Skip to main content
Erschienen in: Optical and Quantum Electronics 12/2023

01.11.2023

Solitons, stability analysis and modulation instability for the third order generalized nonlinear Schrödinger model in ultraspeed fibers

verfasst von: Fazal Badshah, Kalim U. Tariq, Mustafa Inc, S. M. Raza Kazmi

Erschienen in: Optical and Quantum Electronics | Ausgabe 12/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In optical fiber theory, the nonlinear Schrödinger equation (NLSE) is one of the most important physical models for describing the transmission of optical soliton growth. Due to the large range of possibilities for superfast signal processing and light pulses in communications, the wave propagation in nonlinear fibers is currently a topic of substantial curiosity. In this study, the third order generalized NLSE is investigated analytically by using the extended hyperbolic function technique, the improved F-expansion method, and the Adomian decomposition method, which has great importance in applied physics especially in the study optical fibers. The obtained solutions are newly made also they have the form of optical solitons, singular bell shaped, multi-bell shaped, and singular periodic solitons wave behavior and have applications in the optical fibers transmission, physics and many other scientific fields. The stability along with the modulation instability (MI) of the governing model has also been examined to validate the results. The nonlinear model properties have been illustrated using 3D, 2D, and contour plots with the appropriate set of parameters, which is demonstrated to visualize the physical structures more productively. Finally, it is concluded that similar strategies can also be implemented to study many contemporary models.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abdelrahman, M.A., Mohammed, W.W.: The impact of multiplicative noise on the solution of the chiral nonlinear schrödinger equation. Phys. Scr. 95(8), 085222 (2020)ADSCrossRef Abdelrahman, M.A., Mohammed, W.W.: The impact of multiplicative noise on the solution of the chiral nonlinear schrödinger equation. Phys. Scr. 95(8), 085222 (2020)ADSCrossRef
Zurück zum Zitat Adeyemo, O.D., Khalique, C.M.: Dynamical soliton wave structures of one-dimensional lie subalgebras via group-invariant solutions of a higher-dimensional soliton equation with various applications in ocean physics and mechatronics engineering. Commun. Appl. Math. Comput. 4(4), 1531–1582 (2022)MathSciNetCrossRefMATH Adeyemo, O.D., Khalique, C.M.: Dynamical soliton wave structures of one-dimensional lie subalgebras via group-invariant solutions of a higher-dimensional soliton equation with various applications in ocean physics and mechatronics engineering. Commun. Appl. Math. Comput. 4(4), 1531–1582 (2022)MathSciNetCrossRefMATH
Zurück zum Zitat Ahmad, J., Mustafa, Z., Turki, N.B., Shah, N.A., et al.: Solitary wave structures for the stochastic nizhnik-novikov-veselov system via modified generalized rational exponential function method. Results Phys. 106776 (2023) Ahmad, J., Mustafa, Z., Turki, N.B., Shah, N.A., et al.: Solitary wave structures for the stochastic nizhnik-novikov-veselov system via modified generalized rational exponential function method. Results Phys. 106776 (2023)
Zurück zum Zitat Ahmad, J., Akram, S., Noor, K., Nadeem, M., Bucur, A., Alsayaad, Y.: Soliton solutions of fractional extended nonlinear schrödinger equation arising in plasma physics and nonlinear optical fiber. Sci. Rep. 13(1), 10877 (2023)ADSCrossRef Ahmad, J., Akram, S., Noor, K., Nadeem, M., Bucur, A., Alsayaad, Y.: Soliton solutions of fractional extended nonlinear schrödinger equation arising in plasma physics and nonlinear optical fiber. Sci. Rep. 13(1), 10877 (2023)ADSCrossRef
Zurück zum Zitat Alam, L.M.B., Jiang, X., et al.: Exact and explicit traveling wave solution to the time-fractional phi-four and (2+ 1) dimensional cbs equations using the modified extended tanh-function method in mathematical physics. Partial Differ. Equ. Appl. Math. 4, 100039 (2021)CrossRef Alam, L.M.B., Jiang, X., et al.: Exact and explicit traveling wave solution to the time-fractional phi-four and (2+ 1) dimensional cbs equations using the modified extended tanh-function method in mathematical physics. Partial Differ. Equ. Appl. Math. 4, 100039 (2021)CrossRef
Zurück zum Zitat Aleroev, T.: Solving the boundary value problems for differential equations with fractional derivatives by the method of separation of variables. Mathematics 8(11), 1877 (2020)CrossRef Aleroev, T.: Solving the boundary value problems for differential equations with fractional derivatives by the method of separation of variables. Mathematics 8(11), 1877 (2020)CrossRef
Zurück zum Zitat Ali Akbar, M., Ali, N.H.M.: The improved f-expansion method with riccati equation and its applications in mathematical physics. Cogent Math. 4(1), 1282577 (2017)MathSciNetCrossRefMATH Ali Akbar, M., Ali, N.H.M.: The improved f-expansion method with riccati equation and its applications in mathematical physics. Cogent Math. 4(1), 1282577 (2017)MathSciNetCrossRefMATH
Zurück zum Zitat Ali, A., Ahmad, J., Javed, S.: Investigating the dynamics of soliton solutions to the fractional coupled nonlinear schrödinger model with their bifurcation and stability analysis. Opt. Quantum Electron. 55(9), 829 (2023)CrossRef Ali, A., Ahmad, J., Javed, S.: Investigating the dynamics of soliton solutions to the fractional coupled nonlinear schrödinger model with their bifurcation and stability analysis. Opt. Quantum Electron. 55(9), 829 (2023)CrossRef
Zurück zum Zitat Ali, A., Ahmad, J., Javed, S., et al.: Exact soliton solutions and stability analysis to (3+ 1)-dimensional nonlinear schrödinger model. Alex. Eng. J. 76, 747–756 (2023)CrossRef Ali, A., Ahmad, J., Javed, S., et al.: Exact soliton solutions and stability analysis to (3+ 1)-dimensional nonlinear schrödinger model. Alex. Eng. J. 76, 747–756 (2023)CrossRef
Zurück zum Zitat Chen, X., Wei, Z., Maokun, L., Rocca, P., et al.: A review of deep learning approaches for inverse scattering problems (invited review). Elecromagn. Waves 167, 67–81 (2020)CrossRef Chen, X., Wei, Z., Maokun, L., Rocca, P., et al.: A review of deep learning approaches for inverse scattering problems (invited review). Elecromagn. Waves 167, 67–81 (2020)CrossRef
Zurück zum Zitat Cuomo, S., Di Cola, V.S., Giampaolo, F., Rozza, G., Raissi, M., Piccialli, F.: Scientific machine learning through physics-informed neural networks: where we are and what’s next. J. Sci. Comput. 92(3), 88 (2022)MathSciNetCrossRefMATH Cuomo, S., Di Cola, V.S., Giampaolo, F., Rozza, G., Raissi, M., Piccialli, F.: Scientific machine learning through physics-informed neural networks: where we are and what’s next. J. Sci. Comput. 92(3), 88 (2022)MathSciNetCrossRefMATH
Zurück zum Zitat Ezadi, S., Allahviranloo, T.: New multi-layer method for z-number ranking using hyperbolic tangent function and convex combination. Intell. Autom. Soft Comput. 24, 17–221 (2018) Ezadi, S., Allahviranloo, T.: New multi-layer method for z-number ranking using hyperbolic tangent function and convex combination. Intell. Autom. Soft Comput. 24, 17–221 (2018)
Zurück zum Zitat Ghanbari, B., Inc, M.: A new generalized exponential rational function method to find exact special solutions for the resonance nonlinear schrödinger equation. Eur. Phys. J. Plus 133(4), 142 (2018)CrossRef Ghanbari, B., Inc, M.: A new generalized exponential rational function method to find exact special solutions for the resonance nonlinear schrödinger equation. Eur. Phys. J. Plus 133(4), 142 (2018)CrossRef
Zurück zum Zitat Hosseini, K., Ansari, R.: New exact solutions of nonlinear conformable time-fractional boussinesq equations using the modified kudryashov method. Waves Random Complex Media 27(4), 628–636 (2017)ADSMathSciNetCrossRefMATH Hosseini, K., Ansari, R.: New exact solutions of nonlinear conformable time-fractional boussinesq equations using the modified kudryashov method. Waves Random Complex Media 27(4), 628–636 (2017)ADSMathSciNetCrossRefMATH
Zurück zum Zitat Hosseini, K., Osman, M., Mirzazadeh, M., Rabiei, F.: Investigation of different wave structures to the generalized third-order nonlinear scrödinger equation. Optik 206, 164259 (2020)ADSCrossRef Hosseini, K., Osman, M., Mirzazadeh, M., Rabiei, F.: Investigation of different wave structures to the generalized third-order nonlinear scrödinger equation. Optik 206, 164259 (2020)ADSCrossRef
Zurück zum Zitat Ismael, H.F., Younas, U., Sulaiman, T.A., Nasreen, N., Shah, N.A., Ali, M.R.: Non classical interaction aspects to a nonlinear physical model. Results Phys. 49, 106520 (2023)CrossRef Ismael, H.F., Younas, U., Sulaiman, T.A., Nasreen, N., Shah, N.A., Ali, M.R.: Non classical interaction aspects to a nonlinear physical model. Results Phys. 49, 106520 (2023)CrossRef
Zurück zum Zitat Khater, M.M.: Computational simulations of propagation of a tsunami wave across the ocean. Chaos Solitons Fractals 174, 113806 (2023)MathSciNetCrossRef Khater, M.M.: Computational simulations of propagation of a tsunami wave across the ocean. Chaos Solitons Fractals 174, 113806 (2023)MathSciNetCrossRef
Zurück zum Zitat Kudryashov, N.A.: First integrals and general solution of the fokas-lenells equation. Optik 195, 163135 (2019)ADSCrossRef Kudryashov, N.A.: First integrals and general solution of the fokas-lenells equation. Optik 195, 163135 (2019)ADSCrossRef
Zurück zum Zitat Lu, D., Seadawy, A., Arshad, M.: Applications of extended simple equation method on unstable nonlinear schrödinger equations. Optik 140, 136–144 (2017)ADSCrossRef Lu, D., Seadawy, A., Arshad, M.: Applications of extended simple equation method on unstable nonlinear schrödinger equations. Optik 140, 136–144 (2017)ADSCrossRef
Zurück zum Zitat Lu, D., Seadawy, A.R., Wang, J., Arshad, M., Farooq, U.: Soliton solutions of the generalised third-order nonlinear schrödinger equation by two mathematical methods and their stability. Pramana 93, 1–9 (2019)CrossRef Lu, D., Seadawy, A.R., Wang, J., Arshad, M., Farooq, U.: Soliton solutions of the generalised third-order nonlinear schrödinger equation by two mathematical methods and their stability. Pramana 93, 1–9 (2019)CrossRef
Zurück zum Zitat Mahmood, I., Hussain, E., Mahmood, A., Anjum, A., Shah, S.A.A.: Optical soliton propagation in the benjamin-bona-mahoney-peregrine equation using two analytical schemes. Optik 171099 (2023) Mahmood, I., Hussain, E., Mahmood, A., Anjum, A., Shah, S.A.A.: Optical soliton propagation in the benjamin-bona-mahoney-peregrine equation using two analytical schemes. Optik 171099 (2023)
Zurück zum Zitat Nasreen, N., Seadawy, A.R., Lu, D., Arshad, M.: Optical fibers to model pulses of ultrashort via generalized third-order nonlinear schrödinger equation by using extended and modified rational expansion method. J. Nonlinear Opt. Phys. Mater. 2350058 (2023) Nasreen, N., Seadawy, A.R., Lu, D., Arshad, M.: Optical fibers to model pulses of ultrashort via generalized third-order nonlinear schrödinger equation by using extended and modified rational expansion method. J. Nonlinear Opt. Phys. Mater. 2350058 (2023)
Zurück zum Zitat Nasreen, N., Lu, D., Arshad, M.: Optical soliton solutions of nonlinear schrödinger equation with second order spatiotemporal dispersion and its modulation instability. Optik 161, 221–229 (2018)ADSCrossRef Nasreen, N., Lu, D., Arshad, M.: Optical soliton solutions of nonlinear schrödinger equation with second order spatiotemporal dispersion and its modulation instability. Optik 161, 221–229 (2018)ADSCrossRef
Zurück zum Zitat Nasreen, N., Seadawy, A.R., Lu, D., Albarakati, W.A.: Dispersive solitary wave and soliton solutions of the gernalized third order nonlinear schrödinger dynamical equation by modified analytical method. Results Phys. 15, 102641 (2019)CrossRef Nasreen, N., Seadawy, A.R., Lu, D., Albarakati, W.A.: Dispersive solitary wave and soliton solutions of the gernalized third order nonlinear schrödinger dynamical equation by modified analytical method. Results Phys. 15, 102641 (2019)CrossRef
Zurück zum Zitat Nasreen, N., Lu, D., Zhang, Z., Akgül, A., Younas, U., Nasreen, S., Al-Ahmadi, A.N.: Propagation of optical pulses in fiber optics modelled by coupled space-time fractional dynamical system. Alex. Eng. J. 73, 173–187 (2023)CrossRef Nasreen, N., Lu, D., Zhang, Z., Akgül, A., Younas, U., Nasreen, S., Al-Ahmadi, A.N.: Propagation of optical pulses in fiber optics modelled by coupled space-time fractional dynamical system. Alex. Eng. J. 73, 173–187 (2023)CrossRef
Zurück zum Zitat Nasreen, N., Younas, U., Sulaiman, T., Zhang, Z., Lu, D.: A variety of m-truncated optical solitons to a nonlinear extended classical dynamical model. Results Phys. 51, 106722 (2023)CrossRef Nasreen, N., Younas, U., Sulaiman, T., Zhang, Z., Lu, D.: A variety of m-truncated optical solitons to a nonlinear extended classical dynamical model. Results Phys. 51, 106722 (2023)CrossRef
Zurück zum Zitat Rehman, H.U., Awan, A.U., Tag-ElDin, E.M., Alhazmi, S.E., Yassen, M.F., Haider, R.: Extended hyperbolic function method for the (2+ 1)-dimensional nonlinear soliton equation. Results Phys. 40, 105802 (2022)CrossRef Rehman, H.U., Awan, A.U., Tag-ElDin, E.M., Alhazmi, S.E., Yassen, M.F., Haider, R.: Extended hyperbolic function method for the (2+ 1)-dimensional nonlinear soliton equation. Results Phys. 40, 105802 (2022)CrossRef
Zurück zum Zitat Saifullah, S., Ahmad, S., Alyami, M.A., Inc, M.: Analysis of interaction of lump solutions with kink-soliton solutions of the generalized perturbed kdv equation using hirota-bilinear approach. Phys. Lett. A 454, 128503 (2022)MathSciNetCrossRefMATH Saifullah, S., Ahmad, S., Alyami, M.A., Inc, M.: Analysis of interaction of lump solutions with kink-soliton solutions of the generalized perturbed kdv equation using hirota-bilinear approach. Phys. Lett. A 454, 128503 (2022)MathSciNetCrossRefMATH
Zurück zum Zitat Seadawy, A.R., Cheemaa, N.: Propagation of nonlinear complex waves for the coupled nonlinear schrödinger equations in two core optical fibers. Phys. A Stat. Mech. Appl. 529, 121330 (2019)CrossRefMATH Seadawy, A.R., Cheemaa, N.: Propagation of nonlinear complex waves for the coupled nonlinear schrödinger equations in two core optical fibers. Phys. A Stat. Mech. Appl. 529, 121330 (2019)CrossRefMATH
Zurück zum Zitat Seadawy, A.R., Arshad, M., Lu, D.: The weakly nonlinear wave propagation of the generalized third-order nonlinear schrödinger equation and its applications. Waves Random Complex Media 32(2), 819–831 (2022)ADSMathSciNetCrossRefMATH Seadawy, A.R., Arshad, M., Lu, D.: The weakly nonlinear wave propagation of the generalized third-order nonlinear schrödinger equation and its applications. Waves Random Complex Media 32(2), 819–831 (2022)ADSMathSciNetCrossRefMATH
Zurück zum Zitat Ullah, Z., Zaman, G.: Lie group analysis of magnetohydrodynamic tangent hyperbolic fluid flow towards a stretching sheet with slip conditions. Heliyon 3(11) (2017) Ullah, Z., Zaman, G.: Lie group analysis of magnetohydrodynamic tangent hyperbolic fluid flow towards a stretching sheet with slip conditions. Heliyon 3(11) (2017)
Zurück zum Zitat Umesh, U.: Numerical simulation of bratu’s problem using a new form of the adomian decomposition technique. Int. J. Numer. Methods Heat Fluid Flow 33, 2295–2307 (2023) Umesh, U.: Numerical simulation of bratu’s problem using a new form of the adomian decomposition technique. Int. J. Numer. Methods Heat Fluid Flow 33, 2295–2307 (2023)
Zurück zum Zitat Wang, M.-Y., Biswas, A., Yıldırım, Y., Moraru, L., Moldovanu, S., Alshehri, H.M.: Optical solitons for a concatenation model by trial equation approach. Electronics 12(1), 19 (2022)CrossRef Wang, M.-Y., Biswas, A., Yıldırım, Y., Moraru, L., Moldovanu, S., Alshehri, H.M.: Optical solitons for a concatenation model by trial equation approach. Electronics 12(1), 19 (2022)CrossRef
Zurück zum Zitat Wazwaz, A.-M.: Partial differential equations and solitary waves theory. Springer Science & Business Media (2010) Wazwaz, A.-M.: Partial differential equations and solitary waves theory. Springer Science & Business Media (2010)
Zurück zum Zitat Younas, U., Bilal, M., Ren, J.: Propagation of the pure-cubic optical solitons and stability analysis in the absence of chromatic dispersion. Opt. Quantum Electron. 53, 1–25 (2021)CrossRef Younas, U., Bilal, M., Ren, J.: Propagation of the pure-cubic optical solitons and stability analysis in the absence of chromatic dispersion. Opt. Quantum Electron. 53, 1–25 (2021)CrossRef
Metadaten
Titel
Solitons, stability analysis and modulation instability for the third order generalized nonlinear Schrödinger model in ultraspeed fibers
verfasst von
Fazal Badshah
Kalim U. Tariq
Mustafa Inc
S. M. Raza Kazmi
Publikationsdatum
01.11.2023
Verlag
Springer US
Erschienen in
Optical and Quantum Electronics / Ausgabe 12/2023
Print ISSN: 0306-8919
Elektronische ISSN: 1572-817X
DOI
https://doi.org/10.1007/s11082-023-05411-6

Weitere Artikel der Ausgabe 12/2023

Optical and Quantum Electronics 12/2023 Zur Ausgabe