Skip to main content
Erschienen in: Quantum Information Processing 4/2020

01.03.2020

Quantum double-direction cyclic controlled communication via a thirteen-qubit entangled state

verfasst von: Shiya Sun, Huisheng Zhang

Erschienen in: Quantum Information Processing | Ausgabe 4/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Combining with the idea of quantum multi-cast, in this paper, a novel theoretical scheme is presented to fulfil four-party quantum double-direction cyclic controlled communication by using a thirteen-qubit entangled state as the quantum channel. In the proposed scheme, each observer can transmit two different single-qubit states to the other two observers under the supervision of the controller, respectively and synchronously, which realizes quantum cyclic controlled communication in clockwise and anticlockwise directions simultaneously. The quantum channel is structured by Hadamard (H) gates and controlled-NOT (CNOT) gates. Based on the quantum channel that we construct, we exhibit how the four-party double-direction cyclic controlled communication scheme works in a minute detail. Only specific two-qubit projective measurements, single-qubit von Neumann measurement and suitable unitary operations are needed in the proposed four-party scheme, which can be implemented in physics easily. Furthermore, the presented four-party double-direction controlled communication scheme can be generalized into the situation with \(n>3\) observers through preparing a \((4n+1)\)-qubit entangled channel. Analysis demonstrates that the success probability of the proposed scheme can reach \(100\mathrm{{\% }}\). We also calculate the intrinsic efficiency and investigate the security of the proposed scheme.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70(13), 1895–1899 (1993)ADSMathSciNetMATH Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70(13), 1895–1899 (1993)ADSMathSciNetMATH
2.
Zurück zum Zitat Grosshans, F., Assche, G.V., Wenger, J., Brouri, R., Cerf, N.J., Grangier, P.: Quantum key distribution using gaussian-modulated coherent states. Nature 421, 238–241 (2003)ADS Grosshans, F., Assche, G.V., Wenger, J., Brouri, R., Cerf, N.J., Grangier, P.: Quantum key distribution using gaussian-modulated coherent states. Nature 421, 238–241 (2003)ADS
3.
Zurück zum Zitat Cao, H.J., Song, H.S.: Quantum secure direct communication with W state. Chin. Phys. Lett. 23(2), 290–292 (2006)ADS Cao, H.J., Song, H.S.: Quantum secure direct communication with W state. Chin. Phys. Lett. 23(2), 290–292 (2006)ADS
4.
Zurück zum Zitat Lo, H.K.: Classical-communication cost in distributed quantum-information processing: a generalization of quantum-communication complexity. Phys. Rev. A 62, 012313 (2000)ADS Lo, H.K.: Classical-communication cost in distributed quantum-information processing: a generalization of quantum-communication complexity. Phys. Rev. A 62, 012313 (2000)ADS
5.
6.
Zurück zum Zitat Saha, D., Panigrahi, P.K.: N-qubit quantum teleportation, information splitting and superdense coding through the composite GHZ-Bell channel. Quantum Inf. Process. 11(2), 615–628 (2012)MathSciNet Saha, D., Panigrahi, P.K.: N-qubit quantum teleportation, information splitting and superdense coding through the composite GHZ-Bell channel. Quantum Inf. Process. 11(2), 615–628 (2012)MathSciNet
7.
Zurück zum Zitat Zhang, B., Liu, X.T., Wang, J., Tang, C.J.: Quantum teleportation of an arbitrary N-qubit state via GHZ-like states. Int. J. Theor. Phys. 55(3), 1601–1611 (2016)MATH Zhang, B., Liu, X.T., Wang, J., Tang, C.J.: Quantum teleportation of an arbitrary N-qubit state via GHZ-like states. Int. J. Theor. Phys. 55(3), 1601–1611 (2016)MATH
8.
Zurück zum Zitat Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)ADS Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)ADS
9.
Zurück zum Zitat Lo, H.K., Ma, X.F., Chen, K.: Decoy state quantum key distribution. Phys. Rev. Lett. 94, 230504 (2005)ADS Lo, H.K., Ma, X.F., Chen, K.: Decoy state quantum key distribution. Phys. Rev. Lett. 94, 230504 (2005)ADS
10.
Zurück zum Zitat Weedbrook, C.: Continuous-variable quantum key distribution with entanglement in the middle. Phys. Rev. A 87(2), 022308 (2013)ADSMathSciNet Weedbrook, C.: Continuous-variable quantum key distribution with entanglement in the middle. Phys. Rev. A 87(2), 022308 (2013)ADSMathSciNet
11.
Zurück zum Zitat Lin, S., Wen, Q.Y., Gao, F., Zhu, F.C.: Quantum secure direct communication with \(\chi \)-type entangled states. Phys. Rev. A 78, 064304 (2008)ADS Lin, S., Wen, Q.Y., Gao, F., Zhu, F.C.: Quantum secure direct communication with \(\chi \)-type entangled states. Phys. Rev. A 78, 064304 (2008)ADS
12.
Zurück zum Zitat Dong, L., Xiu, X.M., Gao, Y.J., Chi, F.: Quantum secure direct communication using W state. Commun. Theor. Phys. 49, 1495–1498 (2008)ADSMATH Dong, L., Xiu, X.M., Gao, Y.J., Chi, F.: Quantum secure direct communication using W state. Commun. Theor. Phys. 49, 1495–1498 (2008)ADSMATH
13.
Zurück zum Zitat Abeyesinghe, A., Hayden, P.: Generalized remote state preparation: trading cbits, qubits, and ebits in quantum communication. Phys. Rev. A 68, 062319 (2003)ADS Abeyesinghe, A., Hayden, P.: Generalized remote state preparation: trading cbits, qubits, and ebits in quantum communication. Phys. Rev. A 68, 062319 (2003)ADS
14.
Zurück zum Zitat Ma, S.Y., Chen, X.B., Luo, M.X., Zhang, R., Yang, Y.X.: Remote preparation of a four-particle entangled cluster-type state. Opt. Commun. 284(16–17), 4088–4093 (2011)ADS Ma, S.Y., Chen, X.B., Luo, M.X., Zhang, R., Yang, Y.X.: Remote preparation of a four-particle entangled cluster-type state. Opt. Commun. 284(16–17), 4088–4093 (2011)ADS
15.
Zurück zum Zitat Jia, H.Y., Wen, Q.Y., Wu, X., Gao, F., Guo, F.Z.: Remote preparation of a six-particle entangled cluster-type state. Int. J. Theor. Phys. 51(7), 2086–2093 (2012)MATH Jia, H.Y., Wen, Q.Y., Wu, X., Gao, F., Guo, F.Z.: Remote preparation of a six-particle entangled cluster-type state. Int. J. Theor. Phys. 51(7), 2086–2093 (2012)MATH
16.
Zurück zum Zitat Deng, F.G., Li, C.Y., Li, Y.S., Zhou, H.Y., Wang, Y.: Symmetric multiparty-controlled teleportation of an arbitrary two-particle entanglement. Phys. Rev. A 72, 022338 (2005)ADS Deng, F.G., Li, C.Y., Li, Y.S., Zhou, H.Y., Wang, Y.: Symmetric multiparty-controlled teleportation of an arbitrary two-particle entanglement. Phys. Rev. A 72, 022338 (2005)ADS
17.
Zurück zum Zitat Zhou, P., Li, X.H., Deng, F.G., Zhou, H.Y.: Multiparty-controlled teleportation of an arbitrary m-qudit state with a pure entangled quantum channel. J. Phys. A: Math. Theor. 40(43), 13121–13130 (2007)ADSMathSciNetMATH Zhou, P., Li, X.H., Deng, F.G., Zhou, H.Y.: Multiparty-controlled teleportation of an arbitrary m-qudit state with a pure entangled quantum channel. J. Phys. A: Math. Theor. 40(43), 13121–13130 (2007)ADSMathSciNetMATH
18.
19.
Zurück zum Zitat Wang, T.Y., Wen, Q.Y., Chen, X.B., Guo, F.Z., Zhu, F.C.: An efficient and secure multiparty quantum secret sharing scheme based on single photons. Opt. Commun. 281(24), 6130–6134 (2008)ADS Wang, T.Y., Wen, Q.Y., Chen, X.B., Guo, F.Z., Zhu, F.C.: An efficient and secure multiparty quantum secret sharing scheme based on single photons. Opt. Commun. 281(24), 6130–6134 (2008)ADS
20.
Zurück zum Zitat Jiang, M., Dong, D.Y.: Multi-party quantum state sharing via various probabilistic channels. Quantum Inf. Process. 12(1), 237–249 (2013)ADSMathSciNetMATH Jiang, M., Dong, D.Y.: Multi-party quantum state sharing via various probabilistic channels. Quantum Inf. Process. 12(1), 237–249 (2013)ADSMathSciNetMATH
22.
Zurück zum Zitat Xia, Y., Song, J., Song, H.S.: Multiparty remote state preparation. J. Phys. B: At., Mol. Opt. Phys 40(18), 3719–3724 (2007)ADS Xia, Y., Song, J., Song, H.S.: Multiparty remote state preparation. J. Phys. B: At., Mol. Opt. Phys 40(18), 3719–3724 (2007)ADS
23.
Zurück zum Zitat Wang, D., Hoehn, R.D., Ye, L., Kais, S.: Efficient remote preparation of four-qubit cluster-type entangled states with multi-party over partially entangled channels. Int. J. Theor. Phys. 55(7), 3454–3466 (2016)MathSciNetMATH Wang, D., Hoehn, R.D., Ye, L., Kais, S.: Efficient remote preparation of four-qubit cluster-type entangled states with multi-party over partially entangled channels. Int. J. Theor. Phys. 55(7), 3454–3466 (2016)MathSciNetMATH
24.
Zurück zum Zitat Lv, S.X., Zhao, Z.W., Zhou, P.: Multiparty-controlled joint remote preparation of an arbitrary m-qudit state with d-dimensional Greenberger–Horne–Zeilinger states. Int. J. Theor. Phys. 57(1), 148–158 (2018)MATH Lv, S.X., Zhao, Z.W., Zhou, P.: Multiparty-controlled joint remote preparation of an arbitrary m-qudit state with d-dimensional Greenberger–Horne–Zeilinger states. Int. J. Theor. Phys. 57(1), 148–158 (2018)MATH
25.
Zurück zum Zitat Wu, N.N., Jiang, M.: A highly efficient scheme for joint remote preparation of multi-qubit W state with minimum quantum resource. Quantum Inf. Process. 17, 340 (2018)ADSMathSciNetMATH Wu, N.N., Jiang, M.: A highly efficient scheme for joint remote preparation of multi-qubit W state with minimum quantum resource. Quantum Inf. Process. 17, 340 (2018)ADSMathSciNetMATH
26.
Zurück zum Zitat Pirandola, S.: End-to-end capacities of a quantum communication network. Commun. Phys. 2(10), 1–10 (2019) Pirandola, S.: End-to-end capacities of a quantum communication network. Commun. Phys. 2(10), 1–10 (2019)
27.
Zurück zum Zitat Huelga, S.F., Vaccaro, J.A., Chefles, A., Plenio, M.B.: Quantum remote control: teleportation of unitary operations. Phys. Rev. A 62, 042303 (2001)ADSMATH Huelga, S.F., Vaccaro, J.A., Chefles, A., Plenio, M.B.: Quantum remote control: teleportation of unitary operations. Phys. Rev. A 62, 042303 (2001)ADSMATH
28.
Zurück zum Zitat Man, Z.X., Xia, Y.J.: Controlled bidirectional quantum direct communication by using a GHZ state. Chin. Phys. Lett. 23(7), 1680–1682 (2006)ADS Man, Z.X., Xia, Y.J.: Controlled bidirectional quantum direct communication by using a GHZ state. Chin. Phys. Lett. 23(7), 1680–1682 (2006)ADS
29.
Zurück zum Zitat Zarmehi, F., Houshmand, M.: Controlled bidirectional quantum secure direct communication network using classical XOR operation and quantum entanglement. IEEE Commun. Lett. 20(10), 2071–2074 (2016) Zarmehi, F., Houshmand, M.: Controlled bidirectional quantum secure direct communication network using classical XOR operation and quantum entanglement. IEEE Commun. Lett. 20(10), 2071–2074 (2016)
30.
Zurück zum Zitat Mohapatra, A.K., Balakrishnan, S.: Controller-independent bidirectional quantum direct communication. Quantum Inf. Process. 16, 147 (2017)ADSMathSciNetMATH Mohapatra, A.K., Balakrishnan, S.: Controller-independent bidirectional quantum direct communication. Quantum Inf. Process. 16, 147 (2017)ADSMathSciNetMATH
31.
Zurück zum Zitat Zha, X.W., Zou, Z.C., Qi, J.X., Song, H.Y.: Bidirectional quantum controlled teleportation via five-qubit cluster state. Int. J. Theor. Phys. 52(6), 1740–1744 (2013)MathSciNet Zha, X.W., Zou, Z.C., Qi, J.X., Song, H.Y.: Bidirectional quantum controlled teleportation via five-qubit cluster state. Int. J. Theor. Phys. 52(6), 1740–1744 (2013)MathSciNet
32.
Zurück zum Zitat Duan, Y.J., Zha, X.W.: Bidirectional controlled teleportation via a six-qubit entangled state. Int. J. Theor. Phys. 53, 3780–3786 (2014)MATH Duan, Y.J., Zha, X.W.: Bidirectional controlled teleportation via a six-qubit entangled state. Int. J. Theor. Phys. 53, 3780–3786 (2014)MATH
33.
Zurück zum Zitat Li, Y.H., Jin, X.M.: Bidirectional controlled teleportation by using nine-qubit entangled state in noisy environments. Quantum Inf. Process. 15(2), 929–945 (2016)ADSMathSciNetMATH Li, Y.H., Jin, X.M.: Bidirectional controlled teleportation by using nine-qubit entangled state in noisy environments. Quantum Inf. Process. 15(2), 929–945 (2016)ADSMathSciNetMATH
34.
Zurück zum Zitat Zhou, R.G., Zhang, Y.N.: Bidirectional quantum controlled teleportation of three-qubit state by using GHZ states. Int. J. Theor. Phys. 58(10), 3594–3601 (2019)MathSciNetMATH Zhou, R.G., Zhang, Y.N.: Bidirectional quantum controlled teleportation of three-qubit state by using GHZ states. Int. J. Theor. Phys. 58(10), 3594–3601 (2019)MathSciNetMATH
35.
Zurück zum Zitat Zhang, D., Zha, X.W., Duan, Y.J., Yang, Y.Q.: Deterministic controlled bidirectional remote state preparation via a six-qubit entangled state. Quantum Inf. Process. 15(5), 2169–2179 (2016)ADSMathSciNetMATH Zhang, D., Zha, X.W., Duan, Y.J., Yang, Y.Q.: Deterministic controlled bidirectional remote state preparation via a six-qubit entangled state. Quantum Inf. Process. 15(5), 2169–2179 (2016)ADSMathSciNetMATH
36.
Zurück zum Zitat Sun, Y.R., Chen, G., Xu, X.B., Yang, Y., Yang, Y.X.: Asymmetric controlled bidirectional remote preparation of single- and three-qubit equatorial state in noisy environment. IEEE Access. 7, 2811–2822 (2018) Sun, Y.R., Chen, G., Xu, X.B., Yang, Y., Yang, Y.X.: Asymmetric controlled bidirectional remote preparation of single- and three-qubit equatorial state in noisy environment. IEEE Access. 7, 2811–2822 (2018)
37.
Zurück zum Zitat Li, Y.H., Qiao, Y., Sang, M.H., Nie, Y.Y.: Bidirectional controlled remote state preparation of an arbitrary two-qubit state. Int. J. Theor. Phys. 58(7), 2228–2234 (2019)MATH Li, Y.H., Qiao, Y., Sang, M.H., Nie, Y.Y.: Bidirectional controlled remote state preparation of an arbitrary two-qubit state. Int. J. Theor. Phys. 58(7), 2228–2234 (2019)MATH
38.
Zurück zum Zitat Wang, X.Y., Mo, Z.W.: Bidirectional controlled joint remote state preparation via a seven-qubit entangled state. Int. J. Theor. Phys. 56(4), 1052–1058 (2017)MATH Wang, X.Y., Mo, Z.W.: Bidirectional controlled joint remote state preparation via a seven-qubit entangled state. Int. J. Theor. Phys. 56(4), 1052–1058 (2017)MATH
39.
Zurück zum Zitat Shi, J., Zhan, Y.B.: Scheme for asymmetric and deterministic controlled bidirectional joint remote state preparation. Commun. Theor. Phys. 70(5), 515–520 (2018)ADSMathSciNet Shi, J., Zhan, Y.B.: Scheme for asymmetric and deterministic controlled bidirectional joint remote state preparation. Commun. Theor. Phys. 70(5), 515–520 (2018)ADSMathSciNet
40.
Zurück zum Zitat Wu, H., Zha, X.W., Yang, Y.Q.: Controlled bidirectional hybrid of remote state preparation and quantum teleportation via seven-qubit entangled state. Int. J. Theor. Phys. 57(1), 28–35 (2018)MATH Wu, H., Zha, X.W., Yang, Y.Q.: Controlled bidirectional hybrid of remote state preparation and quantum teleportation via seven-qubit entangled state. Int. J. Theor. Phys. 57(1), 28–35 (2018)MATH
41.
Zurück zum Zitat Ma, P.C., Chen, G.B., Li, X.W., Zhan, Y.B.: Schemes for hybrid bidirectional controlled quantum communication via multi-qubit entangled states. Int. J. Theor. Phys. 57(2), 443–452 (2018)MathSciNetMATH Ma, P.C., Chen, G.B., Li, X.W., Zhan, Y.B.: Schemes for hybrid bidirectional controlled quantum communication via multi-qubit entangled states. Int. J. Theor. Phys. 57(2), 443–452 (2018)MathSciNetMATH
42.
Zurück zum Zitat Chen, Y.X., Du, J., Liu, S.Y., Wang, X.H.: Cyclic quantum teleportation. Quantum Inf. Process. 16, 201 (2017)ADSMathSciNetMATH Chen, Y.X., Du, J., Liu, S.Y., Wang, X.H.: Cyclic quantum teleportation. Quantum Inf. Process. 16, 201 (2017)ADSMathSciNetMATH
43.
Zurück zum Zitat Sang, Z.W.: Cyclic controlled teleportation by using a seven-qubit entangled state. Int. J. Theor. Phys. 57(12), 3835–3838 (2018)MathSciNetMATH Sang, Z.W.: Cyclic controlled teleportation by using a seven-qubit entangled state. Int. J. Theor. Phys. 57(12), 3835–3838 (2018)MathSciNetMATH
44.
Zurück zum Zitat Shao, Z.L., Long, Y.X.: Circular controlled quantum teleportation by a genuine seven-qubit entangled state. Int. J. Theor. Phys. 58(6), 1957–1967 (2019)MathSciNetMATH Shao, Z.L., Long, Y.X.: Circular controlled quantum teleportation by a genuine seven-qubit entangled state. Int. J. Theor. Phys. 58(6), 1957–1967 (2019)MathSciNetMATH
45.
Zurück zum Zitat Li, Y.H., Qiao, Y., Sang, M.H., Nie, Y.Y.: Controlled cyclic quantum teleportation of an arbitrary two-qubit entangled state by using a ten-qubit entangled state. Int. J. Theor. Phys. 58(5), 1541–1545 (2019)MATH Li, Y.H., Qiao, Y., Sang, M.H., Nie, Y.Y.: Controlled cyclic quantum teleportation of an arbitrary two-qubit entangled state by using a ten-qubit entangled state. Int. J. Theor. Phys. 58(5), 1541–1545 (2019)MATH
46.
Zurück zum Zitat Peng, J.Y., He, Y.: Annular controlled teleportation. Int. J. Theor. Phys. 58, 3271–3281 (2019)MathSciNetMATH Peng, J.Y., He, Y.: Annular controlled teleportation. Int. J. Theor. Phys. 58, 3271–3281 (2019)MathSciNetMATH
47.
Zurück zum Zitat Wang, M.M., Yang, C., Mousoli, R.: Controlled cyclic remote state preparation of arbitrary qubit states. CMC-Comput. Mater. Con. 55(2), 321–329 (2018)ADS Wang, M.M., Yang, C., Mousoli, R.: Controlled cyclic remote state preparation of arbitrary qubit states. CMC-Comput. Mater. Con. 55(2), 321–329 (2018)ADS
48.
Zurück zum Zitat Sang, Z.W.: Cyclic controlled joint remote state preparation by using a ten-qubit entangled state. Int. J. Theor. Phys. 58, 255–260 (2019)MATH Sang, Z.W.: Cyclic controlled joint remote state preparation by using a ten-qubit entangled state. Int. J. Theor. Phys. 58, 255–260 (2019)MATH
49.
Zurück zum Zitat Jiang, S.X., Zhou, R.G., Xu, R.Q., Luo, G.F.: Cyclic hybrid double-channel quantum communication via Bell-state and GHZ-state in noisy environments. IEEE Access. 7, 80530–80541 (2019) Jiang, S.X., Zhou, R.G., Xu, R.Q., Luo, G.F.: Cyclic hybrid double-channel quantum communication via Bell-state and GHZ-state in noisy environments. IEEE Access. 7, 80530–80541 (2019)
50.
Zurück zum Zitat Yu, Y., Zhao, N.: General quantum broadcast and multi-cast communications based on entanglement. Opt. Express. 26(22), 22296–22310 (2018) Yu, Y., Zhao, N.: General quantum broadcast and multi-cast communications based on entanglement. Opt. Express. 26(22), 22296–22310 (2018)
51.
Zurück zum Zitat Yuan, H., Liu, Y.M., Zhang, W., Zhang, Z.J.: Optimizing resource consumption, operation complexity and efficiency in quantum-state sharing. J. Phys. B: At. Mol. Opt. Phys. 41, 145506 (2008)ADS Yuan, H., Liu, Y.M., Zhang, W., Zhang, Z.J.: Optimizing resource consumption, operation complexity and efficiency in quantum-state sharing. J. Phys. B: At. Mol. Opt. Phys. 41, 145506 (2008)ADS
52.
Zurück zum Zitat Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85, 441–444 (2000)ADS Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85, 441–444 (2000)ADS
53.
Zurück zum Zitat Li, Y.H., Li, X.L., Sang, M.H., Nie, Y.Y., Wang, Z.S.: Bidirectional controlled quantum teleportation and secure direct communication using five-qubit entangled state. Quantum Inf. Process. 12(12), 3835–3844 (2013)ADSMathSciNetMATH Li, Y.H., Li, X.L., Sang, M.H., Nie, Y.Y., Wang, Z.S.: Bidirectional controlled quantum teleportation and secure direct communication using five-qubit entangled state. Quantum Inf. Process. 12(12), 3835–3844 (2013)ADSMathSciNetMATH
54.
Zurück zum Zitat Li, W., Zha, X.W., Qi, J.X.: Tripartite quantum controlled teleportation via seven-qubit cluster state. Int. J. Theor. Phys. 55(9), 3927–3933 (2016)MathSciNetMATH Li, W., Zha, X.W., Qi, J.X.: Tripartite quantum controlled teleportation via seven-qubit cluster state. Int. J. Theor. Phys. 55(9), 3927–3933 (2016)MathSciNetMATH
Metadaten
Titel
Quantum double-direction cyclic controlled communication via a thirteen-qubit entangled state
verfasst von
Shiya Sun
Huisheng Zhang
Publikationsdatum
01.03.2020
Verlag
Springer US
Erschienen in
Quantum Information Processing / Ausgabe 4/2020
Print ISSN: 1570-0755
Elektronische ISSN: 1573-1332
DOI
https://doi.org/10.1007/s11128-020-2619-5

Weitere Artikel der Ausgabe 4/2020

Quantum Information Processing 4/2020 Zur Ausgabe