Skip to main content
Erschienen in: Strength of Materials 1/2013

01.01.2013

Model for fatigue life prediction of titanium alloys. Part 1. Elaboration of a model of fatigue life prior to initiation of microstructurally short crack and a propagation model for physically short and long cracks

verfasst von: O. M. Herasymchuk, O. V. Kononuchenko

Erschienen in: Strength of Materials | Ausgabe 1/2013

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper presents a review of the fatigue life models at stages 1 and 2 of fatigue fracture. Based on the modification of these models, a model is proposed that allows one to predict residual life to fracture under conditions of high-cycle uniaxial loading of smooth specimens of titanium alloys from the results of short-term tensile tests and the microstructure analysis.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat V. T. Troshchenko (Ed.), Strength of Materials and Structures [in Russian], Vol. 2: V. T. Troshchenko, G. V. Tsybanev, B. A. Gryaznov, and Yu. S. Nalimov, Fatigue of Metals. Influence of the Surface State and Contact Interaction, Pisarenko Institute of Problems of Strength, National Academy of Sciences of Ukraine, Kiev (2009). V. T. Troshchenko (Ed.), Strength of Materials and Structures [in Russian], Vol. 2: V. T. Troshchenko, G. V. Tsybanev, B. A. Gryaznov, and Yu. S. Nalimov, Fatigue of Metals. Influence of the Surface State and Contact Interaction, Pisarenko Institute of Problems of Strength, National Academy of Sciences of Ukraine, Kiev (2009).
2.
Zurück zum Zitat M. Klesnil and P. Lukas, Fatigue of Metallic Materials, Elsevier, New York (1980). M. Klesnil and P. Lukas, Fatigue of Metallic Materials, Elsevier, New York (1980).
3.
Zurück zum Zitat K. J. Miller, “The behaviour of short fatigue cracks and their initiation. Pt. II. A general summary,” Fatigue Fract. Eng. Mater. Struct., 10, 93–113 (1987).CrossRef K. J. Miller, “The behaviour of short fatigue cracks and their initiation. Pt. II. A general summary,” Fatigue Fract. Eng. Mater. Struct., 10, 93–113 (1987).CrossRef
4.
Zurück zum Zitat D. L. Davidson and K. S. Chan, “Crystallography of fatigue crack initiation in Astroloy at ambient temperature,” Acta Met., 37, No. 4, 1089–1097 (1989).CrossRef D. L. Davidson and K. S. Chan, “Crystallography of fatigue crack initiation in Astroloy at ambient temperature,” Acta Met., 37, No. 4, 1089–1097 (1989).CrossRef
5.
Zurück zum Zitat K. S. Chan, “A microstructure-based fatigue-crack-initiation model,” Met. Mater. Trans., 34A, 43–58 (2003).CrossRef K. S. Chan, “A microstructure-based fatigue-crack-initiation model,” Met. Mater. Trans., 34A, 43–58 (2003).CrossRef
6.
Zurück zum Zitat K. S. Chan, “Variability of large-crack fatigue-crack-growth thresholds in structural alloys,” Met. Mater. Trans., 35A, 3721–3735 (2004).CrossRef K. S. Chan, “Variability of large-crack fatigue-crack-growth thresholds in structural alloys,” Met. Mater. Trans., 35A, 3721–3735 (2004).CrossRef
7.
Zurück zum Zitat G. Lütjering and J. C. Williams, Titanium, Springer, Berlin; New York (2003). G. Lütjering and J. C. Williams, Titanium, Springer, Berlin; New York (2003).
8.
Zurück zum Zitat K. S. Chan, “Roles of microstructure in fatigue crack initiation,” Int. J. Fatigue, 32, 1428–1447 (2010).CrossRef K. S. Chan, “Roles of microstructure in fatigue crack initiation,” Int. J. Fatigue, 32, 1428–1447 (2010).CrossRef
9.
Zurück zum Zitat K. Tanaka and T. Mura, “A dislocation model for fatigue crack initiation,” Trans. ASME, J. Appl. Mech., 48, 97–103 (1981).CrossRef K. Tanaka and T. Mura, “A dislocation model for fatigue crack initiation,” Trans. ASME, J. Appl. Mech., 48, 97–103 (1981).CrossRef
10.
Zurück zum Zitat K. J. Miller, “The two thresholds of fatigue behaviour,” Fatigue Fract. Eng. Mater. Struct., 16, No. 9, 931–939 (1993).CrossRef K. J. Miller, “The two thresholds of fatigue behaviour,” Fatigue Fract. Eng. Mater. Struct., 16, No. 9, 931–939 (1993).CrossRef
11.
Zurück zum Zitat A. Navarro and E. R. de los Rios, “A model for short fatigue crack propagation with an interpretation of the short-long crack,” Fatigue Fract. Eng. Mater. Struct., 10, No. 2, 169–186 (1987).CrossRef A. Navarro and E. R. de los Rios, “A model for short fatigue crack propagation with an interpretation of the short-long crack,” Fatigue Fract. Eng. Mater. Struct., 10, No. 2, 169–186 (1987).CrossRef
12.
Zurück zum Zitat A. Turnbull and E. R. de los Rios, “Predicting fatigue life in commercially pure aluminum using a short crack growth model,” Fatigue Fract. Eng. Mater. Struct., 18, No. 12, 1469–1481 (1995).CrossRef A. Turnbull and E. R. de los Rios, “Predicting fatigue life in commercially pure aluminum using a short crack growth model,” Fatigue Fract. Eng. Mater. Struct., 18, No. 12, 1469–1481 (1995).CrossRef
13.
Zurück zum Zitat J. Andersson, “The influence of grain size variation on metal fatigue,” Int. J. Fatigue, 27, 847–852 (2005).CrossRef J. Andersson, “The influence of grain size variation on metal fatigue,” Int. J. Fatigue, 27, 847–852 (2005).CrossRef
14.
Zurück zum Zitat J. S. Park, S. J. Kim, K. H. Kim, et al., “A microstructural model for predicting high cycle fatigue life of steels,” Int. J. Fatigue, 27, 1115–1123 (2005).CrossRef J. S. Park, S. J. Kim, K. H. Kim, et al., “A microstructural model for predicting high cycle fatigue life of steels,” Int. J. Fatigue, 27, 1115–1123 (2005).CrossRef
15.
Zurück zum Zitat A. J. Wilkinson, “Modelling the effects of texture on the statistics of stage I fatigue crack growth,” Philos. Mag. A, 81, 841–855 (2001).CrossRef A. J. Wilkinson, “Modelling the effects of texture on the statistics of stage I fatigue crack growth,” Philos. Mag. A, 81, 841–855 (2001).CrossRef
16.
Zurück zum Zitat O. Düber, B. Künkler, U. Krupp, et al., “Experimental characterization and two-dimensional simulation of short-crack propagation in an austenitie-ferritic duplex steel,” Int. J. Fatigue, 28, 983–992 (2006).CrossRef O. Düber, B. Künkler, U. Krupp, et al., “Experimental characterization and two-dimensional simulation of short-crack propagation in an austenitie-ferritic duplex steel,” Int. J. Fatigue, 28, 983–992 (2006).CrossRef
17.
Zurück zum Zitat V. T. Troshchenko, B. A. Gryaznov, Yu. S. Nalimov, et al., “Fatigue strength and cyclic crack resistance of titanium alloy VT3-1 in different structural states. Communication 1. Study procedure and experimental results,” Strength Mater., 27, No. 5-6, 245–251 (1995).CrossRef V. T. Troshchenko, B. A. Gryaznov, Yu. S. Nalimov, et al., “Fatigue strength and cyclic crack resistance of titanium alloy VT3-1 in different structural states. Communication 1. Study procedure and experimental results,” Strength Mater., 27, No. 5-6, 245–251 (1995).CrossRef
18.
Zurück zum Zitat O. M. Herasymchuk, “A generalized grain-size dependence of the fatigue limit,” Strength Mater., 43, No. 2, 205–216 (2011).CrossRef O. M. Herasymchuk, “A generalized grain-size dependence of the fatigue limit,” Strength Mater., 43, No. 2, 205–216 (2011).CrossRef
19.
Zurück zum Zitat O. M. Herasymchuk, Yu. S. Nalimov, P. E. Markovs’kyi, et al., “Effect of the microstructure of titanium alloys on the fatigue strength characteristics,” Strength Mater., 43, No. 3, 282–293 (2011).CrossRef O. M. Herasymchuk, Yu. S. Nalimov, P. E. Markovs’kyi, et al., “Effect of the microstructure of titanium alloys on the fatigue strength characteristics,” Strength Mater., 43, No. 3, 282–293 (2011).CrossRef
20.
Zurück zum Zitat M. R. Bache, “A review of dwell sensitive fatigue in titanium alloys: the role of microstructure, texture and operating conditions,” Int. J. Fatigue, 25, 1079–1087 (2003).CrossRef M. R. Bache, “A review of dwell sensitive fatigue in titanium alloys: the role of microstructure, texture and operating conditions,” Int. J. Fatigue, 25, 1079–1087 (2003).CrossRef
21.
Zurück zum Zitat R. W. Hertzbetg, “A simple calculation of da/dN K - ∆K data in the near threshold regime and above,” Int. J. Fract., 64, R53–R58 (1993).CrossRef R. W. Hertzbetg, “A simple calculation of da/dN K - ∆K data in the near threshold regime and above,” Int. J. Fract., 64, R53–R58 (1993).CrossRef
22.
Zurück zum Zitat I. Marines-Garcia, P. C. Paris, H. Tada, and C. Bathias, “Fatigue crack growth from small to long cracks in VHCF with surface initiations,” Int. J. Fatigue, 29, 2072–2078 (2007).CrossRef I. Marines-Garcia, P. C. Paris, H. Tada, and C. Bathias, “Fatigue crack growth from small to long cracks in VHCF with surface initiations,” Int. J. Fatigue, 29, 2072–2078 (2007).CrossRef
23.
Zurück zum Zitat C. Bathias and P. C. Paris, “Gigacycle fatigue of metallic aircraft components,” Int. J. Fatigue, 32, No. 6, 894–897 (2010).CrossRef C. Bathias and P. C. Paris, “Gigacycle fatigue of metallic aircraft components,” Int. J. Fatigue, 32, No. 6, 894–897 (2010).CrossRef
24.
Zurück zum Zitat Standard Test Method for Measurements of Fatigue Crack Growth Rates, ASTM STP E647-00 (2000). Standard Test Method for Measurements of Fatigue Crack Growth Rates, ASTM STP E647-00 (2000).
25.
Zurück zum Zitat Guide to Methods for Assessing the Acceptability of Flaws in Metallic Structures, British Standard, BS 7910 (2005). Guide to Methods for Assessing the Acceptability of Flaws in Metallic Structures, British Standard, BS 7910 (2005).
26.
Zurück zum Zitat I. Bantounas, D. Dye, and T. C. Lindley, “The effect of grain orientation on fracture morphology during high-cycle fatigue of Ti–6Al–4V,” Acta Mater., 57, 3584–3595 (2009).CrossRef I. Bantounas, D. Dye, and T. C. Lindley, “The effect of grain orientation on fracture morphology during high-cycle fatigue of Ti–6Al–4V,” Acta Mater., 57, 3584–3595 (2009).CrossRef
27.
Zurück zum Zitat V. V. Panasyuk (Ed.), Fracture Mechanics and Strength of Materials [in Russian], Handbook in 4 volumes, Vol. 2: M. P. Savruk, Stress Intensity Factors in Cracked Bodies, Naukova Dumka, Kiev (1988). V. V. Panasyuk (Ed.), Fracture Mechanics and Strength of Materials [in Russian], Handbook in 4 volumes, Vol. 2: M. P. Savruk, Stress Intensity Factors in Cracked Bodies, Naukova Dumka, Kiev (1988).
28.
Zurück zum Zitat S. Surech, “Crack deflection implications for the growth of long and short fatigue cracks,” Met. Trans., 14A, No. 11, 1375–1387 (1983). S. Surech, “Crack deflection implications for the growth of long and short fatigue cracks,” Met. Trans., 14A, No. 11, 1375–1387 (1983).
29.
Zurück zum Zitat K. Sadanada, S. Sarkar, D. Kujawski, and A. K. Vasudevan, “A two-parameter analysis of S–N fatigue life using ∆σ and σmax,” Int. J. Fatigue, 31, 1648–1659 (2009).CrossRef K. Sadanada, S. Sarkar, D. Kujawski, and A. K. Vasudevan, “A two-parameter analysis of S–N fatigue life using ∆σ and σmax,” Int. J. Fatigue, 31, 1648–1659 (2009).CrossRef
30.
Zurück zum Zitat H. Kitagawa and S. Takahashi, “Applicability of fracture mechanics to very small cracks or the cracks in the early stage,” in: Proc. of the Second Int. Conf. Mechanical Behavior of Materials (Metals Park, OH), ASM (1976), pp. 627–631. H. Kitagawa and S. Takahashi, “Applicability of fracture mechanics to very small cracks or the cracks in the early stage,” in: Proc. of the Second Int. Conf. Mechanical Behavior of Materials (Metals Park, OH), ASM (1976), pp. 627–631.
31.
Zurück zum Zitat M. M. El Haddad, K. N. Smith, and T. U. Topper, “Fatigue crack propagation of short cracks,” Trans. ASME, J. Eng. Mater. Technol., 101, No. 1, 42–46 (1979).CrossRef M. M. El Haddad, K. N. Smith, and T. U. Topper, “Fatigue crack propagation of short cracks,” Trans. ASME, J. Eng. Mater. Technol., 101, No. 1, 42–46 (1979).CrossRef
32.
Zurück zum Zitat L. Xiao, “Twinning behavior in the Ti–5 at.% Al single crystals during cyclic loading along [0001],” Mater. Sci. Eng. A, 394, 168–175 (2005).CrossRef L. Xiao, “Twinning behavior in the Ti–5 at.% Al single crystals during cyclic loading along [0001],” Mater. Sci. Eng. A, 394, 168–175 (2005).CrossRef
Metadaten
Titel
Model for fatigue life prediction of titanium alloys. Part 1. Elaboration of a model of fatigue life prior to initiation of microstructurally short crack and a propagation model for physically short and long cracks
verfasst von
O. M. Herasymchuk
O. V. Kononuchenko
Publikationsdatum
01.01.2013
Verlag
Springer US
Erschienen in
Strength of Materials / Ausgabe 1/2013
Print ISSN: 0039-2316
Elektronische ISSN: 1573-9325
DOI
https://doi.org/10.1007/s11223-013-9431-8

Weitere Artikel der Ausgabe 1/2013

Strength of Materials 1/2013 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.