Skip to main content
Erschienen in: Quantum Information Processing 1/2017

01.01.2017

Theoretical and computational analysis of the quantum radar cross section for simple geometrical targets

verfasst von: Matthew J. Brandsema, Ram M. Narayanan, Marco Lanzagorta

Erschienen in: Quantum Information Processing | Ausgabe 1/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The concept of the quantum radar cross section (QRCS) has generated interest due to its promising feature of enhanced side lobe target visibility in comparison to the classical radar cross section. Researchers have simulated the QRCS for very limited geometries and even developed approximations to reduce the computational complexity of the simulations. This paper develops an alternate theoretical framework for calculating the QRCS. This new framework yields an alternative form of the QRCS expression in terms of Fourier transforms. This formulation is much easier to work with mathematically and allows one to derive analytical solutions for various geometries, which provides an explanation for the aforementioned sidelobe advantage. We also verify the resulting equations by comparing with numerical simulations, as well as provide an error analysis of these simulations to ensure the accuracy of the results. Comparison of our simulation results with the analytical solutions reveal that they agree with one another extremely well.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
It has been discovered that the expression for the QRCS presented in [2] was missing a factor of 2. Thus the coefficient of \(2\pi \) has been changed to \(4\pi \) in Eq. (1).
 
Literatur
1.
Zurück zum Zitat Lanzagorta, M.: Low brightness quantum radar. In: Proceedings of the SPIE Conference on Radar Sensor Technology XIX and Active and Passive Signatures VI, Baltimore, MD, 946113 (2015) Lanzagorta, M.: Low brightness quantum radar. In: Proceedings of the SPIE Conference on Radar Sensor Technology XIX and Active and Passive Signatures VI, Baltimore, MD, 946113 (2015)
2.
Zurück zum Zitat Lanzagorta, M.: Quantum Radar. Morgan & Claypool, San Rafael (2012)MATH Lanzagorta, M.: Quantum Radar. Morgan & Claypool, San Rafael (2012)MATH
3.
Zurück zum Zitat Menzel, E.P., Di Candia, R., Deppe, F., Eder, P., Zhong, L., Ihmig, M., Haeberlein, M., Baust, A., Hoffmann, E., Ballester, D., Inomata, K., Yamamoto, T., Nakamura, Y., Solano, E., Marx, A., Gross, R.: Path entanglement of continuous-variable quantum microwaves. Phys. Rev. Lett. 109, 250502 (2012)ADSCrossRef Menzel, E.P., Di Candia, R., Deppe, F., Eder, P., Zhong, L., Ihmig, M., Haeberlein, M., Baust, A., Hoffmann, E., Ballester, D., Inomata, K., Yamamoto, T., Nakamura, Y., Solano, E., Marx, A., Gross, R.: Path entanglement of continuous-variable quantum microwaves. Phys. Rev. Lett. 109, 250502 (2012)ADSCrossRef
4.
Zurück zum Zitat Emary, C., Trauzettel, B., Beenakker, C.W.J.: Emission of polarized-entangled microwave photons from a pair of quantum dots. Phys. Rev. Lett. 95, 127401 (2005)ADSCrossRef Emary, C., Trauzettel, B., Beenakker, C.W.J.: Emission of polarized-entangled microwave photons from a pair of quantum dots. Phys. Rev. Lett. 95, 127401 (2005)ADSCrossRef
5.
Zurück zum Zitat Barzanjeh, S., Guha, S., Weedbrook, C., Vitali, D., Shapiro, J., Pirandola, S.: Microwave quantum illumination. Phys. Rev. Lett. 114, 080503 (2015)ADSCrossRef Barzanjeh, S., Guha, S., Weedbrook, C., Vitali, D., Shapiro, J., Pirandola, S.: Microwave quantum illumination. Phys. Rev. Lett. 114, 080503 (2015)ADSCrossRef
6.
Zurück zum Zitat Romero, G., Garcia-Ripoll, J.J., Solano, E.: Microwave photon detector in circuit QED. Phys. Rev. Lett. 102, 173602 (2009)ADSCrossRef Romero, G., Garcia-Ripoll, J.J., Solano, E.: Microwave photon detector in circuit QED. Phys. Rev. Lett. 102, 173602 (2009)ADSCrossRef
7.
Zurück zum Zitat Woolley, M.J., Lang, C., Eichler, C., Wallraff, A., Blais, A.: Signatures of Hong–Ou–Mandel interference at microwave frequencies. New J. Phys. 15, 105025 (2013)ADSCrossRef Woolley, M.J., Lang, C., Eichler, C., Wallraff, A., Blais, A.: Signatures of Hong–Ou–Mandel interference at microwave frequencies. New J. Phys. 15, 105025 (2013)ADSCrossRef
8.
Zurück zum Zitat Tan, S.-H., Erkmen, B.I., Giovannetti, V., Guha, S., Lloyd, S., Maccone, L., Pirandola, S., Shapiro, J.: Quantum illumination with Gaussian states. Phys. Rev. Lett. 101, 253601 (2008)ADSCrossRef Tan, S.-H., Erkmen, B.I., Giovannetti, V., Guha, S., Lloyd, S., Maccone, L., Pirandola, S., Shapiro, J.: Quantum illumination with Gaussian states. Phys. Rev. Lett. 101, 253601 (2008)ADSCrossRef
9.
Zurück zum Zitat Brandsema, M.J., Narayanan, R.M., Lanzagorta, M.: Design considerations for quantum radar implementation. In: Proceedings of the SPIE Conference on Radar Sensor Technology XVIII, Baltimore, MD, 90770T (2014) Brandsema, M.J., Narayanan, R.M., Lanzagorta, M.: Design considerations for quantum radar implementation. In: Proceedings of the SPIE Conference on Radar Sensor Technology XVIII, Baltimore, MD, 90770T (2014)
10.
Zurück zum Zitat Jiang, K., Lee, H., Gerry, C.C., Dowling, J.P.: Super-resolving quantum radar: coherent-state sources with homodyne detection suffice to beat the diffraction limit. J. Appl. Phys. 114, 193102 (2013)ADSCrossRef Jiang, K., Lee, H., Gerry, C.C., Dowling, J.P.: Super-resolving quantum radar: coherent-state sources with homodyne detection suffice to beat the diffraction limit. J. Appl. Phys. 114, 193102 (2013)ADSCrossRef
11.
Zurück zum Zitat Wang, Q., Zhang, Y., Yang, X., Xu, L., Yang, C.: Super-resolving quantum LADAR with even coherent states sources at shot noise limit. In: Proceedings of the International Conference on Optoelectronics and Microelectronics (ICOM), Changchun, China, pp. 19–22 (2015) Wang, Q., Zhang, Y., Yang, X., Xu, L., Yang, C.: Super-resolving quantum LADAR with even coherent states sources at shot noise limit. In: Proceedings of the International Conference on Optoelectronics and Microelectronics (ICOM), Changchun, China, pp. 19–22 (2015)
12.
Zurück zum Zitat Brandsema, M.J., Narayanan, R.M., Lanzagorta, M.: Analytical formulation of the quantum electromagnetic cross section. In: Proceedings of the SPIE Conference on Radar Sensor Technology XX, Baltimore, MD, 98291H (2016) Brandsema, M.J., Narayanan, R.M., Lanzagorta, M.: Analytical formulation of the quantum electromagnetic cross section. In: Proceedings of the SPIE Conference on Radar Sensor Technology XX, Baltimore, MD, 98291H (2016)
13.
Zurück zum Zitat Lanzagorta, M.: Quantum radar cross sections. In: Proceedings of the SPIE Conference on Quantum Optics, Brussels, Belgium, 77270K (2010) Lanzagorta, M.: Quantum radar cross sections. In: Proceedings of the SPIE Conference on Quantum Optics, Brussels, Belgium, 77270K (2010)
14.
Zurück zum Zitat Berestetskii, V.B., Lifshitz, E.M., Pitaevskii, L.P.: Quantum Electrodynamics, 2nd edn. Pergamon Press Ltd., Oxford (1982) Berestetskii, V.B., Lifshitz, E.M., Pitaevskii, L.P.: Quantum Electrodynamics, 2nd edn. Pergamon Press Ltd., Oxford (1982)
15.
Zurück zum Zitat Kang, L., Huai-Tie, X., Hong-Qi, F.: Analysis and simulation of quantum radar cross section. Chin. Phys. Lett. 31, 034202 (2014)ADSCrossRef Kang, L., Huai-Tie, X., Hong-Qi, F.: Analysis and simulation of quantum radar cross section. Chin. Phys. Lett. 31, 034202 (2014)ADSCrossRef
16.
Zurück zum Zitat Liu, K., Xiao, H., Fan, H., Fu, Q.: Analysis of quantum radar cross section and its influence on target detection performance. IEEE Photonics Technol. Lett. 26, 1146–1149 (2014)ADSCrossRef Liu, K., Xiao, H., Fan, H., Fu, Q.: Analysis of quantum radar cross section and its influence on target detection performance. IEEE Photonics Technol. Lett. 26, 1146–1149 (2014)ADSCrossRef
17.
Zurück zum Zitat Lin, Y., Guo, L., Cai, K.: An efficient algorithm for the calculation of quantum radar cross section of flat objects. In: Progress in Electromagnetics Research Symposium Proceedings, Guangzhou, China, pp. 39–43 (2014) Lin, Y., Guo, L., Cai, K.: An efficient algorithm for the calculation of quantum radar cross section of flat objects. In: Progress in Electromagnetics Research Symposium Proceedings, Guangzhou, China, pp. 39–43 (2014)
18.
Zurück zum Zitat Lanzagorta, M., Venegas-Andraca, S.: Algorithmic analysis of quantum radar cross sections. In: Proceedings of the SPIE Conference of Radar Sensor Technology XIX and Active and Passive Signatures VI, Baltimore, MD, 946112 (2015) Lanzagorta, M., Venegas-Andraca, S.: Algorithmic analysis of quantum radar cross sections. In: Proceedings of the SPIE Conference of Radar Sensor Technology XIX and Active and Passive Signatures VI, Baltimore, MD, 946112 (2015)
19.
Zurück zum Zitat Xu, S.-L., Hu, Y.-H., Zhao, N.-X., Wang, Y.-Y., Li, L., Guo, L.-R.: Impact of metal target’s atom lattice structure on its quantum radar cross-section. Acta Phys. Sin. 64, 154203 (2015) Xu, S.-L., Hu, Y.-H., Zhao, N.-X., Wang, Y.-Y., Li, L., Guo, L.-R.: Impact of metal target’s atom lattice structure on its quantum radar cross-section. Acta Phys. Sin. 64, 154203 (2015)
20.
Zurück zum Zitat Balanis, C.A.: Advanced Engineering Electromagnetics, 2nd edn. Wiley, New York (2012) Balanis, C.A.: Advanced Engineering Electromagnetics, 2nd edn. Wiley, New York (2012)
21.
Zurück zum Zitat Ruck, G.T., Barrick, D.E., Stuart, W.D., Krichbaum, C.K.: Radar Cross Section Handbook Volumes 1 and 2. Plenum Press, New York (1970)CrossRef Ruck, G.T., Barrick, D.E., Stuart, W.D., Krichbaum, C.K.: Radar Cross Section Handbook Volumes 1 and 2. Plenum Press, New York (1970)CrossRef
22.
Zurück zum Zitat Mitra, S.K.: Digital Signal Processing. A Computer Based Approach. McGraw-Hill, New York (2010) Mitra, S.K.: Digital Signal Processing. A Computer Based Approach. McGraw-Hill, New York (2010)
23.
Zurück zum Zitat Balanis, C.A.: Antenna Theory, Analysis and Design, 3rd edn. Wiley, Hoboken (2005) Balanis, C.A.: Antenna Theory, Analysis and Design, 3rd edn. Wiley, Hoboken (2005)
Metadaten
Titel
Theoretical and computational analysis of the quantum radar cross section for simple geometrical targets
verfasst von
Matthew J. Brandsema
Ram M. Narayanan
Marco Lanzagorta
Publikationsdatum
01.01.2017
Verlag
Springer US
Erschienen in
Quantum Information Processing / Ausgabe 1/2017
Print ISSN: 1570-0755
Elektronische ISSN: 1573-1332
DOI
https://doi.org/10.1007/s11128-016-1494-6

Weitere Artikel der Ausgabe 1/2017

Quantum Information Processing 1/2017 Zur Ausgabe