Skip to main content
Erschienen in: Strength of Materials 1/2018

28.03.2018

Hot Extrusion Effect on the Microstructure and Mechanical Properties of a Mg–Y–Nd–Zr Alloy

verfasst von: L. Y. Sheng, B. N. Du, B. J. Wang, D. K. Xu, C. Lai, Y. Gao, T. F. Xi

Erschienen in: Strength of Materials | Ausgabe 1/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Mg–Zn–Y–Nd alloy was prepared by casting and hot extrusion. The microstructure and mechanical properties of OM, SEM, XRD, TEM, and tensile tests were investigated with casting and hot extruded alloys. The results demonstrate that in a casting Mg–Y–Nd–Zr alloy, the α-Mg matrix is separated into the cell structure by a discontinuously distributed coarse Mg24Y5/α-Mg eutectic structure and fine Mg12Nd particles. TEM analysis shows that the Mg12Nd and Mg24Y5 phases have the orientation of \( {\left[001\right]}_{{\mathrm{Mg}}_{12}\mathrm{Nd}}//{\left[0221\right]}_{\upalpha -\mathrm{Mg}} \), and \( {\left[111\right]}_{{\mathrm{Mg}}_{24}{\mathrm{Y}}_5}//{\left[0001\right]}_{\upalpha -\mathrm{Mg}} \) and \( {\left(10\overline{1}\right)}_{{\mathrm{Mg}}_{24}{\mathrm{Y}}_5}//{\left(10\overline{1}0\right)}_{\upalpha -\mathrm{Mg}} \), respectively. The hot extrusion separates the Mg24Y5/α-Mg eutectic structure into fragments and aligns fragmentary Mg24Y5 particles along the extrusion direction. The interaction of hot extrusion and strengthening particles refines the α-Mg matrix greatly. Moreover, large strains result in the stacking faults of the matrix. As compared to the casting alloy, the hot-extruded one exhibits high yield strength, ultimate tensile strength, and elongation, which should be ascribed to the grain fineness, optimum distribution of strengthening particles and multiple substructures.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat M. M. Avedesian and H. Baker (Eds.), Magnesium and Magnesium Alloys, ASM International, Materials Park, OH (1999). M. M. Avedesian and H. Baker (Eds.), Magnesium and Magnesium Alloys, ASM International, Materials Park, OH (1999).
2.
Zurück zum Zitat Z. Liu, Y. Wang, and Z. G. Wang, “The research and application of magnesium matrix of lightweight materials,” J. Mater. Res., 14, No. 5, 449–56 (2000). Z. Liu, Y. Wang, and Z. G. Wang, “The research and application of magnesium matrix of lightweight materials,” J. Mater. Res., 14, No. 5, 449–56 (2000).
3.
Zurück zum Zitat Z. J. Li, X. N. Gu, S. Q. Lou, and Y. F. Zheng, “The development of binary Mg-Ca alloys for use as biodegradable materials within bone,” Biomaterials, 29, No. 10, 1329–1344 (2008).CrossRef Z. J. Li, X. N. Gu, S. Q. Lou, and Y. F. Zheng, “The development of binary Mg-Ca alloys for use as biodegradable materials within bone,” Biomaterials, 29, No. 10, 1329–1344 (2008).CrossRef
4.
Zurück zum Zitat B. L. Mordike and T. Ebert, “Magnesium: properties – applications – potential,” Mater. Sci. Eng. A, 302, No. 1, 37–45 (2001).CrossRef B. L. Mordike and T. Ebert, “Magnesium: properties – applications – potential,” Mater. Sci. Eng. A, 302, No. 1, 37–45 (2001).CrossRef
5.
Zurück zum Zitat M. Haude, H. Ince, A. Abizaid, et al., “Safety and performance of the second-generation drug-eluting absorbable metal scaffold in patients with de-novo coronary artery lesions (BIOSOLVE-II): 6 month results of a prospective, multicentre, non-randomised, first-in-man trial,” Lancet, 387, No. 10013, 31–39 (2016).CrossRef M. Haude, H. Ince, A. Abizaid, et al., “Safety and performance of the second-generation drug-eluting absorbable metal scaffold in patients with de-novo coronary artery lesions (BIOSOLVE-II): 6 month results of a prospective, multicentre, non-randomised, first-in-man trial,” Lancet, 387, No. 10013, 31–39 (2016).CrossRef
6.
Zurück zum Zitat S. B. Yi, C. H. J. Davies, H. G. Brokmeier, et al., “Deformation and texture evolution in AZ31 magnesium alloy during uniaxial loading,” Acta Mater., 54, No. 2, 549–562 (2006).CrossRef S. B. Yi, C. H. J. Davies, H. G. Brokmeier, et al., “Deformation and texture evolution in AZ31 magnesium alloy during uniaxial loading,” Acta Mater., 54, No. 2, 549–562 (2006).CrossRef
7.
Zurück zum Zitat C. Q. Li, D. K. Xu, B. J. Wang, et al., “Natural ageing responses of duplex structured Mg-Li based alloys,” Sci. Rep., 7, 40078 (2017).CrossRef C. Q. Li, D. K. Xu, B. J. Wang, et al., “Natural ageing responses of duplex structured Mg-Li based alloys,” Sci. Rep., 7, 40078 (2017).CrossRef
8.
Zurück zum Zitat J. A. del Valle, F. Carreno, and O. A. Ruano, “Influence of texture and grain size on work hardening and ductility in magnesium-based alloys processed by ECAP and rolling,” Acta Mater., 54, No. 16, 4247–4259 (2006).CrossRef J. A. del Valle, F. Carreno, and O. A. Ruano, “Influence of texture and grain size on work hardening and ductility in magnesium-based alloys processed by ECAP and rolling,” Acta Mater., 54, No. 16, 4247–4259 (2006).CrossRef
9.
Zurück zum Zitat B. Feng, Y. C. Xin, F. L. Guo, et al., “Compressive mechanical behavior of Al/Mg composite rods with different types of Al sleeve,” Acta Mater., 120, 379–390 (2016).CrossRef B. Feng, Y. C. Xin, F. L. Guo, et al., “Compressive mechanical behavior of Al/Mg composite rods with different types of Al sleeve,” Acta Mater., 120, 379–390 (2016).CrossRef
10.
Zurück zum Zitat Y. M. Zhu, A. J. Morton, and J. F. Nie, “The 18R and 14H long-period stacking ordered structures in Mg–Y–Zn alloys,” Acta Mater., 58, No. 8, 2936–2947 (2010).CrossRef Y. M. Zhu, A. J. Morton, and J. F. Nie, “The 18R and 14H long-period stacking ordered structures in Mg–Y–Zn alloys,” Acta Mater., 58, No. 8, 2936–2947 (2010).CrossRef
11.
Zurück zum Zitat L. Gao, R. S. Chen, and E. H. Han, “Effects of rare-earth elements Gd and Y on the solid solution strengthening of Mg alloys,” J. Alloy. Compd., 481, Nos. 1–2, 379–384 (2009). L. Gao, R. S. Chen, and E. H. Han, “Effects of rare-earth elements Gd and Y on the solid solution strengthening of Mg alloys,” J. Alloy. Compd., 481, Nos. 1–2, 379–384 (2009).
12.
Zurück zum Zitat S. Sandloebes, M. Friak, S. Zaefferer, et al., “The relation between ductility and stacking fault energies in Mg and Mg–Y alloys,” Acta Mater., 60, Nos. 6–7, 3011–3021 (2012). S. Sandloebes, M. Friak, S. Zaefferer, et al., “The relation between ductility and stacking fault energies in Mg and Mg–Y alloys,” Acta Mater., 60, Nos. 6–7, 3011–3021 (2012).
13.
Zurück zum Zitat J. Cheng, Y. L. Mu, G. Y. Zu, and G. C. Yao, “Impact toughness and fractography in Mg–Y alloy,” Mater. Design, 123, 64–68 (2017).CrossRef J. Cheng, Y. L. Mu, G. Y. Zu, and G. C. Yao, “Impact toughness and fractography in Mg–Y alloy,” Mater. Design, 123, 64–68 (2017).CrossRef
14.
Zurück zum Zitat A. Kula, X. Jia, R. K. Mishra, and M. Niewczas, “Flow stress and work hardening of Mg–Y alloys,” Int. J. Plasticity, 92, 96–121 (2017).CrossRef A. Kula, X. Jia, R. K. Mishra, and M. Niewczas, “Flow stress and work hardening of Mg–Y alloys,” Int. J. Plasticity, 92, 96–121 (2017).CrossRef
15.
Zurück zum Zitat C. Q. Li, D. K. Xu, Z. R. Zeng, et al., “Effect of volume fraction of LPSO phases on corrosion and mechanical properties of Mg–Zn–Y alloys,” Mater. Design, 121, 430–441 (2017).CrossRef C. Q. Li, D. K. Xu, Z. R. Zeng, et al., “Effect of volume fraction of LPSO phases on corrosion and mechanical properties of Mg–Zn–Y alloys,” Mater. Design, 121, 430–441 (2017).CrossRef
16.
Zurück zum Zitat H. Z Li, F. Lv, X. P. Liang, et al., “Effect of heat treatment on microstructures and mechanical properties of a cast Mg–Y–Nd–Zr alloy,” Mater. Sci. Eng. A, 667, 409–416 (2016). H. Z Li, F. Lv, X. P. Liang, et al., “Effect of heat treatment on microstructures and mechanical properties of a cast Mg–Y–Nd–Zr alloy,” Mater. Sci. Eng. A, 667, 409–416 (2016).
17.
Zurück zum Zitat Z. Xu, M. Weylandm, and J. F. Nie, “On the strain accommodation of β1 precipitates in magnesium alloy WE54,” Acta Mater., 75, 122–133 (2014).CrossRef Z. Xu, M. Weylandm, and J. F. Nie, “On the strain accommodation of β1 precipitates in magnesium alloy WE54,” Acta Mater., 75, 122–133 (2014).CrossRef
18.
Zurück zum Zitat S. Zhao, E. Guo, G. Cao, et al., “Microstructure and mechanical properties of Mg–Nd–Zn–Zr alloy processed by integrated extrusion and equal channel angular pressing,” J. Alloy. Compd., 705, 118–125 (2017).CrossRef S. Zhao, E. Guo, G. Cao, et al., “Microstructure and mechanical properties of Mg–Nd–Zn–Zr alloy processed by integrated extrusion and equal channel angular pressing,” J. Alloy. Compd., 705, 118–125 (2017).CrossRef
19.
Zurück zum Zitat X. Liu, R. Chen, and E. Han, “High temperature deformations of Mg–Y–Nd alloys fabricated by different routes,” Mater. Sci. Eng. A, 497, 326–332 (2008).CrossRef X. Liu, R. Chen, and E. Han, “High temperature deformations of Mg–Y–Nd alloys fabricated by different routes,” Mater. Sci. Eng. A, 497, 326–332 (2008).CrossRef
20.
Zurück zum Zitat L. Y. Sheng, F. Yang, J. T. Guo, and T. F. Xi, “Anomalous yield and intermediate temperature brittleness behaviors of directionally solidified nickel-based superalloy,” Trans. Nonferr. Metal. Soc. China, 24, 673–681 (2014).CrossRef L. Y. Sheng, F. Yang, J. T. Guo, and T. F. Xi, “Anomalous yield and intermediate temperature brittleness behaviors of directionally solidified nickel-based superalloy,” Trans. Nonferr. Metal. Soc. China, 24, 673–681 (2014).CrossRef
21.
Zurück zum Zitat L. Y. Sheng, F. Yang, T. F. Xi, et al., “Microstructure evolution and mechanical properties of Ni3Al/Al2O3 composite during self-propagation high-temperature synthesis and hot extrusion,” Mater. Sci. Eng. A, 555, 131–138 (2012).CrossRef L. Y. Sheng, F. Yang, T. F. Xi, et al., “Microstructure evolution and mechanical properties of Ni3Al/Al2O3 composite during self-propagation high-temperature synthesis and hot extrusion,” Mater. Sci. Eng. A, 555, 131–138 (2012).CrossRef
22.
Zurück zum Zitat L. Y. Sheng, T. F. Xi, C. Lai, et al., “Effect of extrusion process on microstructure and mechanical properties of Ni3Al-B-Cr alloy during self-propagation high-temperature synthesis,” Trans. Nonferr. Metal. Soc. China, 22, No. 3, 489–495 (2012).CrossRef L. Y. Sheng, T. F. Xi, C. Lai, et al., “Effect of extrusion process on microstructure and mechanical properties of Ni3Al-B-Cr alloy during self-propagation high-temperature synthesis,” Trans. Nonferr. Metal. Soc. China, 22, No. 3, 489–495 (2012).CrossRef
23.
Zurück zum Zitat L. Y. Sheng, F. Yang, T. F. Xi, et al., “Influence of heat treatment on interface of Cu/Al bimetal composite fabricated by cold rolling,” Compos. Part B - Eng., 42, 1468–1473 (2011).CrossRef L. Y. Sheng, F. Yang, T. F. Xi, et al., “Influence of heat treatment on interface of Cu/Al bimetal composite fabricated by cold rolling,” Compos. Part B - Eng., 42, 1468–1473 (2011).CrossRef
24.
Zurück zum Zitat L. Y. Sheng, J. T. Guo, T. F. Xi, et al., “ZrO2 strengthened NiAl/Cr(Mo,Hf) composite fabricated by powder metallurgy,” Prog. Nat. Sci. - Mater., 22, No. 3, 231–236 (2012).CrossRef L. Y. Sheng, J. T. Guo, T. F. Xi, et al., “ZrO2 strengthened NiAl/Cr(Mo,Hf) composite fabricated by powder metallurgy,” Prog. Nat. Sci. - Mater., 22, No. 3, 231–236 (2012).CrossRef
25.
Zurück zum Zitat L. Y. Sheng, F. Yang, T. F. Xi, et al., “Improvement of compressive strength and ductility in NiAl–Cr(Nb)/Dy alloy by rapid solidification and HIP treatment,” Intermetallics, 27, 14–20 (2012).CrossRef L. Y. Sheng, F. Yang, T. F. Xi, et al., “Improvement of compressive strength and ductility in NiAl–Cr(Nb)/Dy alloy by rapid solidification and HIP treatment,” Intermetallics, 27, 14–20 (2012).CrossRef
26.
Zurück zum Zitat C. Q. Li, D. K. Xu, S. Yu, et l., “Effect of icosahedral phase on crystallographic texture and mechanical anisotropy of Mg–4%Li based alloys,” J. Mater. Sci. Technol., 33, No. 5, 475–480 (2017). C. Q. Li, D. K. Xu, S. Yu, et l., “Effect of icosahedral phase on crystallographic texture and mechanical anisotropy of Mg–4%Li based alloys,” J. Mater. Sci. Technol., 33, No. 5, 475–480 (2017).
27.
Zurück zum Zitat L. Y. Sheng, F. Yang, J. T. Guo, et al., “Investigation on NiAl–TiC–Al2O3 composite prepared by self-propagation high temperature synthesis with hot extrusion,” Compos. Part B - Eng., 45, No. 1, 785–791 (2013).CrossRef L. Y. Sheng, F. Yang, J. T. Guo, et al., “Investigation on NiAl–TiC–Al2O3 composite prepared by self-propagation high temperature synthesis with hot extrusion,” Compos. Part B - Eng., 45, No. 1, 785–791 (2013).CrossRef
28.
Zurück zum Zitat L. Y. Sheng, W. Zhang, J. T. Guo, et al., “Microstructure and mechanical properties of Ni3Al fabricated by thermal explosion and hot extrusion,” Intermetallics, 17, No. 7, 572–577 (2009).CrossRef L. Y. Sheng, W. Zhang, J. T. Guo, et al., “Microstructure and mechanical properties of Ni3Al fabricated by thermal explosion and hot extrusion,” Intermetallics, 17, No. 7, 572–577 (2009).CrossRef
29.
Zurück zum Zitat L. Y. Sheng, J. T. Guo, W. L. Ren, et al., “Preliminary investigation on strong magnetic field treated NiAl–Cr(Mo)–Hf near eutectic alloy,” Intermetallics, 19, No. 2, 143–148 (2011).CrossRef L. Y. Sheng, J. T. Guo, W. L. Ren, et al., “Preliminary investigation on strong magnetic field treated NiAl–Cr(Mo)–Hf near eutectic alloy,” Intermetallics, 19, No. 2, 143–148 (2011).CrossRef
30.
Zurück zum Zitat L. Y. Sheng, B. N. Du, C. Lai, et al., “Influence of tantalum addition on micro- structure and mechanical properties of the NiAl-based eutectic alloy,” Strength Mater., 49, No. 1, 109–117 (2017).CrossRef L. Y. Sheng, B. N. Du, C. Lai, et al., “Influence of tantalum addition on micro- structure and mechanical properties of the NiAl-based eutectic alloy,” Strength Mater., 49, No. 1, 109–117 (2017).CrossRef
31.
Zurück zum Zitat L. Y. Sheng, “Microstructure and wear properties of the quasi-rapidly solidified NiAl/Cr(Mo,Dy) hypoeutectic alloy,” Strength Mater., 48, No. 1, 107–112 (2016).CrossRef L. Y. Sheng, “Microstructure and wear properties of the quasi-rapidly solidified NiAl/Cr(Mo,Dy) hypoeutectic alloy,” Strength Mater., 48, No. 1, 107–112 (2016).CrossRef
32.
Zurück zum Zitat L. Y. Sheng, J. T. Guo, and H. Q. Ye, “Microstructure and mechanical properties of NiAl–Cr(Mo)/Nb eutectic alloy prepared by injection-casting,” Mater. Design, 30, No. 4, 964–969 (2009).CrossRef L. Y. Sheng, J. T. Guo, and H. Q. Ye, “Microstructure and mechanical properties of NiAl–Cr(Mo)/Nb eutectic alloy prepared by injection-casting,” Mater. Design, 30, No. 4, 964–969 (2009).CrossRef
Metadaten
Titel
Hot Extrusion Effect on the Microstructure and Mechanical Properties of a Mg–Y–Nd–Zr Alloy
verfasst von
L. Y. Sheng
B. N. Du
B. J. Wang
D. K. Xu
C. Lai
Y. Gao
T. F. Xi
Publikationsdatum
28.03.2018
Verlag
Springer US
Erschienen in
Strength of Materials / Ausgabe 1/2018
Print ISSN: 0039-2316
Elektronische ISSN: 1573-9325
DOI
https://doi.org/10.1007/s11223-018-9958-9

Weitere Artikel der Ausgabe 1/2018

Strength of Materials 1/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.