Skip to main content
Erschienen in: Optical and Quantum Electronics 8/2023

01.08.2023

Antiferromagnetic Schrödinger electromotive microscale in Minkowski space

verfasst von: Talat Körpinar, Zeliha Körpinar

Erschienen in: Optical and Quantum Electronics | Ausgabe 8/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, we describe a new non-linear Schrö dinger model. Also, we present geometric flexible non-linear electromotive \(\phi (\chi _{1}),\) \(\phi (\chi _{2}),\) \(\phi (\chi _{3}),\) \({\mathcal{B}}^{\mathcal{S}}\) Schrödinger microscales in Minkowski 3-space. We characterize antiferromagnetic optical solitonic non-linear optimistic \(\phi (\chi _{1}),\) \(\phi (\chi _{2}),\) \(\phi (\chi _{3}),\) \({\mathcal{B}}^{\mathcal{S}}\) Schrödinger densities are presented by viscosity potential. Finally, we obtain Antiferromagnetic visco geometric pseudo flexible non-linear magnetic \(\phi (\chi _{1}),\) \(\phi (\chi _{2}),\) \(\phi (\chi _{3}),\) \({\mathcal{B}}^{\mathcal{S}}\) Schrödinger microscales.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Alazmi, S., Xu, Y., Daqaq, M.F.: Harvesting energy from the sloshing motion of ferrofluids in an externally excited container: analytical modeling andexperimental validation. Phys. Fluids 28, 077101 (2016)ADS Alazmi, S., Xu, Y., Daqaq, M.F.: Harvesting energy from the sloshing motion of ferrofluids in an externally excited container: analytical modeling andexperimental validation. Phys. Fluids 28, 077101 (2016)ADS
Zurück zum Zitat Almaas, E., Brevik, I.: Possible sorting mechanism for microparticles in an evanescent field. Phys. Rev. A 87, 063826 (2013)ADS Almaas, E., Brevik, I.: Possible sorting mechanism for microparticles in an evanescent field. Phys. Rev. A 87, 063826 (2013)ADS
Zurück zum Zitat Arnold, D.P.: Review of microscale magnetic power generation. IEEE Trans. Magn. 43, 3940–3951 (2007a)ADS Arnold, D.P.: Review of microscale magnetic power generation. IEEE Trans. Magn. 43, 3940–3951 (2007a)ADS
Zurück zum Zitat Arnold, D.P.: Review of microscale magnetic power generation. IEEE Trans. Magn. 43(11), 3940–3951 (2007b)ADS Arnold, D.P.: Review of microscale magnetic power generation. IEEE Trans. Magn. 43(11), 3940–3951 (2007b)ADS
Zurück zum Zitat Ashkin, A.: Acceleration and trapping of particles by radiation pressure. Phys. Rev. Lett. 24, 156–159 (1970)ADS Ashkin, A.: Acceleration and trapping of particles by radiation pressure. Phys. Rev. Lett. 24, 156–159 (1970)ADS
Zurück zum Zitat Ashkin, A., Dziedzic, J.M., Bjorkholm, J.E., Chu, S.: Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett. 11, 288–290 (1986)ADS Ashkin, A., Dziedzic, J.M., Bjorkholm, J.E., Chu, S.: Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett. 11, 288–290 (1986)ADS
Zurück zum Zitat Balakrishnan, R., Bishop, A.R., Dandoloff, R.: Geometric phase in the classical continuous antiferromagnetic Heisenberg spin chain. Phys. Rev. Lett. 64(18), 2107 (1990)ADSMathSciNetMATH Balakrishnan, R., Bishop, A.R., Dandoloff, R.: Geometric phase in the classical continuous antiferromagnetic Heisenberg spin chain. Phys. Rev. Lett. 64(18), 2107 (1990)ADSMathSciNetMATH
Zurück zum Zitat Balakrishnan, R., Bishop, A.R., Dandoloff, R.: Anholonomy of a moving space curve and applications to classical magnetic chains. Phys. Rev. B 47(6), 3108 (1993)ADS Balakrishnan, R., Bishop, A.R., Dandoloff, R.: Anholonomy of a moving space curve and applications to classical magnetic chains. Phys. Rev. B 47(6), 3108 (1993)ADS
Zurück zum Zitat Bashtovoi, V.G., Reks, A.G.: Electromagnetic induction phenomena for a nonmagnetic non-electroconducting solid sphere moving in a magnetic fluid. J. Magn. Magn. Mater. 149(1–2), 84–86 (1995)ADS Bashtovoi, V.G., Reks, A.G.: Electromagnetic induction phenomena for a nonmagnetic non-electroconducting solid sphere moving in a magnetic fluid. J. Magn. Magn. Mater. 149(1–2), 84–86 (1995)ADS
Zurück zum Zitat Beeby, S.P., Tudor, M.J., White, N.M.: Energy harvesting vibration sources for microsystems applications. Meas. Sci. Technol. 17(12), R175 (2006) Beeby, S.P., Tudor, M.J., White, N.M.: Energy harvesting vibration sources for microsystems applications. Meas. Sci. Technol. 17(12), R175 (2006)
Zurück zum Zitat Bliokh, K.Y.: Geometrodynamics of polarized light: Berry phase and spin Hall effect in a gradient-index medium. J. Opt. A Pure Appl. Opt. 11(9), 094009 (2009)ADS Bliokh, K.Y.: Geometrodynamics of polarized light: Berry phase and spin Hall effect in a gradient-index medium. J. Opt. A Pure Appl. Opt. 11(9), 094009 (2009)ADS
Zurück zum Zitat Burns, M.M., Fournier, J.-M., Golovchenko, J.A.: Optical binding. Phys. Rev. Lett. 63, 1233–1236 (1989a)ADS Burns, M.M., Fournier, J.-M., Golovchenko, J.A.: Optical binding. Phys. Rev. Lett. 63, 1233–1236 (1989a)ADS
Zurück zum Zitat Burns, M.M., Fournier, J.-M., Golovchenko, J.A.: Optical binding. Phys. Rev. Lett. 63, 1233–1236 (1989b)ADS Burns, M.M., Fournier, J.-M., Golovchenko, J.A.: Optical binding. Phys. Rev. Lett. 63, 1233–1236 (1989b)ADS
Zurück zum Zitat Calini, A., Ivey, T., Marí Beffa, G.: Remarks on KdV-type flows on star-shaped curves. Physica D 238, 788–797 (2009a)ADSMathSciNetMATH Calini, A., Ivey, T., Marí Beffa, G.: Remarks on KdV-type flows on star-shaped curves. Physica D 238, 788–797 (2009a)ADSMathSciNetMATH
Zurück zum Zitat Calini, A., Ivey, T., Marí Beffa, G.: Remarks on KdV-type flows on star-shaped curves. Physica D 238, 788–797 (2009b)ADSMathSciNetMATH Calini, A., Ivey, T., Marí Beffa, G.: Remarks on KdV-type flows on star-shaped curves. Physica D 238, 788–797 (2009b)ADSMathSciNetMATH
Zurück zum Zitat Chaumet, P.C., Nieto-Vesperinas, M.: Optical binding of particles with or without the presence of a flat dielectric surface. Phys. Rev. B 64, 035422 (2001)ADS Chaumet, P.C., Nieto-Vesperinas, M.: Optical binding of particles with or without the presence of a flat dielectric surface. Phys. Rev. B 64, 035422 (2001)ADS
Zurück zum Zitat Chen, Y., He, Y., Zhu, X.: Non-contact monitoring on the flow status inside a pulsating heat pipe. Sensors 20(20), 5955 (2020)ADS Chen, Y., He, Y., Zhu, X.: Non-contact monitoring on the flow status inside a pulsating heat pipe. Sensors 20(20), 5955 (2020)ADS
Zurück zum Zitat Chae, S.H., Suna, Y.C., Chi, Y.-E., Ji, C.-H.: Electromagnetic linear vibration energy harvester using sliding permanent magnet array and ferrofluid as a lubricant. Micromachines 8, 288 (2017) Chae, S.H., Suna, Y.C., Chi, Y.-E., Ji, C.-H.: Electromagnetic linear vibration energy harvester using sliding permanent magnet array and ferrofluid as a lubricant. Micromachines 8, 288 (2017)
Zurück zum Zitat Dai, H., Wang, Y., Wang, L.: Nonlinear dynamics of cantilevered microbeams based on modified couple stress theory. Int. J. Eng. Sci. 94, 103–112 (2015)MathSciNetMATH Dai, H., Wang, Y., Wang, L.: Nonlinear dynamics of cantilevered microbeams based on modified couple stress theory. Int. J. Eng. Sci. 94, 103–112 (2015)MathSciNetMATH
Zurück zum Zitat Danesh, M., Farajpour, A., Mohammadi, M.: Axial vibration analysis of a tapered nanorod based on nonlocal elasticity theory and differential quadrature method. Mech. Res. Commun. 39, 23–27 (2012)MATH Danesh, M., Farajpour, A., Mohammadi, M.: Axial vibration analysis of a tapered nanorod based on nonlocal elasticity theory and differential quadrature method. Mech. Res. Commun. 39, 23–27 (2012)MATH
Zurück zum Zitat Daneshmehr, A., Rajabpoor, A.: Stability of size dependent functionally graded nanoplate based on nonlocal elasticity and higher order plate theories and different boundary conditions. Int. J. Eng. Sci. 82, 84–100 (2014) Daneshmehr, A., Rajabpoor, A.: Stability of size dependent functionally graded nanoplate based on nonlocal elasticity and higher order plate theories and different boundary conditions. Int. J. Eng. Sci. 82, 84–100 (2014)
Zurück zum Zitat Dholakia, K., Zemánek, P.: Colloquium: gripped by light: optical binding. Rev. Mod. Phys. 82, 1767–1791 (2010)ADS Dholakia, K., Zemánek, P.: Colloquium: gripped by light: optical binding. Rev. Mod. Phys. 82, 1767–1791 (2010)ADS
Zurück zum Zitat Ding, Q., Inoguchi, J.I.: Schrödinger flows, binormal motion for curves and the second AKNS-hierarchies. Chaos Solitons Fractals 21(3), 669–677 (2004)ADSMathSciNetMATH Ding, Q., Inoguchi, J.I.: Schrödinger flows, binormal motion for curves and the second AKNS-hierarchies. Chaos Solitons Fractals 21(3), 669–677 (2004)ADSMathSciNetMATH
Zurück zum Zitat Doliwa, A., Santini, P.M.: An elementary geometric characterization of the integrable motions of a curve. Phys. Lett. A 185(4), 373–384 (1994)ADSMathSciNetMATH Doliwa, A., Santini, P.M.: An elementary geometric characterization of the integrable motions of a curve. Phys. Lett. A 185(4), 373–384 (1994)ADSMathSciNetMATH
Zurück zum Zitat Farajpour, A., Yazdi, M.H., Rastgoo, A., Loghmani, M., Mohammadi, M.: Nonlocal nonlinear plate model for large amplitude vibration of magneto-electro-elastic nanoplates. Compos. Struct. 140, 323–336 (2016) Farajpour, A., Yazdi, M.H., Rastgoo, A., Loghmani, M., Mohammadi, M.: Nonlocal nonlinear plate model for large amplitude vibration of magneto-electro-elastic nanoplates. Compos. Struct. 140, 323–336 (2016)
Zurück zum Zitat Farajpour, A., Farokhi, H., Ghayesh, M.H., Hussain, S.: Nonlinear mechanics of nanotubes conveying fluid. Int. J. Eng. Sci. 133, 132–143 (2018)MathSciNetMATH Farajpour, A., Farokhi, H., Ghayesh, M.H., Hussain, S.: Nonlinear mechanics of nanotubes conveying fluid. Int. J. Eng. Sci. 133, 132–143 (2018)MathSciNetMATH
Zurück zum Zitat Farokhi, H., Ghayesh, M.H.: Nonlinear size-dependent dynamics of microarches with modal interactions. J. Vib. Control 22, 3679–3689 (2016)MathSciNet Farokhi, H., Ghayesh, M.H.: Nonlinear size-dependent dynamics of microarches with modal interactions. J. Vib. Control 22, 3679–3689 (2016)MathSciNet
Zurück zum Zitat Gilmore, R.: Length and curvature in the geometry of thermodynamics. Phys. Rev. A 30(4), 1994 (1984)ADSMathSciNet Gilmore, R.: Length and curvature in the geometry of thermodynamics. Phys. Rev. A 30(4), 1994 (1984)ADSMathSciNet
Zurück zum Zitat Gürbüz, N.: Moving non-null curves according to Bishop frame in Minkowski 3-space. Int. J. Geometr. Methods Mod. Phys. 12(05), 1550052 (2015)ADSMathSciNetMATH Gürbüz, N.: Moving non-null curves according to Bishop frame in Minkowski 3-space. Int. J. Geometr. Methods Mod. Phys. 12(05), 1550052 (2015)ADSMathSciNetMATH
Zurück zum Zitat Gürbüz, N.E.: The evolution of electric field in pseudo-Galilean 3-space G13. Optik 269, 169818 (2022)ADS Gürbüz, N.E.: The evolution of electric field in pseudo-Galilean 3-space G13. Optik 269, 169818 (2022)ADS
Zurück zum Zitat Gürbüz, N.E.: The evolution of an electric field, Hasimoto surfaces and three differential formulas with the new frame in R13. Optik 272, 170217 (2023)ADS Gürbüz, N.E.: The evolution of an electric field, Hasimoto surfaces and three differential formulas with the new frame in R13. Optik 272, 170217 (2023)ADS
Zurück zum Zitat Kamiyama, S., Ishimoto, J.: Boiling two-phase flows of magnetic fluid in a non-uniform magnetic field. J. Magn. Magn. Mater. 149(1–2), 125–131 (1995)ADS Kamiyama, S., Ishimoto, J.: Boiling two-phase flows of magnetic fluid in a non-uniform magnetic field. J. Magn. Magn. Mater. 149(1–2), 125–131 (1995)ADS
Zurück zum Zitat Khairul, M.A., Doroodchi, E., Azizian, R., Moghtaderi, B.: Advanced applications of tunable ferrofluids in energy systems and energy harvesters: a critical review. Energy Convers. Manag. 149, 660–674 (2017) Khairul, M.A., Doroodchi, E., Azizian, R., Moghtaderi, B.: Advanced applications of tunable ferrofluids in energy systems and energy harvesters: a critical review. Energy Convers. Manag. 149, 660–674 (2017)
Zurück zum Zitat Kim, D., Yun, K.-S.: Energy harvester using contact-electrification of magnetic fluid droplets under oscillating magnetic field. J. Phys. Conf. Ser. 660, 012108 (2015) Kim, D., Yun, K.-S.: Energy harvester using contact-electrification of magnetic fluid droplets under oscillating magnetic field. J. Phys. Conf. Ser. 660, 012108 (2015)
Zurück zum Zitat Kim, S.H., Park, J.H., Choi, H.S., Lee, S.H.: Power generation properties of flow nanogenerator with mixture of magnetic nanofluid and bubbles in circulating system. IEEE Trans. Magn. 53(11), 1–4 (2017) Kim, S.H., Park, J.H., Choi, H.S., Lee, S.H.: Power generation properties of flow nanogenerator with mixture of magnetic nanofluid and bubbles in circulating system. IEEE Trans. Magn. 53(11), 1–4 (2017)
Zurück zum Zitat Körpınar, T.: Optical directional binormal magnetic flows with geometric phase: Heisenberg ferromagnetic model. Optik 219, 165134 (2020)ADS Körpınar, T.: Optical directional binormal magnetic flows with geometric phase: Heisenberg ferromagnetic model. Optik 219, 165134 (2020)ADS
Zurück zum Zitat Körpinar, T., Körpinar, Z.: New optical geometric recursional electromagnetic ferromagnetic microscale. Int. J. Mod. Phys. B 55, 523 (2023a) Körpinar, T., Körpinar, Z.: New optical geometric recursional electromagnetic ferromagnetic microscale. Int. J. Mod. Phys. B 55, 523 (2023a)
Zurück zum Zitat Körpinar, T., Körpinar, Z.: Spherical Heisenberg flux of magnetic Heisenberg optical ferromagnetic model. Int. J. Mod. Phys. B 55, 505 (2023b) Körpinar, T., Körpinar, Z.: Spherical Heisenberg flux of magnetic Heisenberg optical ferromagnetic model. Int. J. Mod. Phys. B 55, 505 (2023b)
Zurück zum Zitat Körpınar, T., Körpınar, Z.: Optical spherical Ss-electric and magnetic phase with fractional q-HATM approach. Optik 243, 167274 (2021a)ADS Körpınar, T., Körpınar, Z.: Optical spherical Ss-electric and magnetic phase with fractional q-HATM approach. Optik 243, 167274 (2021a)ADS
Zurück zum Zitat Körpınar, T., Körpınar, Z.: New version of optical spherical electric and magnetic flow phasewith some fractional solutions in \(\mathbb{S} _{\mathbb{H} ^{3}}^{2}\). Optik 243, 167378 (2021b)ADS Körpınar, T., Körpınar, Z.: New version of optical spherical electric and magnetic flow phasewith some fractional solutions in \(\mathbb{S} _{\mathbb{H} ^{3}}^{2}\). Optik 243, 167378 (2021b)ADS
Zurück zum Zitat Körpınar, T., Körpınar, Z.: A new approach for fractional spherical magnetic flux flows with some fractional solutions. Optik 240, 166906 (2021c)ADS Körpınar, T., Körpınar, Z.: A new approach for fractional spherical magnetic flux flows with some fractional solutions. Optik 240, 166906 (2021c)ADS
Zurück zum Zitat Körpınar, T., Körpınar, Z.: Spherical electric and magnetic phase with Heisenberg spherical ferromagnetic spin by some fractional solutions. Optik 242, 167164 (2021d)ADS Körpınar, T., Körpınar, Z.: Spherical electric and magnetic phase with Heisenberg spherical ferromagnetic spin by some fractional solutions. Optik 242, 167164 (2021d)ADS
Zurück zum Zitat Körpınar, T., Körpınar, Z.: Timelike spherical magnetic \(\mathbb{S} _{\textbf{N} }\) flux flows with Heisenberg spherical ferromagnetic spin with some solutions. Optik 242, 166745 (2021e)ADS Körpınar, T., Körpınar, Z.: Timelike spherical magnetic \(\mathbb{S} _{\textbf{N} }\) flux flows with Heisenberg spherical ferromagnetic spin with some solutions. Optik 242, 166745 (2021e)ADS
Zurück zum Zitat Körpınar, Z., Körpınar, T.: Optical hybrid electric and magnetic B$_{1}$-phase with Landau Lifshitz approach. Optik 247, 167917 (2021f)ADS Körpınar, Z., Körpınar, T.: Optical hybrid electric and magnetic B$_{1}$-phase with Landau Lifshitz approach. Optik 247, 167917 (2021f)ADS
Zurück zum Zitat Körpınar, T., Körpınar, Z.: Optical spherical Ss-electric and magnetic phase with fractional q-HATM approach. Optik 243, 167274 (2021g)ADS Körpınar, T., Körpınar, Z.: Optical spherical Ss-electric and magnetic phase with fractional q-HATM approach. Optik 243, 167274 (2021g)ADS
Zurück zum Zitat Körpınar, Z., Korpinar, T.: Optical spherical electroosmotic phase and optical energy for spherical \(\alpha\)-magnetic curves. Optik 255, 168455 (2022a)ADS Körpınar, Z., Korpinar, T.: Optical spherical electroosmotic phase and optical energy for spherical \(\alpha\)-magnetic curves. Optik 255, 168455 (2022a)ADS
Zurück zum Zitat Körpınar, Z., Korpinar, T.: Optical antiferromagnetic electric \(\mathbb{S} \alpha\)-flux with electroosmotic velocity in Heisenberg \(\mathbb{S} _{\mathbb{H} }^{2}\). Optik 252, 168206 (2022b)ADS Körpınar, Z., Korpinar, T.: Optical antiferromagnetic electric \(\mathbb{S} \alpha\)-flux with electroosmotic velocity in Heisenberg \(\mathbb{S} _{\mathbb{H} }^{2}\). Optik 252, 168206 (2022b)ADS
Zurück zum Zitat Körpinar, T., Körpinar, Z.: New optical flux for optical antiferromagnetic modified drift density. Opt. Quant. Electron. 54(12), 1–9 (2022c) Körpinar, T., Körpinar, Z.: New optical flux for optical antiferromagnetic modified drift density. Opt. Quant. Electron. 54(12), 1–9 (2022c)
Zurück zum Zitat Körpınar, T., Körpınar, Z.: Optical electromagnetic flux curves with optical antiferromagnetic model. Optik 251, 168301 (2022d)ADS Körpınar, T., Körpınar, Z.: Optical electromagnetic flux curves with optical antiferromagnetic model. Optik 251, 168301 (2022d)ADS
Zurück zum Zitat Körpinar, T., Körpinar, Z.: New modeling for Heisenberg velocity microfluidic of optical ferromagnetic mKdV flux. Opt. Quant. Electron. 55(6), 523 (2023a)MATH Körpinar, T., Körpinar, Z.: New modeling for Heisenberg velocity microfluidic of optical ferromagnetic mKdV flux. Opt. Quant. Electron. 55(6), 523 (2023a)MATH
Zurück zum Zitat Körpinar, T., Körpinar, Z.: Antiferromagnetic complex electromotive microscale with first type Schrödinger frame. Opt. Quant. Electron. 55(6), 505 (2023b) Körpinar, T., Körpinar, Z.: Antiferromagnetic complex electromotive microscale with first type Schrödinger frame. Opt. Quant. Electron. 55(6), 505 (2023b)
Zurück zum Zitat Körpınar, T., Körpınar, Z., Demirkol, R.C.: Binormal schrodinger system of wave propagation field of light radiate in the normal direction with q-HATM approach. Optik 235, 166444 (2020)ADS Körpınar, T., Körpınar, Z., Demirkol, R.C.: Binormal schrodinger system of wave propagation field of light radiate in the normal direction with q-HATM approach. Optik 235, 166444 (2020)ADS
Zurück zum Zitat Körpınar, T., Demirkol, R.C., Körpınar, Z.: Magnetic helicity and electromagnetic vortex filament flows under the influence of Lorentz force in MHD. Optik 242, 167302 (2021a)ADS Körpınar, T., Demirkol, R.C., Körpınar, Z.: Magnetic helicity and electromagnetic vortex filament flows under the influence of Lorentz force in MHD. Optik 242, 167302 (2021a)ADS
Zurück zum Zitat Körpınar, T., Demirkol, R.C., Körpınar, Z.: New analytical solutions for the inextensible Heisenberg ferromagnetic flow and solitonic magnetic flux surfaces in the binormal direction. Phys. Scr. 96(8), 085219 (2021b)ADS Körpınar, T., Demirkol, R.C., Körpınar, Z.: New analytical solutions for the inextensible Heisenberg ferromagnetic flow and solitonic magnetic flux surfaces in the binormal direction. Phys. Scr. 96(8), 085219 (2021b)ADS
Zurück zum Zitat Körpınar, T., Demirkol, R.C., Körpınar, Z.: Polarization of propagated light with optical solitons along the fiber in de-sitter space. Optik 226, 165872 (2021c)ADS Körpınar, T., Demirkol, R.C., Körpınar, Z.: Polarization of propagated light with optical solitons along the fiber in de-sitter space. Optik 226, 165872 (2021c)ADS
Zurück zum Zitat Körpınar, T., Demirkol, R.C., Körpınar, Z.: Approximate solutions for the inextensible Heisenberg antiferromagnetic flow and solitonic magnetic flux surfaces in the normal direction in Minkowski space. Optik 238, 166403 (2021d)ADS Körpınar, T., Demirkol, R.C., Körpınar, Z.: Approximate solutions for the inextensible Heisenberg antiferromagnetic flow and solitonic magnetic flux surfaces in the normal direction in Minkowski space. Optik 238, 166403 (2021d)ADS
Zurück zum Zitat Körpınar, T., Körpınar, Z., Yeneroğlu, M.: Optical energy of spherical velocity with optical magnetic density in Heisenberg sphere space \(\mathbb{S} _{Heis^{3}}^{2}\). Optik 247, 167937 (2021e)ADS Körpınar, T., Körpınar, Z., Yeneroğlu, M.: Optical energy of spherical velocity with optical magnetic density in Heisenberg sphere space \(\mathbb{S} _{Heis^{3}}^{2}\). Optik 247, 167937 (2021e)ADS
Zurück zum Zitat Körpinar, T., Körpinar, Z., Kaymanlı, G.U.: Optical modeling for geometric phase for the Hasimoto transformations on unit sphere. Optik 267, 169642 (2022a)ADS Körpinar, T., Körpinar, Z., Kaymanlı, G.U.: Optical modeling for geometric phase for the Hasimoto transformations on unit sphere. Optik 267, 169642 (2022a)ADS
Zurück zum Zitat Körpinar, T., Körpinar, Z., Asil, V.: Optical modeling for hybrid visco ferromagnetic electromotive energy flux microscale. Optik 268, 169770 (2022b)ADS Körpinar, T., Körpinar, Z., Asil, V.: Optical modeling for hybrid visco ferromagnetic electromotive energy flux microscale. Optik 268, 169770 (2022b)ADS
Zurück zum Zitat Körpinar, T., Ünlütürk, Y., Körpinar, Z.: A different modelling of complex Hasimoto map for pseudo-null curves via Bishop frame. Complex Var. Ellipt. Equ. 24, 1–16 (2022c) Körpinar, T., Ünlütürk, Y., Körpinar, Z.: A different modelling of complex Hasimoto map for pseudo-null curves via Bishop frame. Complex Var. Ellipt. Equ. 24, 1–16 (2022c)
Zurück zum Zitat Körpınar, T., Körpınar, Z., Asil, V.: Electric flux curves with spherical antiferromagnetic approach with electroosmotic velocity. Optik 252, 168108 (2022d)ADS Körpınar, T., Körpınar, Z., Asil, V.: Electric flux curves with spherical antiferromagnetic approach with electroosmotic velocity. Optik 252, 168108 (2022d)ADS
Zurück zum Zitat Körpınar, T., Demirkol, R.C., Körpınar, Z.: Optical flux surfaces throughout normal evoluted flowlines in the presence of the modified visco effect. Eur. Phys. J. Plus 137(10), 1–13 (2022e) Körpınar, T., Demirkol, R.C., Körpınar, Z.: Optical flux surfaces throughout normal evoluted flowlines in the presence of the modified visco effect. Eur. Phys. J. Plus 137(10), 1–13 (2022e)
Zurück zum Zitat Körpınar, T., Ünlütürk, Y., Körpınar, Z.: A new version of the motion equations of pseudo null curves with compatible Hasimoto map. Opt. Quant. Electron. 55(1), 1–14 (2023a) Körpınar, T., Ünlütürk, Y., Körpınar, Z.: A new version of the motion equations of pseudo null curves with compatible Hasimoto map. Opt. Quant. Electron. 55(1), 1–14 (2023a)
Zurück zum Zitat Körpinar, T., Demirkol, R.C., Körpinar, Z.: On the new conformable optical ferromagnetic and antiferromagnetic magnetically driven waves. Opt. Quant. Electron. 55(6), 496 (2023b) Körpinar, T., Demirkol, R.C., Körpinar, Z.: On the new conformable optical ferromagnetic and antiferromagnetic magnetically driven waves. Opt. Quant. Electron. 55(6), 496 (2023b)
Zurück zum Zitat Kuwahara, T., De Vuyst, F., Yamaguchi, H.: Flow regime classification in air-magnetic fluid two-phase flow. J. Phys. Condens. Matter 20(20), 204141 (2008a)ADS Kuwahara, T., De Vuyst, F., Yamaguchi, H.: Flow regime classification in air-magnetic fluid two-phase flow. J. Phys. Condens. Matter 20(20), 204141 (2008a)ADS
Zurück zum Zitat Kuwahara, T., De Vuyst, F., Yamaguchi, H.: Flow regime classification inair-magnetic fluid two-phase flow. J. Phys. Condens. Matter 20, 204141 (2008b)ADS Kuwahara, T., De Vuyst, F., Yamaguchi, H.: Flow regime classification inair-magnetic fluid two-phase flow. J. Phys. Condens. Matter 20, 204141 (2008b)ADS
Zurück zum Zitat Liu, Q., Alazemi, S.F., Daqaq, M.F., Li, G.: A ferrofluid based energy harvester: computational modeling, analysis, and experimental validation. J. Magn. Magn. Mater. 449, 105–118 (2018a)ADS Liu, Q., Alazemi, S.F., Daqaq, M.F., Li, G.: A ferrofluid based energy harvester: computational modeling, analysis, and experimental validation. J. Magn. Magn. Mater. 449, 105–118 (2018a)ADS
Zurück zum Zitat Liu, Q., Alazemi, S.F., Daqaq, M.F., Li, G.: A ferrofluid based energy harvester: computational modeling, analysis, and experimental validation. J. Magn. Magn. Mater. 449, 105–118 (2018b)ADS Liu, Q., Alazemi, S.F., Daqaq, M.F., Li, G.: A ferrofluid based energy harvester: computational modeling, analysis, and experimental validation. J. Magn. Magn. Mater. 449, 105–118 (2018b)ADS
Zurück zum Zitat Malvar, S., Gontijo, R.G., Cunha, F.R.: Nonlinear motion of an oscillating bubble immersed in a magnetic fluid. J. Eng. Math. 108(1), 143–170 (2018)MathSciNetMATH Malvar, S., Gontijo, R.G., Cunha, F.R.: Nonlinear motion of an oscillating bubble immersed in a magnetic fluid. J. Eng. Math. 108(1), 143–170 (2018)MathSciNetMATH
Zurück zum Zitat Marí Beffa, G.: Hamiltonian evolution of curves in classical affine geometries. Physica D 238, 100–115 (2009)ADSMathSciNetMATH Marí Beffa, G.: Hamiltonian evolution of curves in classical affine geometries. Physica D 238, 100–115 (2009)ADSMathSciNetMATH
Zurück zum Zitat Ricca, R.L.: Physical interpretation of certain invariants for vortex filament motion under LIA. Phys. Fluids A 4(5), 938–944 (1992)ADSMathSciNetMATH Ricca, R.L.: Physical interpretation of certain invariants for vortex filament motion under LIA. Phys. Fluids A 4(5), 938–944 (1992)ADSMathSciNetMATH
Zurück zum Zitat Seol, M.L., Jeon, S.B., Han, J.W., Choi, Y.K.: Ferrofluid-based triboelectric-electromagnetic hybrid generator for sensitive and sustainable vibration energy harvesting. Nano Energy 31, 233–238 (2017a) Seol, M.L., Jeon, S.B., Han, J.W., Choi, Y.K.: Ferrofluid-based triboelectric-electromagnetic hybrid generator for sensitive and sustainable vibration energy harvesting. Nano Energy 31, 233–238 (2017a)
Zurück zum Zitat Seol, M.-L., Jeon, S.-B., Han, J.-W., Choi, Y.-K.: Ferrofluid-based triboelectric-electromagnetic hybrid generator for sensitive and sustainable vibration energy harvesting. Nano Energy 31, 233–238 (2017b) Seol, M.-L., Jeon, S.-B., Han, J.-W., Choi, Y.-K.: Ferrofluid-based triboelectric-electromagnetic hybrid generator for sensitive and sustainable vibration energy harvesting. Nano Energy 31, 233–238 (2017b)
Zurück zum Zitat Wang, Y., Zhang, Q., Zhao, L., Kim, E.S.: Ferrofluid liquid spring for vibration energy harvesting. In: Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS), pp. 122–125 (2015) Wang, Y., Zhang, Q., Zhao, L., Kim, E.S.: Ferrofluid liquid spring for vibration energy harvesting. In: Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS), pp. 122–125 (2015)
Zurück zum Zitat Wassmann, F., Ankiewicz, A.: Berry’s phase analysis of polarization rotation in helicoidal fibers. Appl. Opt. 37(18), 3902–3911 (1998)ADS Wassmann, F., Ankiewicz, A.: Berry’s phase analysis of polarization rotation in helicoidal fibers. Appl. Opt. 37(18), 3902–3911 (1998)ADS
Zurück zum Zitat Zahn, M.: Magnetic fluid and nanoparticle applications to nanotechnology. J. Nanopart. Res. 3(1), 73–78 (2001)ADS Zahn, M.: Magnetic fluid and nanoparticle applications to nanotechnology. J. Nanopart. Res. 3(1), 73–78 (2001)ADS
Metadaten
Titel
Antiferromagnetic Schrödinger electromotive microscale in Minkowski space
verfasst von
Talat Körpinar
Zeliha Körpinar
Publikationsdatum
01.08.2023
Verlag
Springer US
Erschienen in
Optical and Quantum Electronics / Ausgabe 8/2023
Print ISSN: 0306-8919
Elektronische ISSN: 1572-817X
DOI
https://doi.org/10.1007/s11082-023-04873-y

Weitere Artikel der Ausgabe 8/2023

Optical and Quantum Electronics 8/2023 Zur Ausgabe