Skip to main content
Erschienen in: Tribology Letters 3/2010

01.09.2010 | Original Paper

On the Application of Transition State Theory to Atomic-Scale Wear

verfasst von: Tevis D. B. Jacobs, Bernd Gotsmann, Mark A. Lantz, Robert W. Carpick

Erschienen in: Tribology Letters | Ausgabe 3/2010

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The atomic force microscope (AFM) tip is often used as a model of a single sliding asperity in order to study nanotribological phenomena including friction, adhesion, and wear. In particular, recent work has demonstrated a wear regime in which surface modification appears to occur in an atom-by-atom fashion. Several authors have modeled this atomic-scale wear behavior as a thermally activated bond breaking process. The present article reviews this body of work in light of concepts from formal transition state theory (also called reaction rate theory). It is found that this framework is viable as one possible description of atomic-scale wear, with impressive agreements to experimental trends found. However, further experimental work is required to fully validate this approach. It is also found that, while the Arrhenius-type equations have been widely used, there is insufficient discussion of or agreement on the specific atomic-scale reaction that is thermally activated, or its dependence on stresses and sliding velocity. Further, lacking a clear picture of the underlying mechanism, a consensus on how to measure or interpret the activation volume and activation energy is yet to emerge. This article makes suggestions for measuring and interpreting such parameters, and provides a picture of one possible thermally activated transition (in its initial, activated, and final states). Finally, directions for further experimental and simulation work are proposed for validating and extending this model and rationally interrogating the behavior of this type of wear.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat de Boer, M.P., Mayer, T.M.: Tribology of MEMS. MRS Bull. 26, 302–304 (2001) de Boer, M.P., Mayer, T.M.: Tribology of MEMS. MRS Bull. 26, 302–304 (2001)
2.
Zurück zum Zitat Romig Jr., A.D., Dugger, M.T., McWhorter, P.J.: Materials issues in microelectromechanical devices: science, engineering, manufacturability and reliability. Acta Mater. 51, 5837–5866 (2003)CrossRef Romig Jr., A.D., Dugger, M.T., McWhorter, P.J.: Materials issues in microelectromechanical devices: science, engineering, manufacturability and reliability. Acta Mater. 51, 5837–5866 (2003)CrossRef
3.
Zurück zum Zitat Maboudian, R., Ashurst, W.R., Carraro, C.: Tribological challenges in micromechanical systems. Tribol. Lett. 12, 95–100 (2002)CrossRef Maboudian, R., Ashurst, W.R., Carraro, C.: Tribological challenges in micromechanical systems. Tribol. Lett. 12, 95–100 (2002)CrossRef
4.
Zurück zum Zitat Xu, S., Amro, N.A., Liu, G.Y.: Characterization of AFM tips using nanografting. Appl. Surf. Sci. 175, 649–655 (2001)CrossRefADS Xu, S., Amro, N.A., Liu, G.Y.: Characterization of AFM tips using nanografting. Appl. Surf. Sci. 175, 649–655 (2001)CrossRefADS
5.
Zurück zum Zitat Cruchon-Dupeyrat, S., Porthun, S., Liu, G.Y.: Nanofabrication using computer-assisted design and automated vector-scanning probe lithography. Appl. Surf. Sci. 175, 636–642 (2001)CrossRefADS Cruchon-Dupeyrat, S., Porthun, S., Liu, G.Y.: Nanofabrication using computer-assisted design and automated vector-scanning probe lithography. Appl. Surf. Sci. 175, 636–642 (2001)CrossRefADS
6.
Zurück zum Zitat Lieber, C.M., Kim, Y.: Nanomachining and manipulation with the atomic force microscope. Adv. Mater. 5, 392–394 (1993)CrossRef Lieber, C.M., Kim, Y.: Nanomachining and manipulation with the atomic force microscope. Adv. Mater. 5, 392–394 (1993)CrossRef
7.
Zurück zum Zitat Vettiger, P., Cross, G., et al.: The ‘Millipede’—nanotechnology entering data storage. IEEE Trans. Nanotechnol. 1, 39–55 (2002)CrossRefADS Vettiger, P., Cross, G., et al.: The ‘Millipede’—nanotechnology entering data storage. IEEE Trans. Nanotechnol. 1, 39–55 (2002)CrossRefADS
8.
Zurück zum Zitat Szlufarska, I., Chandross, M., Carpick, R.W.: Recent advances in single-asperity nanotribology. J. Phys. D 41, 123001 (2008)CrossRefADS Szlufarska, I., Chandross, M., Carpick, R.W.: Recent advances in single-asperity nanotribology. J. Phys. D 41, 123001 (2008)CrossRefADS
9.
Zurück zum Zitat Meyer, E., Hug, H.J., Bennewitz, R.: Scanning Probe Microscopy: The Lab on a Tip. Springer, New York (2003) Meyer, E., Hug, H.J., Bennewitz, R.: Scanning Probe Microscopy: The Lab on a Tip. Springer, New York (2003)
10.
Zurück zum Zitat Khurshudov, A.G., Kato, K., Koide, H.: Nano-wear of the diamond AFM probing tip under scratching of silicon, studied by AFM. Tribol. Lett. 2, 345–354 (1996)CrossRef Khurshudov, A.G., Kato, K., Koide, H.: Nano-wear of the diamond AFM probing tip under scratching of silicon, studied by AFM. Tribol. Lett. 2, 345–354 (1996)CrossRef
11.
Zurück zum Zitat Bloo, M.L., Haitjema, H., Pril, W.O.: Deformation and wear of pyramidal, silicon-nitride AFM tips scanning micrometre-size features in contact mode. Measurement 25, 203–211 (1999)CrossRef Bloo, M.L., Haitjema, H., Pril, W.O.: Deformation and wear of pyramidal, silicon-nitride AFM tips scanning micrometre-size features in contact mode. Measurement 25, 203–211 (1999)CrossRef
12.
Zurück zum Zitat Zhao, Q.L., Dong, S., Sun, T.: Investigation of an atomic force microscope diamond tip wear in micro/nano-machining. Key Eng. Mat. 202–203, 315–320 (2001)CrossRef Zhao, Q.L., Dong, S., Sun, T.: Investigation of an atomic force microscope diamond tip wear in micro/nano-machining. Key Eng. Mat. 202–203, 315–320 (2001)CrossRef
13.
Zurück zum Zitat Maw, W., Stevens, F., et al.: Single asperity tribochemical wear of silicon nitride studied by atomic force microscopy. J. Appl. Phys. 92, 5103–5109 (2002)CrossRefADS Maw, W., Stevens, F., et al.: Single asperity tribochemical wear of silicon nitride studied by atomic force microscopy. J. Appl. Phys. 92, 5103–5109 (2002)CrossRefADS
14.
Zurück zum Zitat D’Acunto, M.: Theoretical approach for the quantification of wear mechanisms on the nanoscale. Nanotechnology 15, 795–801 (2004)CrossRefADS D’Acunto, M.: Theoretical approach for the quantification of wear mechanisms on the nanoscale. Nanotechnology 15, 795–801 (2004)CrossRefADS
15.
Zurück zum Zitat Chung, K.-H., Lee, Y.-H., Kim, D.-E.: Characteristics of fracture during the approach process and wear mechanism of a silicon AFM tip. Ultramicroscopy 102, 161–171 (2005)CrossRefPubMed Chung, K.-H., Lee, Y.-H., Kim, D.-E.: Characteristics of fracture during the approach process and wear mechanism of a silicon AFM tip. Ultramicroscopy 102, 161–171 (2005)CrossRefPubMed
16.
Zurück zum Zitat Liu, H., Klonowski, M., et al.: Advanced atomic force microscopy probes: wear resistant designs. J. Vac. Sci. Technol. B 23, 3090–3093 (2005)CrossRef Liu, H., Klonowski, M., et al.: Advanced atomic force microscopy probes: wear resistant designs. J. Vac. Sci. Technol. B 23, 3090–3093 (2005)CrossRef
17.
Zurück zum Zitat Tao, Z., Bhushan, B.: Surface modification of AFM silicon probes for adhesion and wear reduction. Tribol. Lett. 21, 1–16 (2006)CrossRef Tao, Z., Bhushan, B.: Surface modification of AFM silicon probes for adhesion and wear reduction. Tribol. Lett. 21, 1–16 (2006)CrossRef
18.
Zurück zum Zitat Bhaskaran, H., Sebastian, A., Despont, M.: Nanoscale PtSi tips for conducting probe technologies. IEEE Trans. Nanotechnol. 8, 128–131 (2009)CrossRefADS Bhaskaran, H., Sebastian, A., Despont, M.: Nanoscale PtSi tips for conducting probe technologies. IEEE Trans. Nanotechnol. 8, 128–131 (2009)CrossRefADS
19.
Zurück zum Zitat Kopycinska-Mueller, M., Geiss, R.H., Hurley, D.C.: Size-related plasticity effects in AFM silicon cantilever tips. Mater. Res. Soc. Symp. Proc. 924, 19–24 (2006) Kopycinska-Mueller, M., Geiss, R.H., Hurley, D.C.: Size-related plasticity effects in AFM silicon cantilever tips. Mater. Res. Soc. Symp. Proc. 924, 19–24 (2006)
20.
Zurück zum Zitat Chung, K.H., Kim, D.E.: Fundamental investigation of micro wear rate using an atomic force microscope. Tribol. Lett. 15, 135–144 (2003)CrossRef Chung, K.H., Kim, D.E.: Fundamental investigation of micro wear rate using an atomic force microscope. Tribol. Lett. 15, 135–144 (2003)CrossRef
21.
Zurück zum Zitat Tao, Z.H., Bhushan, B.: Surface modification of AFM Si3N4 probes for adhesion/friction reduction and imaging improvement. Trans. ASME 128, 865–875 (2006)CrossRef Tao, Z.H., Bhushan, B.: Surface modification of AFM Si3N4 probes for adhesion/friction reduction and imaging improvement. Trans. ASME 128, 865–875 (2006)CrossRef
22.
Zurück zum Zitat Gotsmann, B., Lantz, M.A.: Atomistic wear in a single asperity sliding contact. Phys. Rev. Lett. 101, 125501 (2008)CrossRefADSPubMed Gotsmann, B., Lantz, M.A.: Atomistic wear in a single asperity sliding contact. Phys. Rev. Lett. 101, 125501 (2008)CrossRefADSPubMed
23.
Zurück zum Zitat Bhushan, B., Kwak, K.J.: Velocity dependence of nanoscale wear in atomic force microscopy. Appl. Phys. Lett. 91, 3 (2007)CrossRef Bhushan, B., Kwak, K.J.: Velocity dependence of nanoscale wear in atomic force microscopy. Appl. Phys. Lett. 91, 3 (2007)CrossRef
24.
Zurück zum Zitat Kopta, S., Salmeron, M.: The atomic scale origin of wear on mica and its contribution to friction. J. Chem. Phys. 113, 8249–8252 (2000)CrossRefADS Kopta, S., Salmeron, M.: The atomic scale origin of wear on mica and its contribution to friction. J. Chem. Phys. 113, 8249–8252 (2000)CrossRefADS
25.
Zurück zum Zitat Agrawal, R., Moldovan, N., Espinosa, H.D.: An energy-based model to predict wear in nanocrystalline diamond atomic force microscopy tips. J. Appl. Phys. 106, 064311 (2009)CrossRefADS Agrawal, R., Moldovan, N., Espinosa, H.D.: An energy-based model to predict wear in nanocrystalline diamond atomic force microscopy tips. J. Appl. Phys. 106, 064311 (2009)CrossRefADS
26.
Zurück zum Zitat Gnecco, E., Bennewitz, R., Meyer, E.: Abrasive wear on the atomic scale. Phys. Rev. Lett. 88, 215501 (2002)CrossRefADSPubMed Gnecco, E., Bennewitz, R., Meyer, E.: Abrasive wear on the atomic scale. Phys. Rev. Lett. 88, 215501 (2002)CrossRefADSPubMed
27.
Zurück zum Zitat Bhaskaran, H., Gotsmann, B., et al.: Ultralow nanoscale wear through atom-by-atom attrition in silicon-containing diamond-like carbon. Nat. Nanotechnol. 5, 181–185 (2010)CrossRefADSPubMed Bhaskaran, H., Gotsmann, B., et al.: Ultralow nanoscale wear through atom-by-atom attrition in silicon-containing diamond-like carbon. Nat. Nanotechnol. 5, 181–185 (2010)CrossRefADSPubMed
28.
Zurück zum Zitat Liu, J., Grierson, D.S., et al.: Preventing nanoscale wear of atomic force microscopy tips through the use of monolithic ultrananocrystalline diamond probes. Small 6, 1140–1149 (2010)CrossRefPubMed Liu, J., Grierson, D.S., et al.: Preventing nanoscale wear of atomic force microscopy tips through the use of monolithic ultrananocrystalline diamond probes. Small 6, 1140–1149 (2010)CrossRefPubMed
29.
Zurück zum Zitat Christian, J.W.: The Theory of Transformations in Metals and Alloys. Pergamon, Oxford (2002) Christian, J.W.: The Theory of Transformations in Metals and Alloys. Pergamon, Oxford (2002)
30.
Zurück zum Zitat Vineyard, G.H.: Frequency factors and isotope effects in solid state rate processes. J. Phys. Chem. Solids 3, 121–127 (1957)CrossRefADS Vineyard, G.H.: Frequency factors and isotope effects in solid state rate processes. J. Phys. Chem. Solids 3, 121–127 (1957)CrossRefADS
31.
Zurück zum Zitat Hanggi, P., Talkner, P., Borkovec, M.: Reaction-rate theory—50 years after Kramers. Rev. Mod. Phys. 62, 251–341 (1990)CrossRefMathSciNetADS Hanggi, P., Talkner, P., Borkovec, M.: Reaction-rate theory—50 years after Kramers. Rev. Mod. Phys. 62, 251–341 (1990)CrossRefMathSciNetADS
32.
Zurück zum Zitat Kauzmann, W.: Flow of solid metals from the standpoint of chemical-rate theory. Trans. AIME 143, 57–83 (1941) Kauzmann, W.: Flow of solid metals from the standpoint of chemical-rate theory. Trans. AIME 143, 57–83 (1941)
33.
Zurück zum Zitat Rohde, R.W., Pitt, C.H.: Dislocation velocities in nickel single crystals. J. Appl. Phys. 38, 876–879 (1967)CrossRefADS Rohde, R.W., Pitt, C.H.: Dislocation velocities in nickel single crystals. J. Appl. Phys. 38, 876–879 (1967)CrossRefADS
34.
Zurück zum Zitat Gibbs, G.B.: Thermodynamics of thermally-activated dislocation glide. Phys. Status Solidi 10, 507–512 (1965)CrossRef Gibbs, G.B.: Thermodynamics of thermally-activated dislocation glide. Phys. Status Solidi 10, 507–512 (1965)CrossRef
35.
Zurück zum Zitat Hirth, J.P., Nix, W.D.: An analysis of thermodynamics of dislocation glide. Phys. Status Solidi 35, 177–188 (1969)CrossRef Hirth, J.P., Nix, W.D.: An analysis of thermodynamics of dislocation glide. Phys. Status Solidi 35, 177–188 (1969)CrossRef
36.
Zurück zum Zitat Kocks, U.F., Argon, A.S., Ashby, M.F.: Thermodynamics and kinetics of slip. Prog. Mater. Sci. 19, 1–281 (1975)CrossRef Kocks, U.F., Argon, A.S., Ashby, M.F.: Thermodynamics and kinetics of slip. Prog. Mater. Sci. 19, 1–281 (1975)CrossRef
37.
Zurück zum Zitat Taylor, G.: Thermally-activated deformation of BCC metals and alloys. Prog. Mater. Sci. 36, 29–61 (1992)CrossRef Taylor, G.: Thermally-activated deformation of BCC metals and alloys. Prog. Mater. Sci. 36, 29–61 (1992)CrossRef
38.
Zurück zum Zitat Gibbs, G.B.: On interpretation of experimental activation parameters for dislocation glide. Phil. Mag. 20, 867–872 (1969)CrossRefADS Gibbs, G.B.: On interpretation of experimental activation parameters for dislocation glide. Phil. Mag. 20, 867–872 (1969)CrossRefADS
39.
Zurück zum Zitat Hull, D., Bacon, D.J.: Introduction to Dislocations, 4th edn. Butterworth-Heinemann, Oxford (1984)MATH Hull, D., Bacon, D.J.: Introduction to Dislocations, 4th edn. Butterworth-Heinemann, Oxford (1984)MATH
40.
Zurück zum Zitat Park, N.S., Kim, M.W., et al.: Atomic layer wear of single-crystal calcite in aqueous solution scanning force microscopy. J. Appl. Phys. 80, 2680–2686 (1996)CrossRefADS Park, N.S., Kim, M.W., et al.: Atomic layer wear of single-crystal calcite in aqueous solution scanning force microscopy. J. Appl. Phys. 80, 2680–2686 (1996)CrossRefADS
41.
Zurück zum Zitat Sheehan, P.E.: The wear kinetics of NaCl under dry nitrogen and at low humidities. Chem. Phys. Lett. 410, 151–155 (2005)CrossRefADS Sheehan, P.E.: The wear kinetics of NaCl under dry nitrogen and at low humidities. Chem. Phys. Lett. 410, 151–155 (2005)CrossRefADS
42.
Zurück zum Zitat Briscoe, B.J., Evans, D.C.B.: The shear properties of Langmuir-Blodgett Layers. Proc. R. Soc. Lond. A 380, 389–407 (1982)CrossRefADS Briscoe, B.J., Evans, D.C.B.: The shear properties of Langmuir-Blodgett Layers. Proc. R. Soc. Lond. A 380, 389–407 (1982)CrossRefADS
43.
Zurück zum Zitat Helt, J.M., Batteas, J.D.: Wear of mica under aqueous environments: direct observation of defect nucleation by AFM. Langmuir 21, 633–639 (2005)CrossRefPubMed Helt, J.M., Batteas, J.D.: Wear of mica under aqueous environments: direct observation of defect nucleation by AFM. Langmuir 21, 633–639 (2005)CrossRefPubMed
44.
Zurück zum Zitat Hong, U.S., Jung, S.L., et al.: Wear mechanism of multiphase friction materials with different phenolic resin matrices. Wear 266, 739–744 (2009)CrossRef Hong, U.S., Jung, S.L., et al.: Wear mechanism of multiphase friction materials with different phenolic resin matrices. Wear 266, 739–744 (2009)CrossRef
45.
Zurück zum Zitat Luan, B., Robbins, M.O.: The breakdown of continuum models for mechanical contacts. Nature 435, 929–932 (2005)CrossRefADSPubMed Luan, B., Robbins, M.O.: The breakdown of continuum models for mechanical contacts. Nature 435, 929–932 (2005)CrossRefADSPubMed
46.
47.
Zurück zum Zitat Krausz, A.S., Eyring, H.: Deformation Kinetics. Wiley, New York (1975) Krausz, A.S., Eyring, H.: Deformation Kinetics. Wiley, New York (1975)
48.
Zurück zum Zitat Li, J.: The mechanics and physics of defect nucleation. MRS Bull. 32, 151–159 (2007) Li, J.: The mechanics and physics of defect nucleation. MRS Bull. 32, 151–159 (2007)
49.
Zurück zum Zitat Zhao, X.Y., Hamilton, M., et al.: Thermally activated friction. Tribol. Lett. 27, 113–117 (2007)CrossRef Zhao, X.Y., Hamilton, M., et al.: Thermally activated friction. Tribol. Lett. 27, 113–117 (2007)CrossRef
50.
Zurück zum Zitat Zhao, X., Phillpot, S.R. et al.: Transition from thermal to athermal friction under cryogenic conditions. Phys. Rev. Lett. 102, 1861021–1861024 (2009) Zhao, X., Phillpot, S.R. et al.: Transition from thermal to athermal friction under cryogenic conditions. Phys. Rev. Lett. 102, 1861021–1861024 (2009)
51.
Zurück zum Zitat Jansen, L., Schirmeisen, A., et al.: Nanoscale frictional dissipation into shear-stressed polymer relaxations. Phys. Rev. Lett. 102, 4 (2009)CrossRef Jansen, L., Schirmeisen, A., et al.: Nanoscale frictional dissipation into shear-stressed polymer relaxations. Phys. Rev. Lett. 102, 4 (2009)CrossRef
52.
Zurück zum Zitat Schirmeisen, A., Jansen, L., et al.: Temperature dependence of point contact friction on silicon. Appl. Phys. Lett. 88, 123108 (2006)CrossRefADS Schirmeisen, A., Jansen, L., et al.: Temperature dependence of point contact friction on silicon. Appl. Phys. Lett. 88, 123108 (2006)CrossRefADS
53.
Zurück zum Zitat Barel, I., Urbakh, M., et al.: Multibond dynamics of nanoscale friction: the role of temperature. Phys. Rev. Lett. 104, 066104 (2010)CrossRefADSPubMed Barel, I., Urbakh, M., et al.: Multibond dynamics of nanoscale friction: the role of temperature. Phys. Rev. Lett. 104, 066104 (2010)CrossRefADSPubMed
54.
Zurück zum Zitat Johnson, K.L.: Contact Mechanics. University Press, Cambridge (1987) Johnson, K.L.: Contact Mechanics. University Press, Cambridge (1987)
55.
Zurück zum Zitat Carpick, R.W., Salmeron, M.: Scratching the surface: fundamental investigations of tribology with atomic force microscopy. Chem. Rev. 97, 1163–1194 (1997)CrossRefPubMed Carpick, R.W., Salmeron, M.: Scratching the surface: fundamental investigations of tribology with atomic force microscopy. Chem. Rev. 97, 1163–1194 (1997)CrossRefPubMed
56.
Zurück zum Zitat Zworner, O., Holscher, H., et al.: The velocity dependence of frictional forces in point-contact friction. Appl. Phys. A 66, S263–S267 (1998)CrossRefADS Zworner, O., Holscher, H., et al.: The velocity dependence of frictional forces in point-contact friction. Appl. Phys. A 66, S263–S267 (1998)CrossRefADS
57.
Zurück zum Zitat Riedo, E., Gnecco, E., et al.: Interaction potential and hopping dynamics governing sliding friction. Phys. Rev. Lett. 91, 84502 (2003)CrossRefADS Riedo, E., Gnecco, E., et al.: Interaction potential and hopping dynamics governing sliding friction. Phys. Rev. Lett. 91, 84502 (2003)CrossRefADS
58.
Zurück zum Zitat Bouhacina, T., Aimé, J.P., et al.: Tribological behaviour of a polymer grafted in silanized silica probed with a nanotip. Phys. Rev. B 56, 7694–7703 (1997)CrossRefADS Bouhacina, T., Aimé, J.P., et al.: Tribological behaviour of a polymer grafted in silanized silica probed with a nanotip. Phys. Rev. B 56, 7694–7703 (1997)CrossRefADS
59.
Zurück zum Zitat Gnecco, E., Bennewitz, R., et al.: Velocity dependence of atomic friction. Phys. Rev. Lett. 84, 1172–1175 (2000)CrossRefADSPubMed Gnecco, E., Bennewitz, R., et al.: Velocity dependence of atomic friction. Phys. Rev. Lett. 84, 1172–1175 (2000)CrossRefADSPubMed
60.
Zurück zum Zitat Chen, J., Ratera, I., et al.: Velocity dependence of friction and hydrogen bonding effects. Phys. Rev. Lett. 96, 4 (2006) Chen, J., Ratera, I., et al.: Velocity dependence of friction and hydrogen bonding effects. Phys. Rev. Lett. 96, 4 (2006)
61.
Zurück zum Zitat Yi, S., Dube, M., Grant, M.: Thermal effects on atomic friction. Phys. Rev. Lett. 87, 174301 (2001)CrossRefADS Yi, S., Dube, M., Grant, M.: Thermal effects on atomic friction. Phys. Rev. Lett. 87, 174301 (2001)CrossRefADS
62.
Zurück zum Zitat Gao, G.T., Mikulski, P.T., Harrison, J.A.: Molecular-scale tribology of amorphous carbon coatings: effects of film thickness, adhesion, and long-range interactions. J. Am. Chem. Soc. 124, 7202–7209 (2002)CrossRefPubMed Gao, G.T., Mikulski, P.T., Harrison, J.A.: Molecular-scale tribology of amorphous carbon coatings: effects of film thickness, adhesion, and long-range interactions. J. Am. Chem. Soc. 124, 7202–7209 (2002)CrossRefPubMed
63.
Zurück zum Zitat Jarvis, M.R., Perez, R., Payne, M.C.: Can atomic force microscopy achieve atomic resolution in contact mode? Phys. Rev. Lett. 86, 1287–1290 (2001)CrossRefADSPubMed Jarvis, M.R., Perez, R., Payne, M.C.: Can atomic force microscopy achieve atomic resolution in contact mode? Phys. Rev. Lett. 86, 1287–1290 (2001)CrossRefADSPubMed
64.
Zurück zum Zitat Harrison, J.A., Brenner, D.W.: Simulated tribochemistry—an atomic-scale view of the wear of diamond. J. Am. Chem. Soc. 116, 10399–10402 (1994)CrossRef Harrison, J.A., Brenner, D.W.: Simulated tribochemistry—an atomic-scale view of the wear of diamond. J. Am. Chem. Soc. 116, 10399–10402 (1994)CrossRef
65.
Zurück zum Zitat Kim, H.J., Karthikeyan, S., Rigney, D.: A simulation study of the mixing, atomic flow and velocity profiles of crystalline materials during sliding. Wear 267, 1130–1136 (2009)CrossRef Kim, H.J., Karthikeyan, S., Rigney, D.: A simulation study of the mixing, atomic flow and velocity profiles of crystalline materials during sliding. Wear 267, 1130–1136 (2009)CrossRef
66.
Zurück zum Zitat Rigney, D.A., Fu, X.Y., et al.: Examples of structural evolution during sliding and shear of ductile materials. Scr. Mater. 49, 977–983 (2003)CrossRef Rigney, D.A., Fu, X.Y., et al.: Examples of structural evolution during sliding and shear of ductile materials. Scr. Mater. 49, 977–983 (2003)CrossRef
67.
68.
Zurück zum Zitat Zhu, T., Li, J., et al.: Temperature and strain-rate dependence of surface dislocation nucleation. Phys. Rev. Lett. 100, 4 (2008) Zhu, T., Li, J., et al.: Temperature and strain-rate dependence of surface dislocation nucleation. Phys. Rev. Lett. 100, 4 (2008)
69.
Zurück zum Zitat Crawford, J.H., Slifkin, L.M.: Point Defects in Solids. Plenum Publishing, New York (1972) Crawford, J.H., Slifkin, L.M.: Point Defects in Solids. Plenum Publishing, New York (1972)
70.
Zurück zum Zitat Liu, J., Notbohm, J.K. et al.: Method for characterizing nanoscale wear of atomic force microscope tips. ACS Nano (2010). doi:10.1021/nn100246g Liu, J., Notbohm, J.K. et al.: Method for characterizing nanoscale wear of atomic force microscope tips. ACS Nano (2010). doi:10.​1021/​nn100246g
Metadaten
Titel
On the Application of Transition State Theory to Atomic-Scale Wear
verfasst von
Tevis D. B. Jacobs
Bernd Gotsmann
Mark A. Lantz
Robert W. Carpick
Publikationsdatum
01.09.2010
Verlag
Springer US
Erschienen in
Tribology Letters / Ausgabe 3/2010
Print ISSN: 1023-8883
Elektronische ISSN: 1573-2711
DOI
https://doi.org/10.1007/s11249-010-9635-z

Weitere Artikel der Ausgabe 3/2010

Tribology Letters 3/2010 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.