Skip to main content
Erschienen in: Quantum Information Processing 12/2021

01.12.2021

Empirical performance bounds for quantum approximate optimization

verfasst von: Phillip C. Lotshaw, Travis S. Humble, Rebekah Herrman, James Ostrowski, George Siopsis

Erschienen in: Quantum Information Processing | Ausgabe 12/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The quantum approximate optimization algorithm (QAOA) has been put forth as a method for near-term quantum computers to solve optimization problems. However, assessments of QAOA performance have mostly focused on small structured problem instances while performance on more general instances is less clear. Here, we numerically simulate QAOA pure state dynamics for every instance of MaxCut on non-isomorphic unweighted graphs with nine or fewer vertices with depth parameters \(p\le 3\). We find the approximation ratios and optimized circuit parameters concentrate across graphs of a given size and empirically show increases in concentration as graph size increases. The parameter concentration leads to two median-angle heuristics that overcome difficulties in QAOA parameter optimization and obtain mean approximation ratios within 3% and 0.2% of the optimal. We also analyze the probability to measure an optimal solution and find increasing variations between graphs as depth increases, in stark contrast to the approximation ratios which concentrate as depth increases. The resulting benchmark data set gives empirical bounds for on-going experimental realizations and lays groundwork for theoretical extensions to greater problem sizes and depths where QAOA may prove important for practically relevant problems.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
2.
Zurück zum Zitat Arute, F., Arya, K., Babbush, R., Bacon, D., Bardin, J.C., Barends, R., Biswas, R., Boixo, S., Brandao, F.G., Buell, D.A., et al.: Quantum supremacy using a programmable superconducting processor. Nature 574(7779), 505 (2019)ADSCrossRef Arute, F., Arya, K., Babbush, R., Bacon, D., Bardin, J.C., Barends, R., Biswas, R., Boixo, S., Brandao, F.G., Buell, D.A., et al.: Quantum supremacy using a programmable superconducting processor. Nature 574(7779), 505 (2019)ADSCrossRef
3.
Zurück zum Zitat Zhong, H.S., Wang, H., Deng, Y.H., Chen, M.C., Peng, L.C., Luo, Y.H., Qin, J., Wu, D., Ding, X., Hu, Y., Hu, P., Yang, X.Y., Zhang, W.J., Li, H., Li, Y., Jiang, X., Gan, L., Yang, G., You, L., Wang, Z., Li, L., Liu, N.L., Lu, C.Y., Pan, J.W.: Quantum computational advantage using photons. Science (2020). https://doi.org/10.1126/science.abe8770CrossRef Zhong, H.S., Wang, H., Deng, Y.H., Chen, M.C., Peng, L.C., Luo, Y.H., Qin, J., Wu, D., Ding, X., Hu, Y., Hu, P., Yang, X.Y., Zhang, W.J., Li, H., Li, Y., Jiang, X., Gan, L., Yang, G., You, L., Wang, Z., Li, L., Liu, N.L., Lu, C.Y., Pan, J.W.: Quantum computational advantage using photons. Science (2020). https://​doi.​org/​10.​1126/​science.​abe8770CrossRef
4.
5.
Zurück zum Zitat Wang, Z., Hadfield, S., Jiang, Z., Rieffel, E.G.: Quantum approximate optimization algorithm for MaxCut: a fermionic view. Phys. Rev. A 97(2), 022304 (2018)ADSCrossRef Wang, Z., Hadfield, S., Jiang, Z., Rieffel, E.G.: Quantum approximate optimization algorithm for MaxCut: a fermionic view. Phys. Rev. A 97(2), 022304 (2018)ADSCrossRef
6.
Zurück zum Zitat Hadfield, S.: Quantum algorithms for scientific computing and approximate optimization. arXiv preprint arXiv:1805.03265. Eq. 5.10, p. 114 (2018) Hadfield, S.: Quantum algorithms for scientific computing and approximate optimization. arXiv preprint arXiv:​1805.​03265. Eq. 5.10, p. 114 (2018)
7.
Zurück zum Zitat Zhou, L., Wang, S.T., Choi, S., Pichler, H., Lukin, M.D.: Quantum approximate optimization algorithm: performance, mechanism, and implementation on near-term devices. Phys. Rev. X 10, 021067 (2020) Zhou, L., Wang, S.T., Choi, S., Pichler, H., Lukin, M.D.: Quantum approximate optimization algorithm: performance, mechanism, and implementation on near-term devices. Phys. Rev. X 10, 021067 (2020)
8.
Zurück zum Zitat Guerreschi, G.G., Matsuura, A.Y.: QAOA for max-cut requires hundreds of qubits for quantum speed-up. Sci. Rep. 9, 1–7 (2019)CrossRef Guerreschi, G.G., Matsuura, A.Y.: QAOA for max-cut requires hundreds of qubits for quantum speed-up. Sci. Rep. 9, 1–7 (2019)CrossRef
9.
Zurück zum Zitat Medvidović, M., Carleo, G.: Classical variational simulation of the quantum approximate optimization algorithm. arXiv preprint arXiv:2009:01760v1 (2020) Medvidović, M., Carleo, G.: Classical variational simulation of the quantum approximate optimization algorithm. arXiv preprint arXiv:​2009:​01760v1 (2020)
10.
Zurück zum Zitat Brandão, F.G.S.L., Broughton, M., Farhi, E., Gutmann, S., Neven, H.: For fixed control parameters the quantum approximate optimization algorithm’s objective function value concentrates for typical instances. arXiv preprint arXiv:1812.04170 (2018) Brandão, F.G.S.L., Broughton, M., Farhi, E., Gutmann, S., Neven, H.: For fixed control parameters the quantum approximate optimization algorithm’s objective function value concentrates for typical instances. arXiv preprint arXiv:​1812.​04170 (2018)
13.
Zurück zum Zitat Crooks, G.E.: Performance of the quantum approximate optimization algorithm on the maximum cut problem. arXiv preprint arXiv:1811.08419 (2018) Crooks, G.E.: Performance of the quantum approximate optimization algorithm on the maximum cut problem. arXiv preprint arXiv:​1811.​08419 (2018)
14.
Zurück zum Zitat Shaydulin, R., Hadfield, S., Hogg, T.,, Safro, I.: Ruslan Shaydulin and Stuart Hadfield and Tad Hogg and Ilya Safro. arXiv preprint arXiv:2012.04713 (2020) Shaydulin, R., Hadfield, S., Hogg, T.,, Safro, I.: Ruslan Shaydulin and Stuart Hadfield and Tad Hogg and Ilya Safro. arXiv preprint arXiv:​2012.​04713 (2020)
15.
Zurück zum Zitat Herrman, R., Ostrowski, J., Humble, T.S., Siopsis, G.: Lower bounds on circuit depth of the quantum approximate optimization algorithm. Quant. Inf. Process. 20(2), 1–17 (2021) Herrman, R., Ostrowski, J., Humble, T.S., Siopsis, G.: Lower bounds on circuit depth of the quantum approximate optimization algorithm. Quant. Inf. Process. 20(2), 1–17 (2021)
16.
Zurück zum Zitat Akshay, V., Philathong, H., Morales, M.E.S., Biamonte, J.D.: Reachability deficits in quantum approximate optimization. Phys. Rev. Lett. 124, 090504 (2020)ADSMathSciNetCrossRef Akshay, V., Philathong, H., Morales, M.E.S., Biamonte, J.D.: Reachability deficits in quantum approximate optimization. Phys. Rev. Lett. 124, 090504 (2020)ADSMathSciNetCrossRef
18.
Zurück zum Zitat Pagano, G., Bapat, A., Becker, P., Collins, K.S., De, A., Hess, P.W., Kaplan, H.B., Kyprianidis, A., Tan, W.L., Baldwin, C., Brady, L.T., Deshpande, A., Liu, F., Jordan, S., Gorshkov, A.V., Monroe, C.: Quantum approximate optimization of the long-range Ising model with a trapped-ion quantum simulator. Proc. Natl. Acad. Sci. 117(41), 25396 (2020). https://doi.org/10.1073/pnas.2006373117ADSMathSciNetCrossRef Pagano, G., Bapat, A., Becker, P., Collins, K.S., De, A., Hess, P.W., Kaplan, H.B., Kyprianidis, A., Tan, W.L., Baldwin, C., Brady, L.T., Deshpande, A., Liu, F., Jordan, S., Gorshkov, A.V., Monroe, C.: Quantum approximate optimization of the long-range Ising model with a trapped-ion quantum simulator. Proc. Natl. Acad. Sci. 117(41), 25396 (2020). https://​doi.​org/​10.​1073/​pnas.​2006373117ADSMathSciNetCrossRef
19.
Zurück zum Zitat Wang, Z., Rubin, N.C., Dominy, J.M., Rieffel, E.G.: \(XY\)-mixers: analytical and numerical results for the quantum alternating operator ansatz. Phys. Rev. A 101, 012320 (2020)ADSMathSciNetCrossRef Wang, Z., Rubin, N.C., Dominy, J.M., Rieffel, E.G.: \(XY\)-mixers: analytical and numerical results for the quantum alternating operator ansatz. Phys. Rev. A 101, 012320 (2020)ADSMathSciNetCrossRef
20.
Zurück zum Zitat Zhu, L., Tang, H.L., Barron, G.S., Mayhall, N.J., Barnes, E., Economou, S.E.: An adaptive quantum approximate optimization algorithm for solving combinatorial problems on a quantum computer. arXiv preprint arXiv:2005.10258 (2020) Zhu, L., Tang, H.L., Barron, G.S., Mayhall, N.J., Barnes, E., Economou, S.E.: An adaptive quantum approximate optimization algorithm for solving combinatorial problems on a quantum computer. arXiv preprint arXiv:​2005.​10258 (2020)
21.
Zurück zum Zitat Jiang, Z., Rieffel, E.G., Wang, Z.: Near-optimal quantum circuit for Grover’s unstructured search using a transverse field. Phys. Rev. A 95, 062317 (2017) Jiang, Z., Rieffel, E.G., Wang, Z.: Near-optimal quantum circuit for Grover’s unstructured search using a transverse field. Phys. Rev. A 95, 062317 (2017)
22.
Zurück zum Zitat Bärtschi, A., Eidenbenz, S.: Grover mixers for QAOA: shifting complexity from mixer design to state preparation. arXiv preprint arXiv:2006.00354v2 (2020) Bärtschi, A., Eidenbenz, S.: Grover mixers for QAOA: shifting complexity from mixer design to state preparation. arXiv preprint arXiv:​2006.​00354v2 (2020)
23.
Zurück zum Zitat Cook, J., Eidenbenz, S., Bärtschi, A.: The quantum alternating operator Ansatz on maximum \(k\)-vertex cover. arXiv preprint arXiv:1910.13483v2 (2020) Cook, J., Eidenbenz, S., Bärtschi, A.: The quantum alternating operator Ansatz on maximum \(k\)-vertex cover. arXiv preprint arXiv:​1910.​13483v2 (2020)
24.
Zurück zum Zitat Li, L., Fan, M., Coram, M., Riley, P., Leichenauer, S.: Quantum optimization with a novel Gibbs objective function and ansatz architecture search. Phys. Rev. Res. 2, 023074 (2020)CrossRef Li, L., Fan, M., Coram, M., Riley, P., Leichenauer, S.: Quantum optimization with a novel Gibbs objective function and ansatz architecture search. Phys. Rev. Res. 2, 023074 (2020)CrossRef
25.
Zurück zum Zitat Tate, R., Farhadi, M., Herold, C., Mohler, G., Gupta, S.: Bridging classical and quantum with SDP initialized warm-starts for QAOA. arXiv preprint arXiv:2010.14021 (2020) Tate, R., Farhadi, M., Herold, C., Mohler, G., Gupta, S.: Bridging classical and quantum with SDP initialized warm-starts for QAOA. arXiv preprint arXiv:​2010.​14021 (2020)
26.
Zurück zum Zitat Bravyi, S., Kliesch, A., Koenig, R., Tang, E.: Obstacles to variational quantum optimization from symmetry protection. Phys. Rev. Lett. 125, 260505 (2020)ADSMathSciNetCrossRef Bravyi, S., Kliesch, A., Koenig, R., Tang, E.: Obstacles to variational quantum optimization from symmetry protection. Phys. Rev. Lett. 125, 260505 (2020)ADSMathSciNetCrossRef
27.
Zurück zum Zitat Khot, S., Kindler, G., Mossel, E., O’Donnel, R.: Optimal inapproximability results for MAX-CUT and other 2-variable CSPs? Electronic Colloquium on Computational Complexity, Report No. 101 (2005) Khot, S., Kindler, G., Mossel, E., O’Donnel, R.: Optimal inapproximability results for MAX-CUT and other 2-variable CSPs? Electronic Colloquium on Computational Complexity, Report No. 101 (2005)
29.
Zurück zum Zitat Press, W.H., Flannery, B.P., Teukolsky, S.A.: Numerical recipes in Fortran 77: the art of scientific computing, 2nd edn. Cambridge University Press (1993). https://people.sc.fsu.edu/\(\sim \)inavon/5420a/DFP.pdf Press, W.H., Flannery, B.P., Teukolsky, S.A.: Numerical recipes in Fortran 77: the art of scientific computing, 2nd edn. Cambridge University Press (1993). https://​people.​sc.​fsu.​edu/​\(\sim \)inavon/5420a/DFP.pdf
30.
Zurück zum Zitat Herrman, R., Treffert, L., Ostrowski, J., Lotshaw, P.C., Humble, T.S., Siopsis, G.: Impact of graph structures for QAOA on MaxCut. Quantum Inf. Process. 289:1–21 (2021) Herrman, R., Treffert, L., Ostrowski, J., Lotshaw, P.C., Humble, T.S., Siopsis, G.: Impact of graph structures for QAOA on MaxCut. Quantum Inf. Process. 289:1–21 (2021)
31.
Zurück zum Zitat Farhi, E., Gamarnik, D., Gutmann, S.: The quantum approximate optimization algorithm needs to see the whole graph: worst case examples. arXiv:2005.08747 (2020) Farhi, E., Gamarnik, D., Gutmann, S.: The quantum approximate optimization algorithm needs to see the whole graph: worst case examples. arXiv:​2005.​08747 (2020)
32.
Zurück zum Zitat McKay, B.: Graphs. https://users.cecs.anu.edu.au/\(\sim \)bdm/data/graphs.html. Accessed 8 July (2020) McKay, B.: Graphs. https://​users.​cecs.​anu.​edu.​au/​\(\sim \)bdm/data/graphs.html. Accessed 8 July (2020)
33.
Zurück zum Zitat Belotti, P.: Couenne: a user’s manual. Technical report, Lehigh University, Technical report (2009) Belotti, P.: Couenne: a user’s manual. Technical report, Lehigh University, Technical report (2009)
35.
Zurück zum Zitat Wierichs, D., Gogolin, C., Kastoryano, M.: Avoiding local minima in variational quantum eigensolvers with the natural gradient optimizer. Phys. Rev. Res. 2, 43246 (2020)CrossRef Wierichs, D., Gogolin, C., Kastoryano, M.: Avoiding local minima in variational quantum eigensolvers with the natural gradient optimizer. Phys. Rev. Res. 2, 43246 (2020)CrossRef
36.
Zurück zum Zitat Stokes, J., Izaac, J., Killoran, N., Carleo, G.: Quantum natural gradient. Quantum 4, 269 (2020)CrossRef Stokes, J., Izaac, J., Killoran, N., Carleo, G.: Quantum natural gradient. Quantum 4, 269 (2020)CrossRef
37.
Zurück zum Zitat Harrow, A.W., Napp, J.C.: Low-depth gradient measurements can improve convergence in variational hybrid quantum-classical algorithms. Phys. Rev. Lett. 126, 140502 (2021)ADSCrossRef Harrow, A.W., Napp, J.C.: Low-depth gradient measurements can improve convergence in variational hybrid quantum-classical algorithms. Phys. Rev. Lett. 126, 140502 (2021)ADSCrossRef
38.
Zurück zum Zitat Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. J. Assoc. Comput. Mach. 42(6), 1115 (1995)MathSciNetCrossRef Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. J. Assoc. Comput. Mach. 42(6), 1115 (1995)MathSciNetCrossRef
39.
Zurück zum Zitat Shaydulin, R., Wild, S.M.: Exploiting symmetry reduces the cost of training QAOA. IEEE Trans. Quantum Eng. 2, 1–9 (2021)CrossRef Shaydulin, R., Wild, S.M.: Exploiting symmetry reduces the cost of training QAOA. IEEE Trans. Quantum Eng. 2, 1–9 (2021)CrossRef
40.
Zurück zum Zitat Belotti, P., Lee, J., Liberti, L., Margot, F., Wächter, A.: Branching and bounds tightening techniques for nonconvex MINLP. Optim. Methods Softw. 24(4-5), 597–634 (2009) Belotti, P., Lee, J., Liberti, L., Margot, F., Wächter, A.: Branching and bounds tightening techniques for nonconvex MINLP. Optim. Methods Softw. 24(4-5), 597–634 (2009)
Metadaten
Titel
Empirical performance bounds for quantum approximate optimization
verfasst von
Phillip C. Lotshaw
Travis S. Humble
Rebekah Herrman
James Ostrowski
George Siopsis
Publikationsdatum
01.12.2021
Verlag
Springer US
Erschienen in
Quantum Information Processing / Ausgabe 12/2021
Print ISSN: 1570-0755
Elektronische ISSN: 1573-1332
DOI
https://doi.org/10.1007/s11128-021-03342-3

Weitere Artikel der Ausgabe 12/2021

Quantum Information Processing 12/2021 Zur Ausgabe