Skip to main content
Erschienen in: Quantum Information Processing 11/2014

01.11.2014

Protocols of quantum key agreement solely using Bell states and Bell measurement

verfasst von: Chitra Shukla, Nasir Alam, Anirban Pathak

Erschienen in: Quantum Information Processing | Ausgabe 11/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Two protocols of quantum key agreement (QKA) that solely use Bell state and Bell measurement are proposed. The first protocol of QKA proposed here is designed for two-party QKA, whereas the second protocol is designed for multi-party QKA. The proposed protocols are also generalized to implement QKA using a set of multi-partite entangled states (e.g., 4-qubit cluster state and \(\Omega \) state). Security of these protocols arises from the monogamy of entanglement. This is in contrast to the existing protocols of QKA where security arises from the use of non-orthogonal state (non-commutativity principle). Further, it is shown that all the quantum systems that are useful for implementation of quantum dialogue and most of the protocols of secure direct quantum communication can be modified to implement protocols of QKA.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
Here subscripts A, B, C denote Alice, Bob, and Charlie, respectively.
 
2
In the stabilizer formalism of quantum error correction Pauli group is frequently used (see Section 10.5.1 of [32]). It is usually defined as \(G_{1}=\left\{ \pm I,\pm iI,\pm \sigma _{x},\pm i\sigma _{x},\pm \sigma _{y},\pm i\sigma _{y},\pm \sigma _{z},\pm i\sigma _{z}\right\} ,\) where \(\sigma _{i}\) is a Pauli matrix. The inclusion of \(\pm 1\) and \(\pm i\) ensures that \(G_{1}\) is closed under standard matrix multiplication, but the effect of \(\sigma _{i},\,-\sigma _{i},\, i\sigma _{i}\), and \(-i\sigma _{i}\) on a quantum state is the same. So in [33], we redefined the multiplication operation for two elements of the group in such a way that global phase is ignored from the product of matrices. This is consistent with the quantum mechanics and it gives us a modified Pauli group \(G_{1}=\{I,\,\sigma _{x},\, i\sigma _{y},\,\sigma _{z}\}=\{I,\, X,\, iY,\, Z\}.\)
 
3
In \(\mathrm{PP^{GV}}\)Alice does not need to disclose her key \(K_{A}\). Everything else is the same and as a consequence \(b=2n,\, q=4n\) and \(c=n\) with \(c\) being the number of bits in the message or key that is transmitted.
 
Literatur
1.
Zurück zum Zitat Bennett, C.H., Brassed, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, India, pp. 175–179 (1984) Bennett, C.H., Brassed, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, India, pp. 175–179 (1984)
5.
Zurück zum Zitat Boström, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902 (2002)CrossRefADS Boström, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902 (2002)CrossRefADS
6.
Zurück zum Zitat Lucamarini, M., Mancini, S.: Secure deterministic communication without entanglement. Phys. Rev. Lett. 94, 140501 (2005)CrossRefADS Lucamarini, M., Mancini, S.: Secure deterministic communication without entanglement. Phys. Rev. Lett. 94, 140501 (2005)CrossRefADS
8.
Zurück zum Zitat Zhou, N., Zeng, G., Xiong, J.: Quantum key agreement protocol. Electron. Lett. 40, 1149–1150 (2004)CrossRef Zhou, N., Zeng, G., Xiong, J.: Quantum key agreement protocol. Electron. Lett. 40, 1149–1150 (2004)CrossRef
9.
Zurück zum Zitat Chong, S.-K., Hwang, T.: Quantum key agreement protocol based on BB84. Optic Commun. 283, 1192–1195 (2010)CrossRefADS Chong, S.-K., Hwang, T.: Quantum key agreement protocol based on BB84. Optic Commun. 283, 1192–1195 (2010)CrossRefADS
10.
Zurück zum Zitat Yin, X.-R., Ma, W.-P., Liu, W.-Y.: Three-party quantum key agreement with two-photon entanglement. Int. J. Theor. Phys. 52, 3915–3921 (2013)MathSciNetCrossRefMATH Yin, X.-R., Ma, W.-P., Liu, W.-Y.: Three-party quantum key agreement with two-photon entanglement. Int. J. Theor. Phys. 52, 3915–3921 (2013)MathSciNetCrossRefMATH
11.
Zurück zum Zitat Gisin, N., Renner, R., Wolf, S.: classical and quantum key agreement: Is there a classical analog to bound entanglement? Algorithmica 34, 389–412 (2002)MathSciNetCrossRefMATH Gisin, N., Renner, R., Wolf, S.: classical and quantum key agreement: Is there a classical analog to bound entanglement? Algorithmica 34, 389–412 (2002)MathSciNetCrossRefMATH
12.
Zurück zum Zitat Dijk, M. v., Koppelaar, A.: Quantum key agreement. In: Proceedings of IEEE International Symposium on Information Theory, IEEE, pp. 350–350 (1998) Dijk, M. v., Koppelaar, A.: Quantum key agreement. In: Proceedings of IEEE International Symposium on Information Theory, IEEE, pp. 350–350 (1998)
13.
Zurück zum Zitat Tsai, C.W., Hwang, T.: On “Quantum key agreement protocol”, Technical Report, C-S-I-E, NCKU. Taiwan, R.O.C. (2009) Tsai, C.W., Hwang, T.: On “Quantum key agreement protocol”, Technical Report, C-S-I-E, NCKU. Taiwan, R.O.C. (2009)
14.
Zurück zum Zitat Tsai, C.W., Chong S.K., Hwang, T.: Comment on quantum key agreement protocol with maximally entangled states. In: Proceedings of the 20th Cryptology and Information Security Conference (CISC 2010), pp. 210–213. National Chiao Tung University, Hsinchu, Taiwan, 27–28 May (2010) Tsai, C.W., Chong S.K., Hwang, T.: Comment on quantum key agreement protocol with maximally entangled states. In: Proceedings of the 20th Cryptology and Information Security Conference (CISC 2010), pp. 210–213. National Chiao Tung University, Hsinchu, Taiwan, 27–28 May (2010)
15.
Zurück zum Zitat Chong, S.-K., Tsai, C.W., Hwang, T.: Improvement on “Quantum key agreement protocol with maximally entangled states”. Int. J. Theor. Phys. 50, 1793–1802 (2011)MathSciNetCrossRefMATH Chong, S.-K., Tsai, C.W., Hwang, T.: Improvement on “Quantum key agreement protocol with maximally entangled states”. Int. J. Theor. Phys. 50, 1793–1802 (2011)MathSciNetCrossRefMATH
16.
Zurück zum Zitat Liu, B., Gao, F., Huang, W., Wen, Q.-Y.: Multiparty quantum key agreement with single particles. Quantum Info. Process. 12, 1797–1805 (2013)MathSciNetCrossRefADSMATH Liu, B., Gao, F., Huang, W., Wen, Q.-Y.: Multiparty quantum key agreement with single particles. Quantum Info. Process. 12, 1797–1805 (2013)MathSciNetCrossRefADSMATH
17.
Zurück zum Zitat Sun, Z., Zhang, C., Wang, B., Li, Q., Long, D.: Improvement on “multiparty quantum key agreement with single particles”. Quantum Inf. Process. 12, 3411–3420 (2013)MathSciNetCrossRefADSMATH Sun, Z., Zhang, C., Wang, B., Li, Q., Long, D.: Improvement on “multiparty quantum key agreement with single particles”. Quantum Inf. Process. 12, 3411–3420 (2013)MathSciNetCrossRefADSMATH
18.
Zurück zum Zitat Shi, R.-H., Zhong, H.: Multi-party quantum key agreement with Bell states and Bell measurements. Quantum Inf. Process. 12, 921–932 (2013)MathSciNetCrossRefADSMATH Shi, R.-H., Zhong, H.: Multi-party quantum key agreement with Bell states and Bell measurements. Quantum Inf. Process. 12, 921–932 (2013)MathSciNetCrossRefADSMATH
19.
Zurück zum Zitat Huang, W., Wen, Q.-Y., Liu, B., Su Q., Gao, F.: Cryptanalysis of a multi-party quantum key agreement protocol with single particles, arXiv:1308.2777 (quant-ph) Huang, W., Wen, Q.-Y., Liu, B., Su Q., Gao, F.: Cryptanalysis of a multi-party quantum key agreement protocol with single particles, arXiv:​1308.​2777 (quant-ph)
21.
Zurück zum Zitat Simon, B.-W., Menezes, A.: Authenticated Diffe-Hellman key agreement protocols in selected areas in cryptography. Springer, Berlin Heidelberg (1999) Simon, B.-W., Menezes, A.: Authenticated Diffe-Hellman key agreement protocols in selected areas in cryptography. Springer, Berlin Heidelberg (1999)
22.
Zurück zum Zitat Victor, S.: Lower bounds for discrete logarithms and related problems. In Advances in Cryptology-EUROCRYPT’97, pp. 256–266. Springer, Berlin Heidelberg (1997) Victor, S.: Lower bounds for discrete logarithms and related problems. In Advances in Cryptology-EUROCRYPT’97, pp. 256–266. Springer, Berlin Heidelberg (1997)
23.
Zurück zum Zitat Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26, 1484–1509 (1997)MathSciNetCrossRefMATH Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26, 1484–1509 (1997)MathSciNetCrossRefMATH
24.
Zurück zum Zitat Hsueh, C.C., Chen, C.Y.: Quantum key agreement protocol with maximally entangled states. In: Proceedings of the 14th Information Security Conference, National Taiwan University of Science and Technology, Taipei, pp. 236–242 (2004) Hsueh, C.C., Chen, C.Y.: Quantum key agreement protocol with maximally entangled states. In: Proceedings of the 14th Information Security Conference, National Taiwan University of Science and Technology, Taipei, pp. 236–242 (2004)
26.
Zurück zum Zitat Shukla, C., Pathak, A., Srikanth, R.: Beyond the Goldenberg-Vaidman protocol: secure and efficient quantum communication using arbitrary, orthogonal, multi-particle quantum states. Int. J. Quantum Inf. 10, 1241009 (2012)MathSciNetCrossRef Shukla, C., Pathak, A., Srikanth, R.: Beyond the Goldenberg-Vaidman protocol: secure and efficient quantum communication using arbitrary, orthogonal, multi-particle quantum states. Int. J. Quantum Inf. 10, 1241009 (2012)MathSciNetCrossRef
27.
28.
Zurück zum Zitat Avella, A., Brida, G., Degiovanni, I.P., Genovese, M., Gramegna, M., Traina, P.: Experimental quantum-cryptography scheme based on orthogonal states. Phys. Rev. A 82, 062309 (2010)CrossRefADS Avella, A., Brida, G., Degiovanni, I.P., Genovese, M., Gramegna, M., Traina, P.: Experimental quantum-cryptography scheme based on orthogonal states. Phys. Rev. A 82, 062309 (2010)CrossRefADS
29.
Zurück zum Zitat Ren, M., Wu, G., Wu, E., Zeng, H.: Experimental demonstration of counterfactual quantum key distribution. Laser Phys. 21, 755–760 (2011)CrossRefADS Ren, M., Wu, G., Wu, E., Zeng, H.: Experimental demonstration of counterfactual quantum key distribution. Laser Phys. 21, 755–760 (2011)CrossRefADS
30.
Zurück zum Zitat Brida, G., Cavanna, A., Degiovanni, I.P., Genovese, M., Traina, P.: Experimental realization of counterfactual quantum cryptography. Laser Phys. Lett. 9, 247–252 (2012)CrossRefADS Brida, G., Cavanna, A., Degiovanni, I.P., Genovese, M., Traina, P.: Experimental realization of counterfactual quantum cryptography. Laser Phys. Lett. 9, 247–252 (2012)CrossRefADS
31.
Zurück zum Zitat Liu, Yang, et al.: Experimental demonstration of counterfactual quantum communication. Phys. Rev. Lett. 109, 030501 (2012)CrossRefADS Liu, Yang, et al.: Experimental demonstration of counterfactual quantum communication. Phys. Rev. Lett. 109, 030501 (2012)CrossRefADS
32.
Zurück zum Zitat Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, New Delhi (2008) Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, New Delhi (2008)
33.
Zurück zum Zitat Shukla, C., Kothari, V., Banerjee, A., Pathak, A.: On the group-theoretic structure of a class of quantum dialogue protocols. Phys. Lett. A 377, 518–527 (2013)MathSciNetCrossRefADS Shukla, C., Kothari, V., Banerjee, A., Pathak, A.: On the group-theoretic structure of a class of quantum dialogue protocols. Phys. Lett. A 377, 518–527 (2013)MathSciNetCrossRefADS
34.
Zurück zum Zitat Deng, F.-G., Long, G.L., Liu, X.-S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A 68, 042317 (2003)CrossRefADS Deng, F.-G., Long, G.L., Liu, X.-S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A 68, 042317 (2003)CrossRefADS
35.
Zurück zum Zitat Cai, Q.-Y., Li, B.-W.: Improving the capacity of the Boström-Felbinger protocol. Phys. Rev. A 69, 054301 (2004)CrossRefADS Cai, Q.-Y., Li, B.-W.: Improving the capacity of the Boström-Felbinger protocol. Phys. Rev. A 69, 054301 (2004)CrossRefADS
36.
Zurück zum Zitat Pathak, A.: Elements of quantum computation and quantum communication. CRC Press, Boca Raton, USA (2013)MATH Pathak, A.: Elements of quantum computation and quantum communication. CRC Press, Boca Raton, USA (2013)MATH
38.
Zurück zum Zitat Cabello, A.: Quantum key distribution in the Holevo limit. Phys. Rev. Lett. 85, 5635–5638 (2000)CrossRefADS Cabello, A.: Quantum key distribution in the Holevo limit. Phys. Rev. Lett. 85, 5635–5638 (2000)CrossRefADS
Metadaten
Titel
Protocols of quantum key agreement solely using Bell states and Bell measurement
verfasst von
Chitra Shukla
Nasir Alam
Anirban Pathak
Publikationsdatum
01.11.2014
Verlag
Springer US
Erschienen in
Quantum Information Processing / Ausgabe 11/2014
Print ISSN: 1570-0755
Elektronische ISSN: 1573-1332
DOI
https://doi.org/10.1007/s11128-014-0784-0

Weitere Artikel der Ausgabe 11/2014

Quantum Information Processing 11/2014 Zur Ausgabe