a laser terahertz emission microscope. Appl. Phys. Exp. 5(11), 112301 (2012)ADSCrossRef
Zurück zum Zitat Nguyen, T.K., Kim, W.T., Kang, B.J., Bark, H.S., Kim, K., Lee, J., Park, I., Jeon, T.-I., Rotermund, F.: Photoconductive dipole antennas for efficient terahertz receiver. Opt. Commun. 383, 50–56 (2017)ADSCrossRef Nguyen, T.K., Kim, W.T., Kang, B.J., Bark, H.S., Kim, K., Lee, J., Park, I., Jeon, T.-I., Rotermund, F.: Photoconductive dipole antennas for efficient terahertz receiver. Opt. Commun. 383, 50–56 (2017)ADSCrossRef
Zurück zum Zitat Park, S.-G., Weiner, A.M., Melloch, M.R., Sider, C.W., Sider, J.L., Taylor, A.J.: High-power narrow-band terahertz generation using large-aperture photoconductors. IEEE J. Quantum Electron. 35(8), 1257–1268 (1999)ADSCrossRef Park, S.-G., Weiner, A.M., Melloch, M.R., Sider, C.W., Sider, J.L., Taylor, A.J.: High-power narrow-band terahertz generation using large-aperture photoconductors. IEEE J. Quantum Electron. 35(8), 1257–1268 (1999)ADSCrossRef
Zurück zum Zitat Park, S.-G., Choi, Y., Young-Jae, Oh., Jeong, K.-H.: Terahertz photoconductive antenna with metal nanoislands. Opt. Express 20(23), 25530–25535 (2012)ADSCrossRefPubMed Park, S.-G., Choi, Y., Young-Jae, Oh., Jeong, K.-H.: Terahertz photoconductive antenna with metal nanoislands. Opt. Express 20(23), 25530–25535 (2012)ADSCrossRefPubMed
Zurück zum Zitat Peng, K., Parkinson, P., Boland, J.L., Gao, Q., Wenas, Y.C., Davies, C.L., Li, Z., et al.: Broadband phase-sensitive single InP nanowire photoconductive terahertz detectors. Nano Lett. 16(8), 4925–4931 (2016)ADSCrossRefPubMed Peng, K., Parkinson, P., Boland, J.L., Gao, Q., Wenas, Y.C., Davies, C.L., Li, Z., et al.: Broadband phase-sensitive single InP nanowire photoconductive terahertz detectors. Nano Lett. 16(8), 4925–4931 (2016)ADSCrossRefPubMed
Zurück zum Zitat Prajapati, J., Bharadwaj, M., Chatterjee, A., Bhattacharjee, R.: Circuit modeling and performance analysis of photoconductive antenna. Opt. Commun. 394, 69–79 (2017)ADSCrossRef Prajapati, J., Bharadwaj, M., Chatterjee, A., Bhattacharjee, R.: Circuit modeling and performance analysis of photoconductive antenna. Opt. Commun. 394, 69–79 (2017)ADSCrossRef
Zurück zum Zitat Prajapati, Jitendra, Mrinmoy Bharadwaj, Amitabh Chatterjee, and Ratnajit Bhattacharjee. Time dependent capacitance in photoconductive antenna. In: 2015 IEEE Applied Electromagnetics Conference (AEMC), pp. 1–2. IEEE, (2015) Prajapati, Jitendra, Mrinmoy Bharadwaj, Amitabh Chatterjee, and Ratnajit Bhattacharjee. Time dependent capacitance in photoconductive antenna. In: 2015 IEEE Applied Electromagnetics Conference (AEMC), pp. 1–2. IEEE, (2015)
Zurück zum Zitat Rathinasamy, Vaisshale, Rama Rao Thipparaju, Nisha Flora Boby Edwin, and Shyamal Mondal. Interdigitated photoconductive terahertz antenna for future wireless communications. Microwave Op. Technol. Lett. (2021) Rathinasamy, Vaisshale, Rama Rao Thipparaju, Nisha Flora Boby Edwin, and Shyamal Mondal. Interdigitated photoconductive terahertz antenna for future wireless communications. Microwave Op. Technol. Lett. (2021)
Zurück zum Zitat Rathinasamy, Vaisshale, Shriya Kapoor, Akhil Rout, T. Rama Rao, and Shyamal Mondal. Interdigitated-Slot Photoconductive Antenna for Terahertz Applications. In: 2019 IEEE Indian Conference on Antennas and Propogation (InCAP), pp. 1–3. IEEE, (2019) Rathinasamy, Vaisshale, Shriya Kapoor, Akhil Rout, T. Rama Rao, and Shyamal Mondal. Interdigitated-Slot Photoconductive Antenna for Terahertz Applications. In: 2019 IEEE Indian Conference on Antennas and Propogation (InCAP), pp. 1–3. IEEE, (2019)
Zurück zum Zitat Ropagnol, X., Blanchard, F., Ozaki, T., Reid, M.: Intense terahertz generation at low frequencies using an interdigitated ZnSe large aperture photoconductive antenna. Appl. Phys. Lett. 103(16), 161108 (2013)ADSCrossRef Ropagnol, X., Blanchard, F., Ozaki, T., Reid, M.: Intense terahertz generation at low frequencies using an interdigitated ZnSe large aperture photoconductive antenna. Appl. Phys. Lett. 103(16), 161108 (2013)ADSCrossRef
Zurück zum Zitat Ropagnol, X., M. Bouvier, T. Ozaki, and M. Reid. SiC photoconductive antenna for intense THz generation. In: CLEO: Science and Innovations, pp. JTu4A-106. Optical Society of America, (2014) Ropagnol, X., M. Bouvier, T. Ozaki, and M. Reid. SiC photoconductive antenna for intense THz generation. In: CLEO: Science and Innovations, pp. JTu4A-106. Optical Society of America, (2014)
Zurück zum Zitat Schmerler, S., Hahn, T., Hahn, S., Niklas, J.R., Gründig-Wendrock, B.: Explanation of positive and negative PICTS peaks in SI-GaAs. J. Mater. Sci.: Mater. Electron. 19(1), 328–332 (2008) Schmerler, S., Hahn, T., Hahn, S., Niklas, J.R., Gründig-Wendrock, B.: Explanation of positive and negative PICTS peaks in SI-GaAs. J. Mater. Sci.: Mater. Electron. 19(1), 328–332 (2008)
Zurück zum Zitat Schoenberg, J.S.H., Burger, J.W., Scott Tyo, J., Abdalla, M.D., Skipper, M.C., Buchwald, W.R.: Ultra-wideband source using gallium arsenide photoconductive semiconductor switches. IEEE Trans. Plasma Sci. 25(2), 327–334 (1997)ADSCrossRef Schoenberg, J.S.H., Burger, J.W., Scott Tyo, J., Abdalla, M.D., Skipper, M.C., Buchwald, W.R.: Ultra-wideband source using gallium arsenide photoconductive semiconductor switches. IEEE Trans. Plasma Sci. 25(2), 327–334 (1997)ADSCrossRef
Zurück zum Zitat Shan, Jie, and Tony F. Heinz. Terahertz radiation from semiconductors. In: Ultrafast Dynamical Processes in Semiconductors, pp. 1–56. Springer, Berlin, Heidelberg (2004) Shan, Jie, and Tony F. Heinz. Terahertz radiation from semiconductors. In: Ultrafast Dynamical Processes in Semiconductors, pp. 1–56. Springer, Berlin, Heidelberg (2004)
Zurück zum Zitat Shi, W., Hou, L., Liu, Z., Tongue, T.: Terahertz generation from SI-GaAs stripline antenna with different structural parameters. JOSA B 26(9), A107–A112 (2009)ADSCrossRef Shi, W., Hou, L., Liu, Z., Tongue, T.: Terahertz generation from SI-GaAs stripline antenna with different structural parameters. JOSA B 26(9), A107–A112 (2009)ADSCrossRef
Zurück zum Zitat Singh, M., Sharma, R.P.: Generation of THz radiation by laser plasma interaction. Contrib. Plasma Phys. 53(7), 540–548 (2013)ADSCrossRef Singh, M., Sharma, R.P.: Generation of THz radiation by laser plasma interaction. Contrib. Plasma Phys. 53(7), 540–548 (2013)ADSCrossRef
Zurück zum Zitat Tariq, F., Khandaker, M.R.A., Wong, K.-K., Imran, M.A., Bennis, M., Debbah, M.: A speculative study on 6G. IEEE Wireless Commun. 27(4), 118–125 (2020)CrossRef Tariq, F., Khandaker, M.R.A., Wong, K.-K., Imran, M.A., Bennis, M., Debbah, M.: A speculative study on 6G. IEEE Wireless Commun. 27(4), 118–125 (2020)CrossRef
Zurück zum Zitat Xiong, Zhonggang, Zhi-xiang Wu, Quan-chen Liu, Lin-yu Chen, and Jin Guo. The impact of structural parameters of split-ring resonators on the terahertz radiation characteristics of micro-structured photoconductive antennas: A simulation study. IEEE Photonics J. (2020). Xiong, Zhonggang, Zhi-xiang Wu, Quan-chen Liu, Lin-yu Chen, and Jin Guo. The impact of structural parameters of split-ring resonators on the terahertz radiation characteristics of micro-structured photoconductive antennas: A simulation study. IEEE Photonics J. (2020).
Zurück zum Zitat Yano, R., Gotoh, H., Hirayama, Y., Miyashita, S., Kadoya, Y., Hattori, T.: Terahertz wave detection performance of photoconductive antennas: Role of antenna structure and gate pulse intensity. J. Appl. Phys. 97(10), 103103–103103 (2005)ADSCrossRef Yano, R., Gotoh, H., Hirayama, Y., Miyashita, S., Kadoya, Y., Hattori, T.: Terahertz wave detection performance of photoconductive antennas: Role of antenna structure and gate pulse intensity. J. Appl. Phys. 97(10), 103103–103103 (2005)ADSCrossRef
Metadaten
Titel
Numerical investigation and circuit analysis of interdigitated photoconductive antenna for terahertz applications
verfasst von
Vaisshale Rathinasamy
Rama Rao Thipparaju
E. Nisha Flora Boby
Shyamal Mondal
Publikationsdatum
01.04.2022
Verlag
Springer US
Erschienen in
Optical and Quantum Electronics / Ausgabe 4/2022
Print ISSN: 0306-8919
Elektronische ISSN: 1572-817X
DOI
https://doi.org/10.1007/s11082-022-03619-6

Weitere Artikel der Ausgabe 4/2022

Optical and Quantum Electronics 4/2022 Zur Ausgabe