Skip to main content
Erschienen in: Quantum Information Processing 3/2020

01.03.2020

A quantum cellular automaton for one-dimensional QED

verfasst von: Pablo Arrighi, Cédric Bény, Terry Farrelly

Erschienen in: Quantum Information Processing | Ausgabe 3/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We propose a discrete spacetime formulation of quantum electrodynamics in one dimension (a.k.a the Schwinger model) in terms of quantum cellular automata, i.e. translationally invariant circuits of local quantum gates. These have exact gauge covariance and a maximum speed of information propagation. In this picture, the interacting quantum field theory is defined as a “convergent” sequence of quantum cellular automata, parameterized by the spacetime lattice spacing—encompassing the notions of continuum limit and renormalization, and at the same time providing a quantum simulation algorithm for the dynamics.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Ahlbrecht, A., Alberti, A., Meschede, D., Scholz, V.B., Werner, A.H., Werner, R.F.: Molecular binding in interacting quantum walks. New J. Phys. 14(7), 073050 (2012)ADSCrossRef Ahlbrecht, A., Alberti, A., Meschede, D., Scholz, V.B., Werner, A.H., Werner, R.F.: Molecular binding in interacting quantum walks. New J. Phys. 14(7), 073050 (2012)ADSCrossRef
2.
Zurück zum Zitat Ambjørn, J., Jurkiewicz, J., Loll, R.: Emergence of a 4d world from causal quantum gravity. Phys. Rev. Lett. 93(13), 131301 (2004)ADSMathSciNetCrossRef Ambjørn, J., Jurkiewicz, J., Loll, R.: Emergence of a 4d world from causal quantum gravity. Phys. Rev. Lett. 93(13), 131301 (2004)ADSMathSciNetCrossRef
4.
Zurück zum Zitat Arnault, P., Molfetta, G.D., Brachet, M., Debbasch, F.: Quantum walks and non-abelian discrete gauge theory. Phys. Rev. A 94(1), 012335 (2016)ADSMathSciNetCrossRef Arnault, P., Molfetta, G.D., Brachet, M., Debbasch, F.: Quantum walks and non-abelian discrete gauge theory. Phys. Rev. A 94(1), 012335 (2016)ADSMathSciNetCrossRef
5.
Zurück zum Zitat Arrighi, P., Facchini, S.: Quantum walking in curved spacetime: \((3+1)\)-dimensions, and beyond. Pre-print arXiv:1609.00305 (2016) Arrighi, P., Facchini, S.: Quantum walking in curved spacetime: \((3+1)\)-dimensions, and beyond. Pre-print arXiv:​1609.​00305 (2016)
6.
Zurück zum Zitat Arrighi, P., Forets, M., Nesme, V.: The dirac equation as a quantum walk: higher-dimensions, convergence. Pre-print arXiv:1307.3524 (2013) Arrighi, P., Forets, M., Nesme, V.: The dirac equation as a quantum walk: higher-dimensions, convergence. Pre-print arXiv:​1307.​3524 (2013)
7.
Zurück zum Zitat Arrighi, P., Grattage, J.: A quantum game of life. In second symposium on cellular automata Journées Automates Cellulaires (JAC 2010), Turku, December 2010. TUCS Lecture Notes 13, pp. 31–42 (2010) Arrighi, P., Grattage, J.: A quantum game of life. In second symposium on cellular automata Journées Automates Cellulaires (JAC 2010), Turku, December 2010. TUCS Lecture Notes 13, pp. 31–42 (2010)
8.
Zurück zum Zitat Arrighi, P., Molfetta, G.D., Eon, N.: A gauge-invariant reversible cellular automaton. In: International Workshop on Cellular Automata and Discrete Complex Systems, pp. 1–12. Springer (2018) Arrighi, P., Molfetta, G.D., Eon, N.: A gauge-invariant reversible cellular automaton. In: International Workshop on Cellular Automata and Discrete Complex Systems, pp. 1–12. Springer (2018)
9.
Zurück zum Zitat Arrighi, P., Nesme, V., Werner, R.: Unitarity plus causality implies localizability. J. Comput. Syst. Sci. 77, 372–378 (2010). QIP 2010 (long talk) Arrighi, P., Nesme, V., Werner, R.: Unitarity plus causality implies localizability. J. Comput. Syst. Sci. 77, 372–378 (2010). QIP 2010 (long talk)
10.
Zurück zum Zitat Arrighi, P., Grattage, J.: Partitioned quantum cellular automata are intrinsically universal. Nat. Comput. 11, 13–22 (2012)MathSciNetCrossRef Arrighi, P., Grattage, J.: Partitioned quantum cellular automata are intrinsically universal. Nat. Comput. 11, 13–22 (2012)MathSciNetCrossRef
11.
Zurück zum Zitat Arrighi, P., Patricot, C.: A note on the correspondence between qubit quantum operations and special relativity. J. Phys. A: Math. Gen. 36(20), L287–L296 (2003)ADSMathSciNetCrossRef Arrighi, P., Patricot, C.: A note on the correspondence between qubit quantum operations and special relativity. J. Phys. A: Math. Gen. 36(20), L287–L296 (2003)ADSMathSciNetCrossRef
12.
Zurück zum Zitat Arrighi, P., Facchini, S., Forets, M.: Discrete lorentz covariance for quantum walks and quantum cellular automata. New J. Phys. 16(9), 093007 (2014)MathSciNetCrossRef Arrighi, P., Facchini, S., Forets, M.: Discrete lorentz covariance for quantum walks and quantum cellular automata. New J. Phys. 16(9), 093007 (2014)MathSciNetCrossRef
13.
Zurück zum Zitat Arrighi, P., Nesme, V., Forets, M.: The dirac equation as a quantum walk: higher dimensions, observational convergence. J. Phys. A: Math. Theor. 47(46), 465302 (2014)ADSMathSciNetCrossRef Arrighi, P., Nesme, V., Forets, M.: The dirac equation as a quantum walk: higher dimensions, observational convergence. J. Phys. A: Math. Theor. 47(46), 465302 (2014)ADSMathSciNetCrossRef
14.
15.
Zurück zum Zitat Bialynicki-Birula, I., Weyl, D.: Maxwell equations on a lattice as unitary cellular automata. Phys. Rev. D. 49(12), 6920–6927 (1994)ADSMathSciNetCrossRef Bialynicki-Birula, I., Weyl, D.: Maxwell equations on a lattice as unitary cellular automata. Phys. Rev. D. 49(12), 6920–6927 (1994)ADSMathSciNetCrossRef
16.
Zurück zum Zitat Bibeau-Delisle, A., Bisio, A., D’Ariano, G.M., Perinotti, P., Tosini, A.: Doubly special relativity from quantum cellular automata. EPL (Europhysics Letters) 109(5), 50003 (2015)ADSCrossRef Bibeau-Delisle, A., Bisio, A., D’Ariano, G.M., Perinotti, P., Tosini, A.: Doubly special relativity from quantum cellular automata. EPL (Europhysics Letters) 109(5), 50003 (2015)ADSCrossRef
17.
Zurück zum Zitat Bisio, A., D’Ariano, G.M., Perinotti, P.: Quantum walks, weyl equation and the lorentz group. Found. Phys. 47(8), 1065–1076 (2017)ADSMathSciNetCrossRef Bisio, A., D’Ariano, G.M., Perinotti, P.: Quantum walks, weyl equation and the lorentz group. Found. Phys. 47(8), 1065–1076 (2017)ADSMathSciNetCrossRef
18.
Zurück zum Zitat Bisio, A., D’Ariano, G.M., Perinotti, P., Tosini, A.: Thirring quantum cellular automaton. Phys. Rev. A 97(3), 032132 (2018)ADSCrossRef Bisio, A., D’Ariano, G.M., Perinotti, P., Tosini, A.: Thirring quantum cellular automaton. Phys. Rev. A 97(3), 032132 (2018)ADSCrossRef
20.
Zurück zum Zitat Debbasch, F: Action principles for quantum automata and lorentz invariance of discrete time quantum walks. arXiv preprint arXiv:1806.02313 (2018) Debbasch, F: Action principles for quantum automata and lorentz invariance of discrete time quantum walks. arXiv preprint arXiv:​1806.​02313 (2018)
21.
Zurück zum Zitat DeGrand, T., DeTar, C.: Lattice Methods for Quantum Chromodynamics. World Scientific, Singapore (2006)CrossRef DeGrand, T., DeTar, C.: Lattice Methods for Quantum Chromodynamics. World Scientific, Singapore (2006)CrossRef
22.
Zurück zum Zitat Destri, C., de Vega, H.J.: Light cone lattice approach to fermionic theories in 2-d: the massive Thirring model. Nucl. Phys. B 290, 363 (1987)ADSMathSciNetCrossRef Destri, C., de Vega, H.J.: Light cone lattice approach to fermionic theories in 2-d: the massive Thirring model. Nucl. Phys. B 290, 363 (1987)ADSMathSciNetCrossRef
23.
Zurück zum Zitat Eisert, J., Gross, D.: Supersonic quantum communication. Phys. Rev. Lett. 102(24), 240501 (2009)ADSCrossRef Eisert, J., Gross, D.: Supersonic quantum communication. Phys. Rev. Lett. 102(24), 240501 (2009)ADSCrossRef
24.
Zurück zum Zitat Ercolessi, E., Facchi, P., Magnifico, G., Pascazio, S., Pepe, F.V.: Phase transitions in \({Z}_{n}\) gauge models: Towards quantum simulations of the schwinger-weyl qed. Phys. Rev. D 98, 074503 (2018)ADSMathSciNetCrossRef Ercolessi, E., Facchi, P., Magnifico, G., Pascazio, S., Pepe, F.V.: Phase transitions in \({Z}_{n}\) gauge models: Towards quantum simulations of the schwinger-weyl qed. Phys. Rev. D 98, 074503 (2018)ADSMathSciNetCrossRef
25.
Zurück zum Zitat Farrelly, T.C.: Insights from Quantum Information into Fundamental Physics. PhD thesis, University of Cambridge, 2015. arXiv:1708.08897 (2015) Farrelly, T.C.: Insights from Quantum Information into Fundamental Physics. PhD thesis, University of Cambridge, 2015. arXiv:​1708.​08897 (2015)
26.
Zurück zum Zitat Farrelly, T.C., Short, A.J.: Causal fermions in discrete space-time. Phys. Rev. A 89(1), 012302 (2014)ADSCrossRef Farrelly, T.C., Short, A.J.: Causal fermions in discrete space-time. Phys. Rev. A 89(1), 012302 (2014)ADSCrossRef
27.
Zurück zum Zitat Feynman, H.: Quantum mechanics and path integrals. McGraw-Hill. Feynman relativistic chessboard (1965) Feynman, H.: Quantum mechanics and path integrals. McGraw-Hill. Feynman relativistic chessboard (1965)
30.
Zurück zum Zitat Fillion-Gourdeau, F., MacLean, S., Laflamme, R.: Algorithm for the solution of the dirac equation on digital quantum computers. Phys. Rev. A 95, 042343 (2017)ADSCrossRef Fillion-Gourdeau, F., MacLean, S., Laflamme, R.: Algorithm for the solution of the dirac equation on digital quantum computers. Phys. Rev. A 95, 042343 (2017)ADSCrossRef
31.
Zurück zum Zitat Georgescu, I.M., Ashhab, S., Nori, F.: Quantum simulation. Rev. Mod. Phys. 86(1), 153 (2014)ADSCrossRef Georgescu, I.M., Ashhab, S., Nori, F.: Quantum simulation. Rev. Mod. Phys. 86(1), 153 (2014)ADSCrossRef
32.
Zurück zum Zitat Hastings, W.K.: Monte carlo sampling methods using markov chains and their applications. Biometrika 57(1), 97–109 (1970)MathSciNetCrossRef Hastings, W.K.: Monte carlo sampling methods using markov chains and their applications. Biometrika 57(1), 97–109 (1970)MathSciNetCrossRef
33.
34.
Zurück zum Zitat Jordan, S.P., Lee, K.S.M., Preskill, J.: Quantum algorithms for quantum field theories. Science 336(6085), 1130–1133 (2012)ADSCrossRef Jordan, S.P., Lee, K.S.M., Preskill, J.: Quantum algorithms for quantum field theories. Science 336(6085), 1130–1133 (2012)ADSCrossRef
36.
Zurück zum Zitat Klco, N., Dumitrescu, E.F., McCaskey, A.J., Morris, T.D., Pooser, R.C., Sanz, M., Solano, E., Lougovski, P., Savage, M.J.: Quantum-classical computation of schwinger model dynamics using quantum computers. Phys. Rev. A 98, 032331 (2018)ADSCrossRef Klco, N., Dumitrescu, E.F., McCaskey, A.J., Morris, T.D., Pooser, R.C., Sanz, M., Solano, E., Lougovski, P., Savage, M.J.: Quantum-classical computation of schwinger model dynamics using quantum computers. Phys. Rev. A 98, 032331 (2018)ADSCrossRef
37.
Zurück zum Zitat Klco, N., Dumitrescu, E.F., McCaskey, A.J., Morris, T.D., Pooser, R.C., Sanz, M., Solano, E., Lougovski, P., Savage, M.J.: Quantum-classical computation of schwinger model dynamics using quantum computers. Phys. Rev. A 98(3), 032331 (2018)ADSCrossRef Klco, N., Dumitrescu, E.F., McCaskey, A.J., Morris, T.D., Pooser, R.C., Sanz, M., Solano, E., Lougovski, P., Savage, M.J.: Quantum-classical computation of schwinger model dynamics using quantum computers. Phys. Rev. A 98(3), 032331 (2018)ADSCrossRef
38.
Zurück zum Zitat Kogut, J., Susskind, L.: Hamiltonian formulation of wilson’s lattice gauge theories. Phys. Rev. D 11(2), 395 (1975)ADSCrossRef Kogut, J., Susskind, L.: Hamiltonian formulation of wilson’s lattice gauge theories. Phys. Rev. D 11(2), 395 (1975)ADSCrossRef
39.
Zurück zum Zitat Martinez, E.A., Muschik, C.A., Schindler, P., Nigg, D., Erhard, A., Heyl, M., Hauke, P., Dalmonte, M., Monz, T., Zoller, P., et al.: Real-time dynamics of lattice gauge theories with a few-qubit quantum computer. Nature 534(7608), 516–519 (2016)ADSCrossRef Martinez, E.A., Muschik, C.A., Schindler, P., Nigg, D., Erhard, A., Heyl, M., Hauke, P., Dalmonte, M., Monz, T., Zoller, P., et al.: Real-time dynamics of lattice gauge theories with a few-qubit quantum computer. Nature 534(7608), 516–519 (2016)ADSCrossRef
40.
Zurück zum Zitat Melnikov, K., Weinstein, M.: Lattice schwinger model: confinement, anomalies, chiral fermions, and all that. Phys. Rev. D 62(9), 094504 (2000)ADSCrossRef Melnikov, K., Weinstein, M.: Lattice schwinger model: confinement, anomalies, chiral fermions, and all that. Phys. Rev. D 62(9), 094504 (2000)ADSCrossRef
41.
Zurück zum Zitat Meyer, D.A.: From quantum cellular automata to quantum lattice gases. J. Stat. Phys. 85(5–6), 551–574 (1996) Meyer, D.A.: From quantum cellular automata to quantum lattice gases. J. Stat. Phys. 85(5–6), 551–574 (1996)
42.
Zurück zum Zitat Molfetta, G.D., Pérez, A.: Quantum walks as simulators of neutrino oscillations in a vacuum and matter. New J. Phys. 18(10), 103038 (2016)CrossRef Molfetta, G.D., Pérez, A.: Quantum walks as simulators of neutrino oscillations in a vacuum and matter. New J. Phys. 18(10), 103038 (2016)CrossRef
43.
Zurück zum Zitat Molfetta, G.D., Brachet, M., Debbasch, F.: Quantum walks in artificial electric and gravitational fields. Physica A 397, 157–168 (2014) ADSMathSciNetCrossRef Molfetta, G.D., Brachet, M., Debbasch, F.: Quantum walks in artificial electric and gravitational fields. Physica A 397, 157–168 (2014) ADSMathSciNetCrossRef
44.
Zurück zum Zitat Nielsen, H.B., Ninomiya, M.: A no-go theorem for regularizing chiral fermions. Phys. Lett. B 105(2–3), 219–223 (1981)ADSCrossRef Nielsen, H.B., Ninomiya, M.: A no-go theorem for regularizing chiral fermions. Phys. Lett. B 105(2–3), 219–223 (1981)ADSCrossRef
46.
Zurück zum Zitat Park, S.T.: Propagation of a relativistic electron wave packet in the dirac equation. Phys. Rev. A 86(6), 062105 (2012)ADSCrossRef Park, S.T.: Propagation of a relativistic electron wave packet in the dirac equation. Phys. Rev. A 86(6), 062105 (2012)ADSCrossRef
47.
Zurück zum Zitat Quigg, C.: Gauge Theories of the Strong, Weak, and Electromagnetic Interactions. Princeton University Press, Princeton (2013)CrossRef Quigg, C.: Gauge Theories of the Strong, Weak, and Electromagnetic Interactions. Princeton University Press, Princeton (2013)CrossRef
48.
Zurück zum Zitat Rico, E., Pichler, T., Dalmonte, M., Zoller, P., Montangero, S.: Tensor networks for lattice gauge theories and atomic quantum simulation. Phys. Rev. Lett. 112(20), 201601 (2014)ADSCrossRef Rico, E., Pichler, T., Dalmonte, M., Zoller, P., Montangero, S.: Tensor networks for lattice gauge theories and atomic quantum simulation. Phys. Rev. Lett. 112(20), 201601 (2014)ADSCrossRef
49.
Zurück zum Zitat Rovelli, C.: Simple model for quantum general relativity from loop quantum gravity. J. Phys. 314, 012006 (2011) Rovelli, C.: Simple model for quantum general relativity from loop quantum gravity. J. Phys. 314, 012006 (2011)
50.
Zurück zum Zitat Schumacher, B., Werner, R.: Reversible quantum cellular automata. arXiv pre-print quant-ph/0405174, (2004) Schumacher, B., Werner, R.: Reversible quantum cellular automata. arXiv pre-print quant-ph/0405174, (2004)
51.
Zurück zum Zitat Silvi, P.: Rico, enrique, calarco, tommaso, montangero, simone: lattice gauge tensor networks. New J. Phys. 16(10), 103015 (2014)ADSMathSciNetCrossRef Silvi, P.: Rico, enrique, calarco, tommaso, montangero, simone: lattice gauge tensor networks. New J. Phys. 16(10), 103015 (2014)ADSMathSciNetCrossRef
53.
Zurück zum Zitat Zohar, E., Cirac, J.I., Reznik, B.: Quantum simulations of lattice gauge theories using ultracold atoms in optical lattices. Rep. Prog. Phys. 79(1), 014401 (2015)ADSMathSciNetCrossRef Zohar, E., Cirac, J.I., Reznik, B.: Quantum simulations of lattice gauge theories using ultracold atoms in optical lattices. Rep. Prog. Phys. 79(1), 014401 (2015)ADSMathSciNetCrossRef
Metadaten
Titel
A quantum cellular automaton for one-dimensional QED
verfasst von
Pablo Arrighi
Cédric Bény
Terry Farrelly
Publikationsdatum
01.03.2020
Verlag
Springer US
Erschienen in
Quantum Information Processing / Ausgabe 3/2020
Print ISSN: 1570-0755
Elektronische ISSN: 1573-1332
DOI
https://doi.org/10.1007/s11128-019-2555-4

Weitere Artikel der Ausgabe 3/2020

Quantum Information Processing 3/2020 Zur Ausgabe