Skip to main content
Erschienen in: Quantum Information Processing 1/2020

01.01.2020

Measurement-device-independent quantum key distribution with uncharacterized coherent sources

verfasst von: Guo-Dong Kang, Qing-Ping Zhou, Mao-Fa Fang

Erschienen in: Quantum Information Processing | Ausgabe 1/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Measurement-device-independent quantum key distribution (MDI-QKD) is proposed to close all possible side channel detector attacks. The security of the original proposal relies on the assumption that the legitimate users can characterize their sources exactly, which might not be satisfied in practice. Later, some MDI-QKD protocols with uncharacterized qubit sources are proposed to remove the assumption that legitimate users must characterize their encoding states. Here we propose a MDI-QKD with uncharacterized coherent sources. The assumption is that legitimate users only ensure that sources, for encoding, are coherent sources (can be expressed as a mixture of Fock states), while the accuracy of the encoding operations and the intensity of the coherent sources cannot be characterized exactly by them. Based on this assumption, we derived the formulas of the security bounds for it under collective attacks, and simulation results of the security bounds are also presented by employing parameters of current QKD technology. It shows that the lower bound of performance can cover long distances.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bennett, C. H., Brassard, G.: Quantum cryptography: public-key distribution and coin tossing. In Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing Bangalore, India, pp. 175–179. IEEE, New York (1984) Bennett, C. H., Brassard, G.: Quantum cryptography: public-key distribution and coin tossing. In Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing Bangalore, India, pp. 175–179. IEEE, New York (1984)
2.
3.
Zurück zum Zitat Lo, H.-K., Chau, H.F.: Unconditional security of quantum key distribution over arbitrarily long distances. Science 283(5410), 2050–2056 (1999)ADS Lo, H.-K., Chau, H.F.: Unconditional security of quantum key distribution over arbitrarily long distances. Science 283(5410), 2050–2056 (1999)ADS
4.
Zurück zum Zitat Mayers, D.: Advances in Cryptology-CRYPTO’96, pp. 343–357. Springer, Berlin (1996)MATH Mayers, D.: Advances in Cryptology-CRYPTO’96, pp. 343–357. Springer, Berlin (1996)MATH
5.
Zurück zum Zitat Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85(2), 441–444 (2000)ADS Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85(2), 441–444 (2000)ADS
6.
Zurück zum Zitat Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.G.: Quantum cryptography. Rev. Mod. Phys. 74(1), 145–200 (2001)ADSMATH Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.G.: Quantum cryptography. Rev. Mod. Phys. 74(1), 145–200 (2001)ADSMATH
7.
Zurück zum Zitat Boaron, A., Boso, G., Rusca, D., Vulliez, C., Autebert, C., Caloz, M., Perrenoud, M., Gras, G., Bussières, F., Li, M.-J., Nolan, D., Martin, A., Zbinden, H.: Secure quantum key distribution over 421 km of optical fiber. Phys. Rev. Lett. 121(19), 9–13 (2018) Boaron, A., Boso, G., Rusca, D., Vulliez, C., Autebert, C., Caloz, M., Perrenoud, M., Gras, G., Bussières, F., Li, M.-J., Nolan, D., Martin, A., Zbinden, H.: Secure quantum key distribution over 421 km of optical fiber. Phys. Rev. Lett. 121(19), 9–13 (2018)
8.
Zurück zum Zitat Liao, S.-K., Cai, W.-Q., Liu, W.-Y., Zhang, L., Li, Y., Ren, J.-G., Yin, J., Shen, Q., Cao, Y., Li, Z.-P., Li, F.-Z., Chen, X.-W., Sun, L.-H., Jia, J.-J., Wu, J.-C., Jiang, X.-J., Wang, J.-F., Huang, Y.-M., Wang, Q., Zhou, Y.-L., Deng, L., Xi, T., Ma, L., Hu, T., Zhang, Q., Chen, Y.-A., Liu, N.-L., Wang, X.-B., Zhu, Z.-C., Lu, C.-Y., Shu, Rong, Peng, C.-Z., Wang, J.-Y., Pan, J.-W.: Satellite-to-ground quantum key distribution. Nature 549(7670), 43–47 (2017)ADS Liao, S.-K., Cai, W.-Q., Liu, W.-Y., Zhang, L., Li, Y., Ren, J.-G., Yin, J., Shen, Q., Cao, Y., Li, Z.-P., Li, F.-Z., Chen, X.-W., Sun, L.-H., Jia, J.-J., Wu, J.-C., Jiang, X.-J., Wang, J.-F., Huang, Y.-M., Wang, Q., Zhou, Y.-L., Deng, L., Xi, T., Ma, L., Hu, T., Zhang, Q., Chen, Y.-A., Liu, N.-L., Wang, X.-B., Zhu, Z.-C., Lu, C.-Y., Shu, Rong, Peng, C.-Z., Wang, J.-Y., Pan, J.-W.: Satellite-to-ground quantum key distribution. Nature 549(7670), 43–47 (2017)ADS
9.
Zurück zum Zitat Makarov, V., Anisimov, A., Skaar, J.: Erratum: effects of detector efficiency mismatch on security of quantum cryptosystems. Phys. Rev. A 78(1), 011905–011915 (2008) Makarov, V., Anisimov, A., Skaar, J.: Erratum: effects of detector efficiency mismatch on security of quantum cryptosystems. Phys. Rev. A 78(1), 011905–011915 (2008)
10.
Zurück zum Zitat Makarov, V., Skaar, J.: Fakes states attack using detector efficiency mismatch on SARG04, phase-time, DPSK, and Ekert protocols. Quantum Inf. Comput. 8(67), 622–635 (2008)MathSciNetMATH Makarov, V., Skaar, J.: Fakes states attack using detector efficiency mismatch on SARG04, phase-time, DPSK, and Ekert protocols. Quantum Inf. Comput. 8(67), 622–635 (2008)MathSciNetMATH
11.
Zurück zum Zitat Qi, B., Fung, C.-H.F., Lo, H.-K., Ma, X.: Time-shift attack in practical quantum cryptosystems. Quantum Inf. Comput. 7(12), 73–82 (2007)MathSciNetMATH Qi, B., Fung, C.-H.F., Lo, H.-K., Ma, X.: Time-shift attack in practical quantum cryptosystems. Quantum Inf. Comput. 7(12), 73–82 (2007)MathSciNetMATH
12.
Zurück zum Zitat Zhao, Y., Fung, C.-H.F., Qi, B., Chen, C., Lo, H.-K.: Quantum hacking: experimental demonstration of time-shift attack against practical quantum key distribution systems. Phys. Rev. A 78(4), 042333–042337 (2008)ADS Zhao, Y., Fung, C.-H.F., Qi, B., Chen, C., Lo, H.-K.: Quantum hacking: experimental demonstration of time-shift attack against practical quantum key distribution systems. Phys. Rev. A 78(4), 042333–042337 (2008)ADS
13.
Zurück zum Zitat Lydersen, L., Wiechers, C., Wittmann, C., Elser, D., Skaar, J., Makarov, V.: Hacking commercial quantum cryptography systems by tailored bright illumination. Nat. Photonics 4(10), 686–689 (2010)ADS Lydersen, L., Wiechers, C., Wittmann, C., Elser, D., Skaar, J., Makarov, V.: Hacking commercial quantum cryptography systems by tailored bright illumination. Nat. Photonics 4(10), 686–689 (2010)ADS
14.
Zurück zum Zitat Gerhardt, I., Liu, Q., Lamas-Linares, A., Skaar, J., Kurtsiefer, C., Makarov, V.: Full-field implementation of a perfect eavesdropper on a quantum cryptography system. Nat. Commun. 2, 349 (2011)ADS Gerhardt, I., Liu, Q., Lamas-Linares, A., Skaar, J., Kurtsiefer, C., Makarov, V.: Full-field implementation of a perfect eavesdropper on a quantum cryptography system. Nat. Commun. 2, 349 (2011)ADS
15.
Zurück zum Zitat Tang, Y.-L., Yin, H.-L., Ma, X., Fung, C.-H.F., Liu, Y., Yong, H.-L., Chen, T.-Y., Peng, C.-Z., Chen, Z.-B., Pan, J.-W.: Source attack of decoy-state quantum key distribution using phase information. Phys. Rev. A 88(2), 022308–022319 (2013)ADS Tang, Y.-L., Yin, H.-L., Ma, X., Fung, C.-H.F., Liu, Y., Yong, H.-L., Chen, T.-Y., Peng, C.-Z., Chen, Z.-B., Pan, J.-W.: Source attack of decoy-state quantum key distribution using phase information. Phys. Rev. A 88(2), 022308–022319 (2013)ADS
16.
Zurück zum Zitat Mayers, D., Yao, A.: In FOCS, 39th Annual Symposium on Foundations of Computer Science. IEEE, Computer Society Press, Los Alamitos, p. 503 (1998) Mayers, D., Yao, A.: In FOCS, 39th Annual Symposium on Foundations of Computer Science. IEEE, Computer Society Press, Los Alamitos, p. 503 (1998)
17.
Zurück zum Zitat Acín, A., Gisin, N., Masanes, L.: From Bell’s theorem to secure quantum key distribution. Phys. Rev. Lett. 97(12), 120405–120408 (2006)ADSMATH Acín, A., Gisin, N., Masanes, L.: From Bell’s theorem to secure quantum key distribution. Phys. Rev. Lett. 97(12), 120405–120408 (2006)ADSMATH
18.
Zurück zum Zitat Acín, A., Brunner, N., Gisin, N., Massar, S., Pironio, S., Scarani, V.: Device-independent security of quantum cryptography against collective attacks. Phys. Rev. Lett. 98(23), 230501–230504 (2007)ADS Acín, A., Brunner, N., Gisin, N., Massar, S., Pironio, S., Scarani, V.: Device-independent security of quantum cryptography against collective attacks. Phys. Rev. Lett. 98(23), 230501–230504 (2007)ADS
19.
Zurück zum Zitat McKague, M., Mosca, M.: In Proceedings of the Fifth Conference on Theory of Quantum Computation, Communication, and Cryptography, TQC’10, pp. 113–130. Springer, Berlin (2011)MATH McKague, M., Mosca, M.: In Proceedings of the Fifth Conference on Theory of Quantum Computation, Communication, and Cryptography, TQC’10, pp. 113–130. Springer, Berlin (2011)MATH
20.
Zurück zum Zitat Lim, C.C.W., Portmann, C., Tomamichel, M., Renner, R., Gisin, N.: Device-independent quantum key distribution with local Bell test. Phys. Rev. X 3(3), 031006–031016 (2013) Lim, C.C.W., Portmann, C., Tomamichel, M., Renner, R., Gisin, N.: Device-independent quantum key distribution with local Bell test. Phys. Rev. X 3(3), 031006–031016 (2013)
21.
Zurück zum Zitat Lo, H.-K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108(13), 130503–130519 (2012)ADS Lo, H.-K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108(13), 130503–130519 (2012)ADS
22.
Zurück zum Zitat Kaltenbaek, R., Prevedel, R., Aspelmeyer, M., Zeilinger, A.: High-fidelity entanglement swapping with fully independent sources. Phys. Rev. A 79(4), 040302–040305 (2009)ADS Kaltenbaek, R., Prevedel, R., Aspelmeyer, M., Zeilinger, A.: High-fidelity entanglement swapping with fully independent sources. Phys. Rev. A 79(4), 040302–040305 (2009)ADS
23.
Zurück zum Zitat Biham, E., Huttner, B., Mor, T.: Quantum cryptographic network based on quantum memories. Phys. Rev. A 54(4), 2651–2658 (1996)ADSMathSciNet Biham, E., Huttner, B., Mor, T.: Quantum cryptographic network based on quantum memories. Phys. Rev. A 54(4), 2651–2658 (1996)ADSMathSciNet
24.
Zurück zum Zitat Rubenok, A., Slater, J., Chan, P., Lucio-Martinez, I., Tittel, W.: A quantum key distribution system immune to detector attacks. Arxiv preprint arXiv:1204.0738 (2012) Rubenok, A., Slater, J., Chan, P., Lucio-Martinez, I., Tittel, W.: A quantum key distribution system immune to detector attacks. Arxiv preprint arXiv:​1204.​0738 (2012)
25.
Zurück zum Zitat T, Ferreira da Silva, Vitoreti, D., Xavier, G.B., do Amaral, G.C., Temporão, G.P., von der Weid, J.P.: Proof-of-principle demonstration of measurement-device-independent quantum key distribution using polarization qubits. Phys. Rev. A 88(5), 052303–052309 (2013)ADS T, Ferreira da Silva, Vitoreti, D., Xavier, G.B., do Amaral, G.C., Temporão, G.P., von der Weid, J.P.: Proof-of-principle demonstration of measurement-device-independent quantum key distribution using polarization qubits. Phys. Rev. A 88(5), 052303–052309 (2013)ADS
26.
Zurück zum Zitat Liu, Y., Chen, T.-Y., Wang, L.-J., Liang, H., Shentu, G.-L., Wang, J., Cui, K., Yin, H.-L., Liu, N.-L., Li, L., Ma, X., Pelc, J.S., Fejer, M.M., Zhang, Q., Pan, J.-W.: Experimental measurement-device-independent quantum key distribution. Phys. Rev. Lett. 111(13), 130502–130505 (2013)ADS Liu, Y., Chen, T.-Y., Wang, L.-J., Liang, H., Shentu, G.-L., Wang, J., Cui, K., Yin, H.-L., Liu, N.-L., Li, L., Ma, X., Pelc, J.S., Fejer, M.M., Zhang, Q., Pan, J.-W.: Experimental measurement-device-independent quantum key distribution. Phys. Rev. Lett. 111(13), 130502–130505 (2013)ADS
27.
Zurück zum Zitat Tang, Z., Liao, Z., Xu, F., Qi, B., Qian, L., Lo, H.-K.: Experimental demonstration of polarization encoding measurement-device-independent quantum key distribution. Phys. Rev. Lett. 112(19), 190503–190506 (2014)ADS Tang, Z., Liao, Z., Xu, F., Qi, B., Qian, L., Lo, H.-K.: Experimental demonstration of polarization encoding measurement-device-independent quantum key distribution. Phys. Rev. Lett. 112(19), 190503–190506 (2014)ADS
28.
Zurück zum Zitat Yin, H.-L., Chen, T.-Y., Yu, Z.-W., Liu, H., You, L.-X., Zhou, Y.-H., Chen, S.-J., Mao, Y.Q., Huang, M.-Q., Zhang, W.-J., Chen, H., Li, M.-J., Nolan, D., Zhou, F., Jiang, X., Wang, Z., Zhang, Q., Wang, X.-B., Pan, J.-W.: Measurement-device-independent quantum key distribution over a 404 km optical fiber. Phys. Rev. Lett. 117(19), 190501–190515 (2016)ADS Yin, H.-L., Chen, T.-Y., Yu, Z.-W., Liu, H., You, L.-X., Zhou, Y.-H., Chen, S.-J., Mao, Y.Q., Huang, M.-Q., Zhang, W.-J., Chen, H., Li, M.-J., Nolan, D., Zhou, F., Jiang, X., Wang, Z., Zhang, Q., Wang, X.-B., Pan, J.-W.: Measurement-device-independent quantum key distribution over a 404 km optical fiber. Phys. Rev. Lett. 117(19), 190501–190515 (2016)ADS
29.
Zurück zum Zitat Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate-distance limit of quantum key distribution without quantum repeaters. Nature 557, 400–403 (2018)ADS Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate-distance limit of quantum key distribution without quantum repeaters. Nature 557, 400–403 (2018)ADS
30.
Zurück zum Zitat Wang, X.-B., Yu, Z.-W., Hu, X.-L.: Twin-field quantum key distribution with large misalignment error. Phys. Rev. A 98(6), 062323–062334 (2018)ADS Wang, X.-B., Yu, Z.-W., Hu, X.-L.: Twin-field quantum key distribution with large misalignment error. Phys. Rev. A 98(6), 062323–062334 (2018)ADS
31.
Zurück zum Zitat Yin, H.L., Fu, Y.: Measurement-device-independent twin-field quantum key distribution. Sci. Rep. 9(1), 3045–3057 (2019)ADS Yin, H.L., Fu, Y.: Measurement-device-independent twin-field quantum key distribution. Sci. Rep. 9(1), 3045–3057 (2019)ADS
32.
Zurück zum Zitat Yin, Z.Q., Fung, C.-H.F., Ma, X., Zhang, C.-M., Li, H.-W., Chen, W., Wang, S., Guo, G.-C., Han, Z.-F.: Measurement-device-independent quantum key distribution with uncharacterized qubit sources. Phys. Rev. A 88(6), 062322–062330 (2013)ADS Yin, Z.Q., Fung, C.-H.F., Ma, X., Zhang, C.-M., Li, H.-W., Chen, W., Wang, S., Guo, G.-C., Han, Z.-F.: Measurement-device-independent quantum key distribution with uncharacterized qubit sources. Phys. Rev. A 88(6), 062322–062330 (2013)ADS
33.
Zurück zum Zitat Hwang, W.Y., Su, H.Y., Bae, J.: Improved measurement-device-independent quantum key distribution with uncharacterized qubits. Phys. Rev. A 95(6), 062313–062316 (2017)ADS Hwang, W.Y., Su, H.Y., Bae, J.: Improved measurement-device-independent quantum key distribution with uncharacterized qubits. Phys. Rev. A 95(6), 062313–062316 (2017)ADS
34.
Zurück zum Zitat Ma, X., Razavi, M.: Alternative schemes for measurement-device-independent quantum key distribution. Phys. Rev. A 86(6), 062319–062330 (2012)ADS Ma, X., Razavi, M.: Alternative schemes for measurement-device-independent quantum key distribution. Phys. Rev. A 86(6), 062319–062330 (2012)ADS
35.
Zurück zum Zitat Zhao, Y., Qi, B., Lo, H.-K.: Quantum key distribution with an unknown and untrusted source. Phys. Rev. A 77(5), 052327–052356 (2008)ADS Zhao, Y., Qi, B., Lo, H.-K.: Quantum key distribution with an unknown and untrusted source. Phys. Rev. A 77(5), 052327–052356 (2008)ADS
36.
Zurück zum Zitat Liu, Y., Zhao, Qi, Li, M.-H., Guan, J.-Y., Zhang, Y.-B., Bai, B., Zhang, W.-J., Liu, W.-Z., Wu, C., Yuan, X., Li, H., Munro, W.J., Wang, Z., You, L.-X., Zhang, J., Ma, X., Fan, J.-Y., Zhang, Q., Pan, J.-W.: Device-independent quantum random-number generation. Nature 562, 548–551 (2018)ADS Liu, Y., Zhao, Qi, Li, M.-H., Guan, J.-Y., Zhang, Y.-B., Bai, B., Zhang, W.-J., Liu, W.-Z., Wu, C., Yuan, X., Li, H., Munro, W.J., Wang, Z., You, L.-X., Zhang, J., Ma, X., Fan, J.-Y., Zhang, Q., Pan, J.-W.: Device-independent quantum random-number generation. Nature 562, 548–551 (2018)ADS
37.
Zurück zum Zitat Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68(21), 3121–3124 (1992)ADSMathSciNetMATH Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68(21), 3121–3124 (1992)ADSMathSciNetMATH
38.
Zurück zum Zitat Duan, L.-M., Lukin, M.D., Cirac, J.I., Zoller, P.: Long-distance quantum communication with atomic ensembles and linear optics. Nature 414, 413–418 (2001) ADS Duan, L.-M., Lukin, M.D., Cirac, J.I., Zoller, P.: Long-distance quantum communication with atomic ensembles and linear optics. Nature 414, 413–418 (2001) ADS
39.
Zurück zum Zitat Sangouard, N., Simon, C., Minar, J., Zbinden, H., Riedmatten, H.D., Gisin, N.: Long-distance entanglement distribution with single-photon sources. Phys. Rev. A 76(5), 050301–050304 (2007)ADS Sangouard, N., Simon, C., Minar, J., Zbinden, H., Riedmatten, H.D., Gisin, N.: Long-distance entanglement distribution with single-photon sources. Phys. Rev. A 76(5), 050301–050304 (2007)ADS
40.
Zurück zum Zitat Tamaki, K., Lo, H.-K., Fung, C.-H.F., Qi, B.: Phase encoding schemes for measurement-device-independent quantum key distribution with basis-dependent flaw. Phys. Rev. A 85(4), 042307–042323 (2012)ADS Tamaki, K., Lo, H.-K., Fung, C.-H.F., Qi, B.: Phase encoding schemes for measurement-device-independent quantum key distribution with basis-dependent flaw. Phys. Rev. A 85(4), 042307–042323 (2012)ADS
41.
Zurück zum Zitat Lo, H.-K., Ma, X., Chen, K.: Decoy state quantum key distribution. Phys. Rev. Lett. 94(23), 230504–230507 (2005)ADS Lo, H.-K., Ma, X., Chen, K.: Decoy state quantum key distribution. Phys. Rev. Lett. 94(23), 230504–230507 (2005)ADS
42.
Zurück zum Zitat Hwang, W.-Y.: Quantum key distribution with high loss: toward global secure communication. Phys. Rev. Lett. 91(5), 057901–057904 (2003)ADS Hwang, W.-Y.: Quantum key distribution with high loss: toward global secure communication. Phys. Rev. Lett. 91(5), 057901–057904 (2003)ADS
43.
Zurück zum Zitat Ma, X., Qi, B., Zhao, Y., Lo, H.-K.: Practical decoy state for quantum key distribution. Phys. Rev. A 72(1), 012326–012356 (2005)ADS Ma, X., Qi, B., Zhao, Y., Lo, H.-K.: Practical decoy state for quantum key distribution. Phys. Rev. A 72(1), 012326–012356 (2005)ADS
44.
Zurück zum Zitat Wang, X.-B.: Beating the photon-number-splitting attack in practical quantum cryptography. Phys. Rev. Lett. 94(23), 230503–230506 (2005)ADS Wang, X.-B.: Beating the photon-number-splitting attack in practical quantum cryptography. Phys. Rev. Lett. 94(23), 230503–230506 (2005)ADS
45.
Zurück zum Zitat Wang, X.-B.: Decoy-state protocol for quantum cryptography with four different intensities of coherent light. Phys. Rev. A 72(1), 012322–012333 (2005)ADS Wang, X.-B.: Decoy-state protocol for quantum cryptography with four different intensities of coherent light. Phys. Rev. A 72(1), 012322–012333 (2005)ADS
46.
Zurück zum Zitat Lo, H.-K., Preskill, J.: Security of quantum key distribution using weak coherent states with nonrandom phases. Quantum Inf. Comput. 7(5), 431–458 (2007)MathSciNetMATH Lo, H.-K., Preskill, J.: Security of quantum key distribution using weak coherent states with nonrandom phases. Quantum Inf. Comput. 7(5), 431–458 (2007)MathSciNetMATH
47.
48.
Zurück zum Zitat Koashi, M.: Simple security proof of quantum key distribution based on complementarity. New J. Phys. 11(4), 045018–045029 (2009)ADSMathSciNet Koashi, M.: Simple security proof of quantum key distribution based on complementarity. New J. Phys. 11(4), 045018–045029 (2009)ADSMathSciNet
49.
Zurück zum Zitat Ma, X., Fung, C.-H.F., Boileau, J.-C., Chau, H.: Universally composable and customizable post-processing for practical quantum key distribution. Comput. Secur. 30(4), 172–177 (2011) Ma, X., Fung, C.-H.F., Boileau, J.-C., Chau, H.: Universally composable and customizable post-processing for practical quantum key distribution. Comput. Secur. 30(4), 172–177 (2011)
50.
Zurück zum Zitat Ursin, R., Tiefenbacher, F., Schmitt-Manderbach, T., Weier, H., Scheidl, T., Lindenthal, M., Blauensteiner, B., Jennewein, T., Perdigues, J., Trojek, P., Oemer, B., Fuerst, M., Meyenburg, M., Rarity, J., Sodnik, Z., Barbieri, C., Weinfurter, H., Zeilinger, A.: Entanglement-based quantum communication over 144km. Nature Phys. 3, 481–486 (2007)ADS Ursin, R., Tiefenbacher, F., Schmitt-Manderbach, T., Weier, H., Scheidl, T., Lindenthal, M., Blauensteiner, B., Jennewein, T., Perdigues, J., Trojek, P., Oemer, B., Fuerst, M., Meyenburg, M., Rarity, J., Sodnik, Z., Barbieri, C., Weinfurter, H., Zeilinger, A.: Entanglement-based quantum communication over 144km. Nature Phys. 3, 481–486 (2007)ADS
51.
Zurück zum Zitat Ma, X., Lo, H.-K.: Quantum key distribution with triggering parametric down-conversion sources. New J. Phys. 10(7), 073018–073039 (2008)ADS Ma, X., Lo, H.-K.: Quantum key distribution with triggering parametric down-conversion sources. New J. Phys. 10(7), 073018–073039 (2008)ADS
52.
Zurück zum Zitat Kimble, H.J.: The quantum internet. Nature 453, 1023–1030 (2008)ADS Kimble, H.J.: The quantum internet. Nature 453, 1023–1030 (2008)ADS
53.
Zurück zum Zitat Razavi, M.: Multiple-access quantum key distribution networks. IEEE Trans. Commun. 60(10), 3071–3079 (2012) Razavi, M.: Multiple-access quantum key distribution networks. IEEE Trans. Commun. 60(10), 3071–3079 (2012)
54.
Zurück zum Zitat Derka, R., Buzk, V., Ekert, A.K.: Universal algorithm for optimal estimation of quantum states from finite ensembles via realizable generalized measurement. Phys. Rev. Lett. 80(8), 1571–1575 (1998)ADSMathSciNetMATH Derka, R., Buzk, V., Ekert, A.K.: Universal algorithm for optimal estimation of quantum states from finite ensembles via realizable generalized measurement. Phys. Rev. Lett. 80(8), 1571–1575 (1998)ADSMathSciNetMATH
55.
Zurück zum Zitat Csiszar, I., KÄorner, J.: Broadcast channels with confidential messages. IEEE Trans. Inf. Theory 24(3), 339–348 (1978)MathSciNetMATH Csiszar, I., KÄorner, J.: Broadcast channels with confidential messages. IEEE Trans. Inf. Theory 24(3), 339–348 (1978)MathSciNetMATH
56.
Zurück zum Zitat Tsurumaru, T., Tamaki, K.: Security proof for quantum-key-distribution systems with threshold detectors. Phys. Rev. A 78(3), 032302–032309 (2008)ADS Tsurumaru, T., Tamaki, K.: Security proof for quantum-key-distribution systems with threshold detectors. Phys. Rev. A 78(3), 032302–032309 (2008)ADS
57.
Zurück zum Zitat Beaudry, N.J., Moroder, T., Lutkenhaus, N.: Squashing models for optical measurements in quantum communication. Phys. Rev. Lett. 101(9), 093601–093604 (2008)ADSMATH Beaudry, N.J., Moroder, T., Lutkenhaus, N.: Squashing models for optical measurements in quantum communication. Phys. Rev. Lett. 101(9), 093601–093604 (2008)ADSMATH
58.
Zurück zum Zitat Ma, X., Lutkenhaus, N.: Improved data post-processing in quantum key distributions and application to loss thresholds in device independent QKD. Quantum Inf. Comput. 12(34), 203–214 (2012)MathSciNetMATH Ma, X., Lutkenhaus, N.: Improved data post-processing in quantum key distributions and application to loss thresholds in device independent QKD. Quantum Inf. Comput. 12(34), 203–214 (2012)MathSciNetMATH
59.
Zurück zum Zitat Wang, C., Song, X.-T., Yin, Z.-Q., Wang, S., Chen, W., Zhang, C.-M., Guo, G.-C., Han, Z.-F.: Phase-reference-free experiment of measurement-device-independent quantum key distribution. Phys. Rev. Lett. 115(16), 160502–160506 (2015)ADS Wang, C., Song, X.-T., Yin, Z.-Q., Wang, S., Chen, W., Zhang, C.-M., Guo, G.-C., Han, Z.-F.: Phase-reference-free experiment of measurement-device-independent quantum key distribution. Phys. Rev. Lett. 115(16), 160502–160506 (2015)ADS
60.
Zurück zum Zitat Ma, X., Zeng, P., Zhou, H.-Y.: Phase-matching quantum key distribution. Phys. Rev. X 8(3), 031043–031070 (2018) Ma, X., Zeng, P., Zhou, H.-Y.: Phase-matching quantum key distribution. Phys. Rev. X 8(3), 031043–031070 (2018)
Metadaten
Titel
Measurement-device-independent quantum key distribution with uncharacterized coherent sources
verfasst von
Guo-Dong Kang
Qing-Ping Zhou
Mao-Fa Fang
Publikationsdatum
01.01.2020
Verlag
Springer US
Erschienen in
Quantum Information Processing / Ausgabe 1/2020
Print ISSN: 1570-0755
Elektronische ISSN: 1573-1332
DOI
https://doi.org/10.1007/s11128-019-2494-0

Weitere Artikel der Ausgabe 1/2020

Quantum Information Processing 1/2020 Zur Ausgabe