Skip to main content
Erschienen in: Quantum Information Processing 10/2022

01.10.2022

An adaptive threshold-based quantum image segmentation algorithm and its simulation

verfasst von: Suzhen Yuan, Wenhao Zhao, Shengwei Gao, Shuyin Xia, Bo Hang, Hong Qu

Erschienen in: Quantum Information Processing | Ausgabe 10/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Efficient and accurate image segmentation algorithm is critical to image processing. In this paper, we design a quantum image segmentation algorithm utilizing an adaptive threshold based on a moving average method, and we simulate it on the IBM Quantum Experience (IBM Q) platform through the Qiskit extension. In the proposed method, an image is first divided into many 2Œ2 regions, and each region’s average value is considered the region’s threshold value. In order to fully exploit quantum parallelism, we encode the core image (image to be segmented) and the three auxiliary images into one quantum superposition state sharing the same position qubits. The analysis results highlight that the proposed quantum image segmentation algorithm provides exponential speedup over the existing implementations, and the number of auxiliary qubits is reduced from exponential of q to polynomial. In addition, this paper presents an appealing example of simulating complex quantum image processing algorithms in quantum simulators.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat Venegas-Andraca, SE., Bose, S.: Quantum computation and image processing: New trends in artificial intelligence[C]//IJCAI. (2003): 1563 Venegas-Andraca, SE., Bose, S.: Quantum computation and image processing: New trends in artificial intelligence[C]//IJCAI. (2003): 1563
3.
Zurück zum Zitat Beach, G., Lomont, C., Cohen, C., Quantum image processing (quip)[C], , 32nd Applied Imagery Pattern Recognition Workshop,: Proceedings. IEEE 2003, 39–44 (2003) Beach, G., Lomont, C., Cohen, C., Quantum image processing (quip)[C], , 32nd Applied Imagery Pattern Recognition Workshop,: Proceedings. IEEE 2003, 39–44 (2003)
4.
Zurück zum Zitat Barenco, A., Bennett, C.H., Cleve, R., et al.: Elementary gates for quantum computation[J]. Phys. Rev. A 52(5), 3457 (1995)ADSCrossRef Barenco, A., Bennett, C.H., Cleve, R., et al.: Elementary gates for quantum computation[J]. Phys. Rev. A 52(5), 3457 (1995)ADSCrossRef
5.
Zurück zum Zitat Tsang, M., Caves, C.M.: Evading quantum mechanics: engineering a classical subsystem within a quantum environment[J]. Phys. Rev. X 2(3), 031016 (2012) Tsang, M., Caves, C.M.: Evading quantum mechanics: engineering a classical subsystem within a quantum environment[J]. Phys. Rev. X 2(3), 031016 (2012)
6.
Zurück zum Zitat Venegas-Andraca, S.E., Bose, S.: Storing, processing, and retrieving an image using quantum mechanics[C]//quantum information and computation. SPIE 5105, 137–147 (2003)ADS Venegas-Andraca, S.E., Bose, S.: Storing, processing, and retrieving an image using quantum mechanics[C]//quantum information and computation. SPIE 5105, 137–147 (2003)ADS
7.
Zurück zum Zitat Li, H.S., Qingxin, Z., Lan, S., et al.: Image storage, retrieval, compression and segmentation in a quantum system[J]. Quantum Inf. Process. 12(6), 2269–2290 (2013)ADSMathSciNetCrossRefMATH Li, H.S., Qingxin, Z., Lan, S., et al.: Image storage, retrieval, compression and segmentation in a quantum system[J]. Quantum Inf. Process. 12(6), 2269–2290 (2013)ADSMathSciNetCrossRefMATH
8.
Zurück zum Zitat Yuan, S., Mao, X., Xue, Y., et al.: SQR: a simple quantum representation of infrared images[J]. Quantum Inf. Process. 13(6), 1353–1379 (2014)ADSMathSciNetCrossRefMATH Yuan, S., Mao, X., Xue, Y., et al.: SQR: a simple quantum representation of infrared images[J]. Quantum Inf. Process. 13(6), 1353–1379 (2014)ADSMathSciNetCrossRefMATH
9.
Zurück zum Zitat Venegas-Andraca, S.E., Ball, J.L.: Processing images in entangled quantum systems[J]. Quantum Inf. Process. 9(1), 1–11 (2010)MathSciNetCrossRef Venegas-Andraca, S.E., Ball, J.L.: Processing images in entangled quantum systems[J]. Quantum Inf. Process. 9(1), 1–11 (2010)MathSciNetCrossRef
10.
Zurück zum Zitat Le, P.Q., Dong, F., Hirota, K.: A flexible representation of quantum images for polynomial preparation, image compression, and processing operations[J]. Quantum Inf. Process. 10(1), 63–84 (2011)MathSciNetCrossRefMATH Le, P.Q., Dong, F., Hirota, K.: A flexible representation of quantum images for polynomial preparation, image compression, and processing operations[J]. Quantum Inf. Process. 10(1), 63–84 (2011)MathSciNetCrossRefMATH
11.
Zurück zum Zitat Zhang, Y., Lu, K., Gao, Y., et al.: NEQR: a novel enhanced quantum representation of digital images[J]. Quantum Inf. Process. 12(8), 2833–2860 (2013)ADSMathSciNetCrossRefMATH Zhang, Y., Lu, K., Gao, Y., et al.: NEQR: a novel enhanced quantum representation of digital images[J]. Quantum Inf. Process. 12(8), 2833–2860 (2013)ADSMathSciNetCrossRefMATH
12.
Zurück zum Zitat Ross, K.A., Savary, L., Gaulin, B.D., et al.: Quantum excitations in quantum spin ice[J]. Phys. Rev. X 1(2), 021002 (2011) Ross, K.A., Savary, L., Gaulin, B.D., et al.: Quantum excitations in quantum spin ice[J]. Phys. Rev. X 1(2), 021002 (2011)
13.
Zurück zum Zitat Jiang, N., Dang, Y., Zhao, N.: Quantum image location[J]. Int. J. Theor. Phys. 55(10), 4501–4512 (2016)CrossRefMATH Jiang, N., Dang, Y., Zhao, N.: Quantum image location[J]. Int. J. Theor. Phys. 55(10), 4501–4512 (2016)CrossRefMATH
14.
Zurück zum Zitat O’Malley, P.J.J., Babbush, R., Kivlichan, I.D., et al.: Scalable quantum simulation of molecular energies[J]. Phys. Rev. X 6(3), 031007 (2016) O’Malley, P.J.J., Babbush, R., Kivlichan, I.D., et al.: Scalable quantum simulation of molecular energies[J]. Phys. Rev. X 6(3), 031007 (2016)
15.
Zurück zum Zitat Nan, J., Wu, W., Luo, W., et al.: Quantum image pseudocolor coding based on the density-stratified method[J]. Quantum Inf. Process. 14(5), 1735–1755 (2015)ADSMathSciNetCrossRefMATH Nan, J., Wu, W., Luo, W., et al.: Quantum image pseudocolor coding based on the density-stratified method[J]. Quantum Inf. Process. 14(5), 1735–1755 (2015)ADSMathSciNetCrossRefMATH
16.
18.
19.
Zurück zum Zitat Jiang, N., Wu, W.Y., Wang, L.: The quantum realization of Arnold and Fibonacci image scrambling[J]. Quantum Inf. Process. 13(5), 1223–1236 (2014)ADSMathSciNetCrossRefMATH Jiang, N., Wu, W.Y., Wang, L.: The quantum realization of Arnold and Fibonacci image scrambling[J]. Quantum Inf. Process. 13(5), 1223–1236 (2014)ADSMathSciNetCrossRefMATH
20.
Zurück zum Zitat Zhou, R.G., Wu, Q., Zhang, M.Q., et al.: Quantum image encryption and decryption algorithms based on quantum image geometric transformations[J]. Int. J. Theor. Phys. 52(6), 1802–1817 (2013)MathSciNetCrossRef Zhou, R.G., Wu, Q., Zhang, M.Q., et al.: Quantum image encryption and decryption algorithms based on quantum image geometric transformations[J]. Int. J. Theor. Phys. 52(6), 1802–1817 (2013)MathSciNetCrossRef
21.
Zurück zum Zitat Iliyasu, A.M., Le, P.Q., Dong, F., et al.: Watermarking and authentication of quantum images based on restricted geometric transformations[J]. Inf. Sci. 186(1), 126–149 (2012)MathSciNetCrossRefMATH Iliyasu, A.M., Le, P.Q., Dong, F., et al.: Watermarking and authentication of quantum images based on restricted geometric transformations[J]. Inf. Sci. 186(1), 126–149 (2012)MathSciNetCrossRefMATH
22.
Zurück zum Zitat Yan, F., Iliyasu, A.M., Sun, B., et al.: A duple watermarking strategy for multi-channel quantum images[J]. Quantum Inf. Process. 14(5), 1675–1692 (2015)ADSMathSciNetCrossRefMATH Yan, F., Iliyasu, A.M., Sun, B., et al.: A duple watermarking strategy for multi-channel quantum images[J]. Quantum Inf. Process. 14(5), 1675–1692 (2015)ADSMathSciNetCrossRefMATH
23.
Zurück zum Zitat Yuan, S., Wen, C., Hang, B., et al.: The dual-threshold quantum image segmentation algorithm and its simulation[J]. Quantum Inf. Process. 19(12), 1–21 (2020)ADSMathSciNetCrossRef Yuan, S., Wen, C., Hang, B., et al.: The dual-threshold quantum image segmentation algorithm and its simulation[J]. Quantum Inf. Process. 19(12), 1–21 (2020)ADSMathSciNetCrossRef
25.
Zurück zum Zitat Li, P., Shi, T., Zhao, Y., et al.: Design of threshold segmentation method for quantum image[J]. Int. J. Theor. Phys. 59(2), 514–538 (2020)MathSciNetCrossRefMATH Li, P., Shi, T., Zhao, Y., et al.: Design of threshold segmentation method for quantum image[J]. Int. J. Theor. Phys. 59(2), 514–538 (2020)MathSciNetCrossRefMATH
26.
Zurück zum Zitat Aleksandrowicz, G., Alexander, T., Barkoutsos, P., et al. Qiskit.: An open-source framework for quantum computing[J]. Accessed on: Mar,16,(2019) Aleksandrowicz, G., Alexander, T., Barkoutsos, P., et al. Qiskit.: An open-source framework for quantum computing[J]. Accessed on: Mar,16,(2019)
27.
Zurück zum Zitat Zhong, M., Hedges, M.P., Ahlefeldt, R.L., et al.: Optically addressable nuclear spins in a solid with a six-hour coherence time[J]. Nature 517(7533), 177–180 (2015)ADSCrossRef Zhong, M., Hedges, M.P., Ahlefeldt, R.L., et al.: Optically addressable nuclear spins in a solid with a six-hour coherence time[J]. Nature 517(7533), 177–180 (2015)ADSCrossRef
28.
Zurück zum Zitat Thapliyal, H., Ranganathan, N.: Design of efficient reversible logic-based binary and BCD adder circuits[J]. ACM J. Emerg. Technol. Comput. Syst. (JETC) 9(3), 1–31 (2013)CrossRef Thapliyal, H., Ranganathan, N.: Design of efficient reversible logic-based binary and BCD adder circuits[J]. ACM J. Emerg. Technol. Comput. Syst. (JETC) 9(3), 1–31 (2013)CrossRef
29.
Zurück zum Zitat Vedral, V., Barenco, A., Ekert, A.: Quantum networks for elementary arithmetic operations[J]. Phys. Rev. A 54(1), 147 (1996)ADSMathSciNetCrossRef Vedral, V., Barenco, A., Ekert, A.: Quantum networks for elementary arithmetic operations[J]. Phys. Rev. A 54(1), 147 (1996)ADSMathSciNetCrossRef
30.
Zurück zum Zitat Cuccaro, SA., Draper, TG., Kutin, SA., et al.: A new quantum ripple-carry addition circuit[J]. quant-ph/0410184, (2004) Cuccaro, SA., Draper, TG., Kutin, SA., et al.: A new quantum ripple-carry addition circuit[J]. quant-ph/0410184, (2004)
31.
Zurück zum Zitat Gassoumi, I., Touil, L., Ouni, B.: Division circuit using reversible logic gates[C]//2018 International Conference on Advanced Systems and Electric Technologies (IC_ASET). IEEE, (2018) 60-65 Gassoumi, I., Touil, L., Ouni, B.: Division circuit using reversible logic gates[C]//2018 International Conference on Advanced Systems and Electric Technologies (IC_ASET). IEEE, (2018) 60-65
32.
Zurück zum Zitat Nayeem, NM., Hossain, A., Haque, M., et al.: Novel reversible division hardware[C]//2009 52nd IEEE International Midwest Symposium on Circuits and Systems. IEEE, (2009) ,1134-1138 Nayeem, NM., Hossain, A., Haque, M., et al.: Novel reversible division hardware[C]//2009 52nd IEEE International Midwest Symposium on Circuits and Systems. IEEE, (2009) ,1134-1138
33.
Zurück zum Zitat Dastan, F., Haghparast, M.: A novel nanometric fault tolerant reversible divider[J]. Int. J. Phys. Sci. 6(24), 5671–5681 (2011) Dastan, F., Haghparast, M.: A novel nanometric fault tolerant reversible divider[J]. Int. J. Phys. Sci. 6(24), 5671–5681 (2011)
34.
Zurück zum Zitat Bolhassani, A., Haghparast, M.: Optimised reversible divider circuit[J]. Int. J. Innov. Comput. Appl. 7(1), 13–33 (2016)CrossRefMATH Bolhassani, A., Haghparast, M.: Optimised reversible divider circuit[J]. Int. J. Innov. Comput. Appl. 7(1), 13–33 (2016)CrossRefMATH
35.
Zurück zum Zitat Jamal, L., Babu, HMH.: Efficient approaches to design a reversible floating point divider[C]//2013 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, 3004-3007,(2013) Jamal, L., Babu, HMH.: Efficient approaches to design a reversible floating point divider[C]//2013 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, 3004-3007,(2013)
36.
Zurück zum Zitat Thapliyal, H., Munoz-Coreas, E., Varun, T.S.S., et al.: Quantum circuit designs of integer division optimizing T-count and T-depth[J]. IEEE Trans. Emerg. Topics Comput. 9(2), 1045–1056 (2019)CrossRef Thapliyal, H., Munoz-Coreas, E., Varun, T.S.S., et al.: Quantum circuit designs of integer division optimizing T-count and T-depth[J]. IEEE Trans. Emerg. Topics Comput. 9(2), 1045–1056 (2019)CrossRef
37.
Zurück zum Zitat Yuan, S., Gao, S., Wen, C., et al.: A novel fault-tolerant quantum divider and its simulation[J]. Quantum Inf. Process. 21(5), 1–15 (2022)ADSMathSciNetCrossRef Yuan, S., Gao, S., Wen, C., et al.: A novel fault-tolerant quantum divider and its simulation[J]. Quantum Inf. Process. 21(5), 1–15 (2022)ADSMathSciNetCrossRef
Metadaten
Titel
An adaptive threshold-based quantum image segmentation algorithm and its simulation
verfasst von
Suzhen Yuan
Wenhao Zhao
Shengwei Gao
Shuyin Xia
Bo Hang
Hong Qu
Publikationsdatum
01.10.2022
Verlag
Springer US
Erschienen in
Quantum Information Processing / Ausgabe 10/2022
Print ISSN: 1570-0755
Elektronische ISSN: 1573-1332
DOI
https://doi.org/10.1007/s11128-022-03709-0

Weitere Artikel der Ausgabe 10/2022

Quantum Information Processing 10/2022 Zur Ausgabe