Skip to main content
Erschienen in: Optical and Quantum Electronics 7/2023

01.07.2023

Partially coherent beam propagation in turbid tissue-like scattering medium

verfasst von: S. Chib, L. Dalil-Essakali, A. Belafhal

Erschienen in: Optical and Quantum Electronics | Ausgabe 7/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, we introduce a global power spectrum model describing the refractive index fluctuations in modelling turbulent biological tissue. Based on the extended Huygens–Fresnel diffraction integral, the propagation of a partially coherent Generalized Flattened Hermite Cosh-Gaussian (GFHChG) beam in turbulent biological tissue is investigated using the proposed power spectrum. Numerical examples are illustrated with various source parameters to describe the evolution of the laser beam in biological tissue. The GFHChG beam exhibits different beam profiles upon propagation in turbulent biological tissue, reaching a Gaussian shape as the incident beam parameters are smaller. A comparison of the beam comportment in two biological tissues is also given. The obtained results can be helpful for the development of technologies used in biological tissue.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Andrews, L.C., Phillips, R.L.: Laser beam propagation through random media, 2nd edn. SPIE Press, Bellingham, Wash (2005) Andrews, L.C., Phillips, R.L.: Laser beam propagation through random media, 2nd edn. SPIE Press, Bellingham, Wash (2005)
Zurück zum Zitat Ash, C., Dubec, M., Donne, K., Bashford, T.: Effect of wavelength and beam width on penetration in light-tissue interaction using computational methods. Lasers Med. Sci. 32, 1909–1918 (2017) Ash, C., Dubec, M., Donne, K., Bashford, T.: Effect of wavelength and beam width on penetration in light-tissue interaction using computational methods. Lasers Med. Sci. 32, 1909–1918 (2017)
Zurück zum Zitat Belafhal, A., Chib, S., Khannous, F., Usman, T.: Evaluation of integral transforms using special functions with applications to biological tissues. Comput. Appl. Math. 40, 1–23 (2021)MathSciNetMATH Belafhal, A., Chib, S., Khannous, F., Usman, T.: Evaluation of integral transforms using special functions with applications to biological tissues. Comput. Appl. Math. 40, 1–23 (2021)MathSciNetMATH
Zurück zum Zitat Belafhal, A., Hricha, Z., Dalil-Essakali, L., Usman, T.: A note on some integrals involving Hermite polynomials and their applications. Adv. Math. Mod. Appl. 5, 313–319 (2020) Belafhal, A., Hricha, Z., Dalil-Essakali, L., Usman, T.: A note on some integrals involving Hermite polynomials and their applications. Adv. Math. Mod. Appl. 5, 313–319 (2020)
Zurück zum Zitat Bohren, C.F., Huffman, D.R.: Absorption and Scattering of Light by Small Particles. Wiley, Hoboken (2008) Bohren, C.F., Huffman, D.R.: Absorption and Scattering of Light by Small Particles. Wiley, Hoboken (2008)
Zurück zum Zitat Boufalah, F., Dalil-Essakali, L., Ez-Zariy, L., Belafhal, A.: Introduction of Generalized Bessel–Laguerre–Gaussian beams and its central intensity travelling a turbulent atmosphere. Opt. Quant. Electron. 50, 305–320 (2018) Boufalah, F., Dalil-Essakali, L., Ez-Zariy, L., Belafhal, A.: Introduction of Generalized Bessel–Laguerre–Gaussian beams and its central intensity travelling a turbulent atmosphere. Opt. Quant. Electron. 50, 305–320 (2018)
Zurück zum Zitat Chang, S., Song, Y., Dong, Y., Dong, K.: Spreading properties of a multiGaussian Schell-model vortex beam in slanted atmospheric turbulence. Opt. Appl. 50, 83–94 (2020) Chang, S., Song, Y., Dong, Y., Dong, K.: Spreading properties of a multiGaussian Schell-model vortex beam in slanted atmospheric turbulence. Opt. Appl. 50, 83–94 (2020)
Zurück zum Zitat Chib, S., Bayraktar, M., Belafhal, A.: Theoretical and computational study of a partially coherent laser beam in a marine environment. Phys. Scr. 98, 015513–015526 (2023)ADS Chib, S., Bayraktar, M., Belafhal, A.: Theoretical and computational study of a partially coherent laser beam in a marine environment. Phys. Scr. 98, 015513–015526 (2023)ADS
Zurück zum Zitat Chib, S., Belafhal, A.: Analyzing the spreading properties of vortex beam in turbulent biological tissues. Opt. Quant. Electron. 55, 98–115 (2023) Chib, S., Belafhal, A.: Analyzing the spreading properties of vortex beam in turbulent biological tissues. Opt. Quant. Electron. 55, 98–115 (2023)
Zurück zum Zitat Chib, S., Dalil-Essakali, L., Belafhal, A.: Evolution of the partially coherent Generalized Flattened Hermite-Cosh-Gaussian beam through a turbulent atmosphere. Opt. Quant. Electron. 52, 484–500 (2020) Chib, S., Dalil-Essakali, L., Belafhal, A.: Evolution of the partially coherent Generalized Flattened Hermite-Cosh-Gaussian beam through a turbulent atmosphere. Opt. Quant. Electron. 52, 484–500 (2020)
Zurück zum Zitat Chib, S., Dalil-Essakali, L., Belafhal, A.: Comparative analysis of some Schell-model beams propagating through turbulent atmosphere. Opt. Quant. Electron. 54, 175–191 (2022a) Chib, S., Dalil-Essakali, L., Belafhal, A.: Comparative analysis of some Schell-model beams propagating through turbulent atmosphere. Opt. Quant. Electron. 54, 175–191 (2022a)
Zurück zum Zitat Chib, S., Dalil-Essakali, L., Belafhal, A.: Effects of turbulent atmosphere on the spectral density of Bessel-modulated Gaussian Schell-model beams. Opt. Quant. Electron. 54, 468–479 (2022b) Chib, S., Dalil-Essakali, L., Belafhal, A.: Effects of turbulent atmosphere on the spectral density of Bessel-modulated Gaussian Schell-model beams. Opt. Quant. Electron. 54, 468–479 (2022b)
Zurück zum Zitat Doronin, A., Vera, N., Staforelli, J.P., Coelho, P., Meglinski, I.: Propagation of cylindrical vector laser beams in turbid tissue-like scattering media. Photonics 6, 56–67 (2019) Doronin, A., Vera, N., Staforelli, J.P., Coelho, P., Meglinski, I.: Propagation of cylindrical vector laser beams in turbid tissue-like scattering media. Photonics 6, 56–67 (2019)
Zurück zum Zitat Eyyuboğlu, H.T.: Propagation and coherence properties of higher order partially coherent dark hollow beams in turbulence. Opt. Laser Technol. 40, 156–166 (2008)ADS Eyyuboğlu, H.T.: Propagation and coherence properties of higher order partially coherent dark hollow beams in turbulence. Opt. Laser Technol. 40, 156–166 (2008)ADS
Zurück zum Zitat Gianani, I., Suprano, A., Giordani, T., Spagnolo, N., Sciarrino, F., Gorpas, D., Ntziachristos, V., Pinker, K., Biton, N., Kupferman, J., Arnon, S.: Transmission of vector vortex beams in dispersive media. Adv. Photo. 2, 036003–036010 (2020) Gianani, I., Suprano, A., Giordani, T., Spagnolo, N., Sciarrino, F., Gorpas, D., Ntziachristos, V., Pinker, K., Biton, N., Kupferman, J., Arnon, S.: Transmission of vector vortex beams in dispersive media. Adv. Photo. 2, 036003–036010 (2020)
Zurück zum Zitat Glaser, A.K., Chen, Y., Liu, J.T.C.: Fractal propagation method enables realistic optical microscopy simulations in biological tissues. Optica 3, 861–869 (2016)ADS Glaser, A.K., Chen, Y., Liu, J.T.C.: Fractal propagation method enables realistic optical microscopy simulations in biological tissues. Optica 3, 861–869 (2016)ADS
Zurück zum Zitat Gradshteyn, I.S., Ryzhik, I.M., Jeffrey, A.: Table of Integrals, Series, and Products, 7th edn. Academic Press, Amsterdam (2007)MATH Gradshteyn, I.S., Ryzhik, I.M., Jeffrey, A.: Table of Integrals, Series, and Products, 7th edn. Academic Press, Amsterdam (2007)MATH
Zurück zum Zitat Grayshan, K.J., Vetelino, F.S., Young, C.Y.: A marine atmospheric spectrum for laser propagation. Wave Random Media 18, 173–184 (2008)ADSMATH Grayshan, K.J., Vetelino, F.S., Young, C.Y.: A marine atmospheric spectrum for laser propagation. Wave Random Media 18, 173–184 (2008)ADSMATH
Zurück zum Zitat Hajjarian, Z., Kavehrad, M., Fadlullah, J.: Spatially multiplexed multi-input-multi-output optical imaging system in a turbid, turbulent atmosphere. Appl. Opt. 49, 1528–1538 (2010)ADS Hajjarian, Z., Kavehrad, M., Fadlullah, J.: Spatially multiplexed multi-input-multi-output optical imaging system in a turbid, turbulent atmosphere. Appl. Opt. 49, 1528–1538 (2010)ADS
Zurück zum Zitat Hill, R.J.: Spectra of fluctuations in refractivity, temperature, humidity, and the temperature-humidity cospectrum in the inertial and dissipation ranges. Radio Sci. 13, 953–961 (1978)ADS Hill, R.J.: Spectra of fluctuations in refractivity, temperature, humidity, and the temperature-humidity cospectrum in the inertial and dissipation ranges. Radio Sci. 13, 953–961 (1978)ADS
Zurück zum Zitat Hricha, Z., Lazrek, M., Yaalou, M., Belafhal, A.: Propagation of vortex cosine-hyperbolic-Gaussian beams in atmospheric turbulence. Opt. Quant. Electron. 53, 383–398 (2021a) Hricha, Z., Lazrek, M., Yaalou, M., Belafhal, A.: Propagation of vortex cosine-hyperbolic-Gaussian beams in atmospheric turbulence. Opt. Quant. Electron. 53, 383–398 (2021a)
Zurück zum Zitat Hricha, Z., Lazrek, M., Yaalou, M., Belafhal, A.: Effects of turbulent atmosphere on the propagation properties of vortex Hermite-cosine-hyperbolic-Gaussian beams. Opt. Quant. Electron. 53, 624–638 (2021b) Hricha, Z., Lazrek, M., Yaalou, M., Belafhal, A.: Effects of turbulent atmosphere on the propagation properties of vortex Hermite-cosine-hyperbolic-Gaussian beams. Opt. Quant. Electron. 53, 624–638 (2021b)
Zurück zum Zitat Khannous, F., Belafhal, A.: A new atmospheric spectral model for the marine environment. Optik 153, 86–94 (2018)ADS Khannous, F., Belafhal, A.: A new atmospheric spectral model for the marine environment. Optik 153, 86–94 (2018)ADS
Zurück zum Zitat Khannous, F., Boustimi, M., Nebdi, H., Belafhal, A.: On-axis average intensity of hypergeometric-Gaussian type propagating in a turbulent atmosphere. J. Mater. Environ. Sci. 6, 2550–2556 (2015) Khannous, F., Boustimi, M., Nebdi, H., Belafhal, A.: On-axis average intensity of hypergeometric-Gaussian type propagating in a turbulent atmosphere. J. Mater. Environ. Sci. 6, 2550–2556 (2015)
Zurück zum Zitat Korotkova, O.A., Gbur, G.: Angular spectrum representation for propagation of random electromagnetic beams in a turbulent atmosphere. J. Opt. Soc. Am. A Opt. 24, 2728–2736 (2007)ADS Korotkova, O.A., Gbur, G.: Angular spectrum representation for propagation of random electromagnetic beams in a turbulent atmosphere. J. Opt. Soc. Am. A Opt. 24, 2728–2736 (2007)ADS
Zurück zum Zitat Lazrek, M., Hricha, Z., Belafhal, A.: Propagation properties of vortex Cosine-Hyperbolic-Gaussian beams through oceanic turbulence. Opt. Quant. Electron. 54, 172–185 (2021) Lazrek, M., Hricha, Z., Belafhal, A.: Propagation properties of vortex Cosine-Hyperbolic-Gaussian beams through oceanic turbulence. Opt. Quant. Electron. 54, 172–185 (2021)
Zurück zum Zitat Li, Y., Zhang, Y., Zhu, Y., Yu, L.: Modified biological spectrum and SNR of Laguerre-Gaussian pulsed beams with orbital angular momentum in turbulent tissue. Opt. Express 27, 9749–9762 (2019)ADS Li, Y., Zhang, Y., Zhu, Y., Yu, L.: Modified biological spectrum and SNR of Laguerre-Gaussian pulsed beams with orbital angular momentum in turbulent tissue. Opt. Express 27, 9749–9762 (2019)ADS
Zurück zum Zitat Mei, Q.X., Yue, Z.W., Zhong, R.R.: Long-distance propagation of pseudo-partially coherent Gaussian Schell-model beams in atmospheric turbulence. Chin. Phys. B 21, 094202 (2012)ADS Mei, Q.X., Yue, Z.W., Zhong, R.R.: Long-distance propagation of pseudo-partially coherent Gaussian Schell-model beams in atmospheric turbulence. Chin. Phys. B 21, 094202 (2012)ADS
Zurück zum Zitat Nabil, H., Balhamri, A., Belafhal, A.: Propagation of Laguerre–Gaussian correlated Shell-model beams through a turbulent jet engine exhaust. Opt. Quant. Electron. 54, 231–249 (2022a) Nabil, H., Balhamri, A., Belafhal, A.: Propagation of Laguerre–Gaussian correlated Shell-model beams through a turbulent jet engine exhaust. Opt. Quant. Electron. 54, 231–249 (2022a)
Zurück zum Zitat Nabil, H., Balhamri, A., Belafhal, A.: Propagation of Bessel–Gaussian Shell-model beam through a jet engine exhaust turbulence. Opt. Quant. Electron. 54, 332–352 (2022b) Nabil, H., Balhamri, A., Belafhal, A.: Propagation of Bessel–Gaussian Shell-model beam through a jet engine exhaust turbulence. Opt. Quant. Electron. 54, 332–352 (2022b)
Zurück zum Zitat Nabil, H., Balhamri, A., Belafhal, A.: Partially coherent laser beams propagating in jet engine exhaust induced turbulence. Opt. Quant. Electron. 54, 404–427 (2022c) Nabil, H., Balhamri, A., Belafhal, A.: Partially coherent laser beams propagating in jet engine exhaust induced turbulence. Opt. Quant. Electron. 54, 404–427 (2022c)
Zurück zum Zitat Nabil, H., Bayraktar, M., Balhamri, A., Belafhal, A.: A study of effects of a turbulent jet engine exhaust on partially coherent Laguerre-Gaussian Schell model vortex beam. Optik 272, 170360–170380 (2023)ADS Nabil, H., Bayraktar, M., Balhamri, A., Belafhal, A.: A study of effects of a turbulent jet engine exhaust on partially coherent Laguerre-Gaussian Schell model vortex beam. Optik 272, 170360–170380 (2023)ADS
Zurück zum Zitat Navidpour, S.M., Uysal, M., Kavehrad, M.: BER performance of free-space optical transmission with spatial diversity. IEEE Trans. Wirel. Commun. 6, 2813–2819 (2007) Navidpour, S.M., Uysal, M., Kavehrad, M.: BER performance of free-space optical transmission with spatial diversity. IEEE Trans. Wirel. Commun. 6, 2813–2819 (2007)
Zurück zum Zitat Nossir, N., Dalil-Essakali, L., Belafhal, A.: Behavior of the central intensity of Generalized Humbert–Gaussian beams against the atmospheric turbulence. Opt. Quant. Electron. 53, 665–677 (2021) Nossir, N., Dalil-Essakali, L., Belafhal, A.: Behavior of the central intensity of Generalized Humbert–Gaussian beams against the atmospheric turbulence. Opt. Quant. Electron. 53, 665–677 (2021)
Zurück zum Zitat Parsa, P., Jacques, S.L., Nishioka, N.S.: Optical properties of rat liver between 350 and 2200 nm. Appl. Opt. 28, 2325–2330 (1989)ADS Parsa, P., Jacques, S.L., Nishioka, N.S.: Optical properties of rat liver between 350 and 2200 nm. Appl. Opt. 28, 2325–2330 (1989)ADS
Zurück zum Zitat Qing, L.Y., Sen, W.Z., Jun, W.M.: Partially coherent Gaussian-Schell model pulse beam propagation in slant atmospheric turbulence. Chin. Phys. B 23, 064216 (2014)ADS Qing, L.Y., Sen, W.Z., Jun, W.M.: Partially coherent Gaussian-Schell model pulse beam propagation in slant atmospheric turbulence. Chin. Phys. B 23, 064216 (2014)ADS
Zurück zum Zitat Radosevich, A.J., Yi, J., Rogers, J.D., Backman, V.: Structural length-scale sensitivities of reflectance measurements in continuous random media under the Born approximation. Opt. Lett. 37, 5220–5222 (2012)ADS Radosevich, A.J., Yi, J., Rogers, J.D., Backman, V.: Structural length-scale sensitivities of reflectance measurements in continuous random media under the Born approximation. Opt. Lett. 37, 5220–5222 (2012)ADS
Zurück zum Zitat Schmitt, J.M., Kumar, G.: Turbulent nature of refractive-index variations in biological tissue. Opt. Lett. 21, 1310–1312 (1996)ADS Schmitt, J.M., Kumar, G.: Turbulent nature of refractive-index variations in biological tissue. Opt. Lett. 21, 1310–1312 (1996)ADS
Zurück zum Zitat Schmitt, J.M., Kumar, G.: Optical scattering properties of soft tissue: a discrete particle model. Appl. Opt. 37, 2788–2797 (1998)ADS Schmitt, J.M., Kumar, G.: Optical scattering properties of soft tissue: a discrete particle model. Appl. Opt. 37, 2788–2797 (1998)ADS
Zurück zum Zitat Sheppard, C.J.R.: Fractal model of light scattering in biological tissue and cells. Opt. Lett. 32, 142–144 (2007)ADS Sheppard, C.J.R.: Fractal model of light scattering in biological tissue and cells. Opt. Lett. 32, 142–144 (2007)ADS
Zurück zum Zitat Steelman, Z.A., Ho, D.S., Chu, K.K., Wax, A.: Light-scattering methods for tissue diagnosis. Optica 6, 479–489 (2019)ADS Steelman, Z.A., Ho, D.S., Chu, K.K., Wax, A.: Light-scattering methods for tissue diagnosis. Optica 6, 479–489 (2019)ADS
Zurück zum Zitat Tatarskii, V.I.: Wave Propagation in a Turbulent Medium, p. 285. McGraw-Hill, New York (1961) Tatarskii, V.I.: Wave Propagation in a Turbulent Medium, p. 285. McGraw-Hill, New York (1961)
Zurück zum Zitat Tuchin, V.V.: Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis. SPIE. Press, Bellingham (2014) Tuchin, V.V.: Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis. SPIE. Press, Bellingham (2014)
Zurück zum Zitat Wang, L.G., Zheng, W.W.: The effect of atmospheric turbulence on the propagation properties of optical vortices formed by using coherent laser beam arrays. J. Opt. A 11, 1–7 (2009) Wang, L.G., Zheng, W.W.: The effect of atmospheric turbulence on the propagation properties of optical vortices formed by using coherent laser beam arrays. J. Opt. A 11, 1–7 (2009)
Zurück zum Zitat Wen, W., Chu, X., Ma, H.: The propagation of a combining Airy beam in turbulence. Opt. Commun. 336, 326–329 (2015)ADS Wen, W., Chu, X., Ma, H.: The propagation of a combining Airy beam in turbulence. Opt. Commun. 336, 326–329 (2015)ADS
Zurück zum Zitat Wu, Y., Zhang, Y., Li, Y., Hu, Z.: Beam wander of Gaussian–Schell model beams propagating through oceanic turbulence. Opt. Commun. 371, 59–66 (2016)ADS Wu, Y., Zhang, Y., Li, Y., Hu, Z.: Beam wander of Gaussian–Schell model beams propagating through oceanic turbulence. Opt. Commun. 371, 59–66 (2016)ADS
Zurück zum Zitat Xie, Y., Ke, X., Dong, K., Liang, J., Fan, W.: Analysis on the characteristics of vortex beam in field turbulence. Laser Phys. 32, 105402 (2022)ADS Xie, Y., Ke, X., Dong, K., Liang, J., Fan, W.: Analysis on the characteristics of vortex beam in field turbulence. Laser Phys. 32, 105402 (2022)ADS
Zurück zum Zitat Xie, S.S., Li, H., Lu, Z.K.: Overview of tissue optics. Physics 27, 599–604 (1998) Xie, S.S., Li, H., Lu, Z.K.: Overview of tissue optics. Physics 27, 599–604 (1998)
Zurück zum Zitat Xu, M., Alfano, R.R.: Fractal mechanisms of light scattering in biological tissue and cells. Opt. Lett. 30, 3051–3053 (2005)ADS Xu, M., Alfano, R.R.: Fractal mechanisms of light scattering in biological tissue and cells. Opt. Lett. 30, 3051–3053 (2005)ADS
Zurück zum Zitat Yun, S.H., Kwok, S.J.: Light in diagnosis, therapy and surgery. Nat. Biomed. Eng. 1, 1–16 (2017) Yun, S.H., Kwok, S.J.: Light in diagnosis, therapy and surgery. Nat. Biomed. Eng. 1, 1–16 (2017)
Zurück zum Zitat Yura, H.T.: Mutual coherence function of a finite cross section optical beam propagating in a turbulent medium. Appl. Opt. 11, 1399–1406 (1972)ADS Yura, H.T.: Mutual coherence function of a finite cross section optical beam propagating in a turbulent medium. Appl. Opt. 11, 1399–1406 (1972)ADS
Zurück zum Zitat Zhang, Y., Yu, J., Gbur, G., Korotkova, O.: Evolution of the orbital angular momentum flux density of partially coherent vortex beams in atmospheric turbulence. Front. Phys. 10, 1232 (2022) Zhang, Y., Yu, J., Gbur, G., Korotkova, O.: Evolution of the orbital angular momentum flux density of partially coherent vortex beams in atmospheric turbulence. Front. Phys. 10, 1232 (2022)
Zurück zum Zitat Zhou, P., Liu, X., Xu, X., Chu, X.: Propagation of coherently combined flattened laser beam array in turbulent atmosphere. Opt. Laser Technol. 41, 403–407 (2009)ADS Zhou, P., Liu, X., Xu, X., Chu, X.: Propagation of coherently combined flattened laser beam array in turbulent atmosphere. Opt. Laser Technol. 41, 403–407 (2009)ADS
Metadaten
Titel
Partially coherent beam propagation in turbid tissue-like scattering medium
verfasst von
S. Chib
L. Dalil-Essakali
A. Belafhal
Publikationsdatum
01.07.2023
Verlag
Springer US
Erschienen in
Optical and Quantum Electronics / Ausgabe 7/2023
Print ISSN: 0306-8919
Elektronische ISSN: 1572-817X
DOI
https://doi.org/10.1007/s11082-023-04874-x

Weitere Artikel der Ausgabe 7/2023

Optical and Quantum Electronics 7/2023 Zur Ausgabe