Skip to main content
Erschienen in: Topics in Catalysis 19-20/2022

01.11.2022 | Original Paper

Oligo(Butylene-Succinate) and Nanocatalyst Effect Prediction: Could a Neural Network Determine the Lowest Melting Temperature of this Phase-Changing Material Better than a Classic Approach?

verfasst von: Emiliane Daher Pereira, Fernando Gomes de Souza Jr, Kaushik Pal, Fabíola da Silveira Maranhão, Romildo Dias Toledo Filho, Nicole Pagan Hasparyk, Vinicius de Melo Monteiro, Maria Clara Nascimento Dantas, João Gabriel Passos Rodrigues

Erschienen in: Topics in Catalysis | Ausgabe 19-20/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Phase change materials (PCMs) are functional materials that can absorb thermal energy in latent heat. Among these, the environmentally-friendly Bio-PCMs, obtained from renewable sources, have drawn the attention of researchers because of its advantages. This work aimed to produce a Bio-PCM based on oligo (butyl succinate) with the lowest melting temperature. To this end, different reaction conditions were tested and the information obtained were studied with nonlinear modeling and machine learning to investigate the ideal condition to be used. The best synthesis condition from the Neural Network model was prepared and provided material with a maximum melting temperature of 48 ºC. Thus, the novelty of this work is to combine classical knowledge from Polymer Chemistry with modeling via Neural Networks, with that is possible to minimize experimental time, leading to results that target academic efforts towards goal properties, shortening the time needed to convert new chemical platform species into disruptive new materials.

Graphical Abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
8.
Zurück zum Zitat Zhou Y, Wu S, Ma Y, Zhang H, Zeng X, Wu F, Liu F, Ryu JE, Guo Z (2020) Recent advances in organic/composite phase change materials for energy storage. ES Energy Environ 9:28–40 Zhou Y, Wu S, Ma Y, Zhang H, Zeng X, Wu F, Liu F, Ryu JE, Guo Z (2020) Recent advances in organic/composite phase change materials for energy storage. ES Energy Environ 9:28–40
18.
Zurück zum Zitat Khudhair AM, Farid MM (2004) A review on energy conservation in building applications with thermal storage by latent heat using phase change materials. Energy Convers Manag 45:263–275CrossRef Khudhair AM, Farid MM (2004) A review on energy conservation in building applications with thermal storage by latent heat using phase change materials. Energy Convers Manag 45:263–275CrossRef
19.
Zurück zum Zitat Vicente R, Silva T (2014) Brick masonry walls with PCM macrocapsules: an experimental approach. Appl Therm Eng 67:24–34CrossRef Vicente R, Silva T (2014) Brick masonry walls with PCM macrocapsules: an experimental approach. Appl Therm Eng 67:24–34CrossRef
20.
Zurück zum Zitat Karaipekli A, Sarı A (2016) Development and thermal performance of pumice/organic PCM/gypsum composite plasters for thermal energy storage in buildings. Sol Energy Mater Sol Cells 149:19–28CrossRef Karaipekli A, Sarı A (2016) Development and thermal performance of pumice/organic PCM/gypsum composite plasters for thermal energy storage in buildings. Sol Energy Mater Sol Cells 149:19–28CrossRef
22.
Zurück zum Zitat Silva T, Vicente R, Soares N, Ferreira V (2012) Experimental testing and numerical modelling of masonry wall solution with PCM incorporation: a passive construction solution. Energy Build 49:235–245CrossRef Silva T, Vicente R, Soares N, Ferreira V (2012) Experimental testing and numerical modelling of masonry wall solution with PCM incorporation: a passive construction solution. Energy Build 49:235–245CrossRef
23.
Zurück zum Zitat Kalnæs SE, Jelle BP (2015) Phase change materials and products for building applications: a state-of-the-art review and future research opportunities. Energy Build 94:150–176CrossRef Kalnæs SE, Jelle BP (2015) Phase change materials and products for building applications: a state-of-the-art review and future research opportunities. Energy Build 94:150–176CrossRef
24.
Zurück zum Zitat Fokaides PA, Kylili A, Kalogirou SA (2015) Phase change materials (PCMs) integrated into transparent building elements: a review Mater Renew Sustain. Energy 4:1–13 Fokaides PA, Kylili A, Kalogirou SA (2015) Phase change materials (PCMs) integrated into transparent building elements: a review Mater Renew Sustain. Energy 4:1–13
25.
Zurück zum Zitat King MFL, Rao PN, Sivakumar A, Mamidi VK, Richard S, Vijayakumar M, Arunprasath K, Kumar PM (2022) Thermal performance of a double-glazed window integrated with a phase change material (PCM). Mater Today Proc 50:1516–1521CrossRef King MFL, Rao PN, Sivakumar A, Mamidi VK, Richard S, Vijayakumar M, Arunprasath K, Kumar PM (2022) Thermal performance of a double-glazed window integrated with a phase change material (PCM). Mater Today Proc 50:1516–1521CrossRef
26.
Zurück zum Zitat Kośny J, Yarbrough DW, Miller W (2008) Use of PCM enhanced insulation in the building envelope. J Build Enclos Des 2008:8 Kośny J, Yarbrough DW, Miller W (2008) Use of PCM enhanced insulation in the building envelope. J Build Enclos Des 2008:8
27.
Zurück zum Zitat Kośny J (2015) PCM-enhanced building components: an application of phase change materials in building envelopes and internal structures. Springer, BerlinCrossRef Kośny J (2015) PCM-enhanced building components: an application of phase change materials in building envelopes and internal structures. Springer, BerlinCrossRef
28.
Zurück zum Zitat Abu-Hamdeh NH, Alsulami RA, Hatamleh RI (2022) A case study in the field of building sustainability energy: performance enhancement of solar air heater equipped with PCM: a trade-off between energy consumption and absorbed energy. J Build Eng 48:103903CrossRef Abu-Hamdeh NH, Alsulami RA, Hatamleh RI (2022) A case study in the field of building sustainability energy: performance enhancement of solar air heater equipped with PCM: a trade-off between energy consumption and absorbed energy. J Build Eng 48:103903CrossRef
29.
Zurück zum Zitat Mustafa J, Almehmadi FA, Alqaed S (2022) A novel study to examine dependency of indoor temperature and PCM to reduce energy consumption in buildings. J Build Eng 51:104249CrossRef Mustafa J, Almehmadi FA, Alqaed S (2022) A novel study to examine dependency of indoor temperature and PCM to reduce energy consumption in buildings. J Build Eng 51:104249CrossRef
30.
Zurück zum Zitat Wijesuriya S, Booten C, Bianchi M, Kishore RA (2022) Building energy efficiency and load flexibility optimization using phase change materials under futuristic grid scenario. J Clean Prod 339:130561CrossRef Wijesuriya S, Booten C, Bianchi M, Kishore RA (2022) Building energy efficiency and load flexibility optimization using phase change materials under futuristic grid scenario. J Clean Prod 339:130561CrossRef
31.
Zurück zum Zitat Ke W, Ji J, Wang C, Zhang C, Xie H, Tang Y, Lin Y (2022) Comparative analysis on the electrical and thermal performance of two CdTe multi-layer ventilation windows with and without a middle PCM layer: a preliminary numerical study. Renew Energy 189:1306–32CrossRef Ke W, Ji J, Wang C, Zhang C, Xie H, Tang Y, Lin Y (2022) Comparative analysis on the electrical and thermal performance of two CdTe multi-layer ventilation windows with and without a middle PCM layer: a preliminary numerical study. Renew Energy 189:1306–32CrossRef
32.
Zurück zum Zitat Figueiredo A, Rebelo F, Samagaio A, Vicente R, Lira J (2022) Design and thermal characterization of two construction solutions with and without incorporation of macroencapsulated PCM. Infrastructures 7:27CrossRef Figueiredo A, Rebelo F, Samagaio A, Vicente R, Lira J (2022) Design and thermal characterization of two construction solutions with and without incorporation of macroencapsulated PCM. Infrastructures 7:27CrossRef
33.
Zurück zum Zitat Wang X, Li W, Luo Z, Wang K, Shah SP (2022) Design, characteristic and application of phase change materials for sustainable and energy efficient buildings a review. Energy Build. 260:111923CrossRef Wang X, Li W, Luo Z, Wang K, Shah SP (2022) Design, characteristic and application of phase change materials for sustainable and energy efficient buildings a review. Energy Build. 260:111923CrossRef
34.
Zurück zum Zitat Arumugam P, Ramalingam V, Vellaichamy P (2022) Effective PCM, insulation, natural and/or night ventilation techniques to enhance the thermal performance of buildings located in various climates–a review. Energy Build. 258:111840CrossRef Arumugam P, Ramalingam V, Vellaichamy P (2022) Effective PCM, insulation, natural and/or night ventilation techniques to enhance the thermal performance of buildings located in various climates–a review. Energy Build. 258:111840CrossRef
35.
Zurück zum Zitat Wu H, Liang Y, Yang J, Cen J, Zhang X, Xiao L, Cao R, Huang G (2022) Engineering a superinsulating wall with a beneficial thermal nonuniformity factor to improve building energy efficiency. Energy Build 256:111680CrossRef Wu H, Liang Y, Yang J, Cen J, Zhang X, Xiao L, Cao R, Huang G (2022) Engineering a superinsulating wall with a beneficial thermal nonuniformity factor to improve building energy efficiency. Energy Build 256:111680CrossRef
36.
Zurück zum Zitat Salihi M, El Fiti M, Harmen Y, Chhiti Y, Chebak A, Alaoui FEM, Achak M, Bentiss F, C. (2022) Jama, Evaluation of global energy performance of building walls integrating PCM: numerical study in semi-arid climate in Morocco. Case Stud Constr Mater 16:e00979 Salihi M, El Fiti M, Harmen Y, Chhiti Y, Chebak A, Alaoui FEM, Achak M, Bentiss F, C. (2022) Jama, Evaluation of global energy performance of building walls integrating PCM: numerical study in semi-arid climate in Morocco. Case Stud Constr Mater 16:e00979
37.
Zurück zum Zitat Wang P, Liu Z, Xi S, Zhang Y, Zhang L (2022) Experiment and numerical simulation of an adaptive building roof combining variable transparency shape-stabilized PCM. Energy Build. 263:112030CrossRef Wang P, Liu Z, Xi S, Zhang Y, Zhang L (2022) Experiment and numerical simulation of an adaptive building roof combining variable transparency shape-stabilized PCM. Energy Build. 263:112030CrossRef
38.
Zurück zum Zitat Essid N, Eddhahak A, Neji J (2022) Experimental and numerical analysis of the energy efficiency of PCM concrete wallboards under different thermal scenarios. J Build Eng 45:103547CrossRef Essid N, Eddhahak A, Neji J (2022) Experimental and numerical analysis of the energy efficiency of PCM concrete wallboards under different thermal scenarios. J Build Eng 45:103547CrossRef
39.
Zurück zum Zitat Al-Absi ZA, Hafizal MIM, Ismail M (2022) Experimental study on the thermal performance of PCM-based panels developed for exterior finishes of building walls. J Build Eng 25:104379CrossRef Al-Absi ZA, Hafizal MIM, Ismail M (2022) Experimental study on the thermal performance of PCM-based panels developed for exterior finishes of building walls. J Build Eng 25:104379CrossRef
40.
Zurück zum Zitat Brooks AL, He Y, Farzadnia N, Seyfimakrani S, Zhou H (2022) Incorporating PCM-enabled thermal energy storage into 3D printable cementitious composites. Cem Concr Compos 129:104492CrossRef Brooks AL, He Y, Farzadnia N, Seyfimakrani S, Zhou H (2022) Incorporating PCM-enabled thermal energy storage into 3D printable cementitious composites. Cem Concr Compos 129:104492CrossRef
41.
Zurück zum Zitat Mousavi S, Rismanchi B, Brey S, Aye L (2022) Lessons learned from PCM embedded radiant chilled ceiling experiments in Melbourne. Energy Rep 8:54–61CrossRef Mousavi S, Rismanchi B, Brey S, Aye L (2022) Lessons learned from PCM embedded radiant chilled ceiling experiments in Melbourne. Energy Rep 8:54–61CrossRef
42.
Zurück zum Zitat Chen X, Kong X, Wang S, Fu X, Yu B, Yao K, Zhong Y, Li J, Xu W, Liu Y (2022) Microencapsulated phase change materials: facile preparation and application in building energy conservation. J Energy Storage 48:104025CrossRef Chen X, Kong X, Wang S, Fu X, Yu B, Yao K, Zhong Y, Li J, Xu W, Liu Y (2022) Microencapsulated phase change materials: facile preparation and application in building energy conservation. J Energy Storage 48:104025CrossRef
43.
Zurück zum Zitat Sangwan P, Mehdizadeh-Rad H, Ng AWM, Ur Rehman Tariq MA, Nnachi RC (2022) Performance evaluation of phase change materials to reduce the cooling load of buildings in a tropical climate. Sustainability 14:3171CrossRef Sangwan P, Mehdizadeh-Rad H, Ng AWM, Ur Rehman Tariq MA, Nnachi RC (2022) Performance evaluation of phase change materials to reduce the cooling load of buildings in a tropical climate. Sustainability 14:3171CrossRef
44.
Zurück zum Zitat Al-Absi ZA, Hafizal MIM, Ismail M, Awang H, Al-Shwaiter A (2022) Properties of PCM-based composites developed for the exterior finishes of building walls. Case Stud Constr Mater 16:e00960 Al-Absi ZA, Hafizal MIM, Ismail M, Awang H, Al-Shwaiter A (2022) Properties of PCM-based composites developed for the exterior finishes of building walls. Case Stud Constr Mater 16:e00960
45.
Zurück zum Zitat Vaishnav K, Lazarus GP, Bansal S, Hooda Y (2022) Review on thermal energy efficiency using gypsum integrated phase change materials in buildings: adv constr mater sustain environ. Springer, BerlinCrossRef Vaishnav K, Lazarus GP, Bansal S, Hooda Y (2022) Review on thermal energy efficiency using gypsum integrated phase change materials in buildings: adv constr mater sustain environ. Springer, BerlinCrossRef
46.
Zurück zum Zitat Tsikaloudaki K, Theodosiou T, Tsoka S, Chastas P (2022) Sustainable prefabricated buildings: a holistic approach. Renew Energy Environ Sustain 7:11CrossRef Tsikaloudaki K, Theodosiou T, Tsoka S, Chastas P (2022) Sustainable prefabricated buildings: a holistic approach. Renew Energy Environ Sustain 7:11CrossRef
48.
Zurück zum Zitat Tyagi VV, Kaushik SC, Tyagi SK, Akiyama T (2011) Development of phase change materials based microencapsulated technology for buildings: a review. Renew Sustain Energy Rev 15:1373–1391CrossRef Tyagi VV, Kaushik SC, Tyagi SK, Akiyama T (2011) Development of phase change materials based microencapsulated technology for buildings: a review. Renew Sustain Energy Rev 15:1373–1391CrossRef
60.
Zurück zum Zitat Delhomme C, Weuster-Botz D, Kühn FE (2009) Succinic acid from renewable resources as a C 4 building-block chemical—a review of the catalytic possibilities in aqueous media. Green Chem 11:13–26CrossRef Delhomme C, Weuster-Botz D, Kühn FE (2009) Succinic acid from renewable resources as a C 4 building-block chemical—a review of the catalytic possibilities in aqueous media. Green Chem 11:13–26CrossRef
61.
Zurück zum Zitat Bechthold I, Bretz K, Kabasci S, Kopitzky R, Springer A (2008) Succinic acid: a new platform chemical for biobased polymers from renewable resources. Chem Eng Technol Ind Chem-Plant Equip-Process Eng-Biotechnol. 31:647–654 Bechthold I, Bretz K, Kabasci S, Kopitzky R, Springer A (2008) Succinic acid: a new platform chemical for biobased polymers from renewable resources. Chem Eng Technol Ind Chem-Plant Equip-Process Eng-Biotechnol. 31:647–654
62.
Zurück zum Zitat Mazière A, Prinsen P, García A, Luque R, Len C (2017) A review of progress in (bio) catalytic routes from/to renewable succinic acid. Biofuels Bioprod Biorefining 11:908–931CrossRef Mazière A, Prinsen P, García A, Luque R, Len C (2017) A review of progress in (bio) catalytic routes from/to renewable succinic acid. Biofuels Bioprod Biorefining 11:908–931CrossRef
68.
Zurück zum Zitat Baldanza VA, Souza FG Jr, Filho ST, Franco HA, Oliveira GE, Caetano RM, Hernandez JA, Ferreira Leite SG, Furtado Sousa AM, Nazareth Silva AL (2018) Controlled-release fertilizer based on poly(butylene-succinate)/urea/clay and its effect on lettuce growth: controlled-release fertilizer based on poly(butylene-succinate)/urea/clay and its effect on lettuce growth. J Appl Polym Sci. https://doi.org/10.1002/app.46858CrossRef Baldanza VA, Souza FG Jr, Filho ST, Franco HA, Oliveira GE, Caetano RM, Hernandez JA, Ferreira Leite SG, Furtado Sousa AM, Nazareth Silva AL (2018) Controlled-release fertilizer based on poly(butylene-succinate)/urea/clay and its effect on lettuce growth: controlled-release fertilizer based on poly(butylene-succinate)/urea/clay and its effect on lettuce growth. J Appl Polym Sci. https://​doi.​org/​10.​1002/​app.​46858CrossRef
73.
Zurück zum Zitat Pereira ED, da Silva CJ, dos Santos JM, Souza FG (2021) One pot-synthesis of poly(lactic acid-g-vinyl alcohol). Abstr Int Conf Meet 1:9–9 Pereira ED, da Silva CJ, dos Santos JM, Souza FG (2021) One pot-synthesis of poly(lactic acid-g-vinyl alcohol). Abstr Int Conf Meet 1:9–9
89.
Zurück zum Zitat Peñas MI, Pérez-Camargo RA, Hernández R, Müller AJ (2022) A review on current strategies for the modulation of thermomechanical, barrier, and biodegradation properties of poly (Butylene-succinate)(PBS) and its random copolymers. Polymers 14:1025CrossRef Peñas MI, Pérez-Camargo RA, Hernández R, Müller AJ (2022) A review on current strategies for the modulation of thermomechanical, barrier, and biodegradation properties of poly (Butylene-succinate)(PBS) and its random copolymers. Polymers 14:1025CrossRef
90.
Zurück zum Zitat Chien H-L, Tsai Y-T, Tseng W-S, Wu J-A, Kuo S-L, Chang S-L, Huang S-J, Liu C-T (2022) Biodegradation of PBSA films by elite aspergillus isolates and farmland soil. Polymers 14:1320CrossRef Chien H-L, Tsai Y-T, Tseng W-S, Wu J-A, Kuo S-L, Chang S-L, Huang S-J, Liu C-T (2022) Biodegradation of PBSA films by elite aspergillus isolates and farmland soil. Polymers 14:1320CrossRef
91.
Zurück zum Zitat Xu Y, Liu C, Qiao L, Zhu K, Tan H, Dong S, Lin Z (2022) Crystallization and dynamic mechanical behavior of coir fiber reinforced poly (Butylene-succinate) biocomposites. J Renew Mater 10:1039CrossRef Xu Y, Liu C, Qiao L, Zhu K, Tan H, Dong S, Lin Z (2022) Crystallization and dynamic mechanical behavior of coir fiber reinforced poly (Butylene-succinate) biocomposites. J Renew Mater 10:1039CrossRef
92.
Zurück zum Zitat Vassallo E, Aloisio M, Pedroni M, Ghezzi F, Cerruti P, Donnini R (2022) Effect of low-pressure plasma treatment on the surface wettability of poly (Butylene-succinate) films. Coatings 12:220CrossRef Vassallo E, Aloisio M, Pedroni M, Ghezzi F, Cerruti P, Donnini R (2022) Effect of low-pressure plasma treatment on the surface wettability of poly (Butylene-succinate) films. Coatings 12:220CrossRef
93.
Zurück zum Zitat Delorme AE, Radusin T, Myllytie P, Verney V, Askanian H (2022) Enhancement of gas barrier properties and durability of poly (butylene-succinate-co-butylene adipate)-based nanocomposites for food packaging applications. Nanomaterials 12:978CrossRef Delorme AE, Radusin T, Myllytie P, Verney V, Askanian H (2022) Enhancement of gas barrier properties and durability of poly (butylene-succinate-co-butylene adipate)-based nanocomposites for food packaging applications. Nanomaterials 12:978CrossRef
94.
Metadaten
Titel
Oligo(Butylene-Succinate) and Nanocatalyst Effect Prediction: Could a Neural Network Determine the Lowest Melting Temperature of this Phase-Changing Material Better than a Classic Approach?
verfasst von
Emiliane Daher Pereira
Fernando Gomes de Souza Jr
Kaushik Pal
Fabíola da Silveira Maranhão
Romildo Dias Toledo Filho
Nicole Pagan Hasparyk
Vinicius de Melo Monteiro
Maria Clara Nascimento Dantas
João Gabriel Passos Rodrigues
Publikationsdatum
01.11.2022
Verlag
Springer US
Erschienen in
Topics in Catalysis / Ausgabe 19-20/2022
Print ISSN: 1022-5528
Elektronische ISSN: 1572-9028
DOI
https://doi.org/10.1007/s11244-022-01728-w

Weitere Artikel der Ausgabe 19-20/2022

Topics in Catalysis 19-20/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.