Skip to main content
Erschienen in: Tribology Letters 1/2011

01.01.2011 | Original Paper

In Situ Studies of Cartilage Microtribology: Roles of Speed and Contact Area

verfasst von: E. D. Bonnevie, V. J. Baro, L. Wang, David L. Burris

Erschienen in: Tribology Letters | Ausgabe 1/2011

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The progression of local cartilage surface damage toward early stage osteoarthritis (OA) likely depends on the severity of the damage and its impact on the local lubrication and stress distribution in the surrounding tissue. It is difficult to study the local responses using traditional methods; in situ microtribological methods are being pursued here as a means to elucidate the mechanical aspects of OA progression. While decades of research have been dedicated to the macrotribological properties of articular cartilage, the microscale response is unclear. An experimental study of healthy cartilage microtribology was undertaken to assess the physiological relevance of a microscale friction probe. Normal forces were on the order of 50 mN. Sliding speed varied from 0 to 5 mm/s, and two probes radii, 0.8 and 3.2 mm, were used in the study. In situ measurements of the indentation depth into the cartilage enabled calculations of contact area, effective elastic modulus, elastic and fluid normal force contributions, and the interfacial friction coefficient. This work resulted in the following findings: (1) at high sliding speed (V = 1–5 mm/s), the friction coefficient was low (μ = 0.025) and insensitive to probe radius (0.8–3.2 mm) despite the fourfold difference in the resulting contact areas; (2) the contact area was a strong function of the probe radius and sliding speed; (3) the friction coefficient was proportional to contact area when sliding speed varied from 0.05 to 5 mm/s; (4) the fluid load support was greater than 85% for all sliding conditions (0% fluid support when V = 0) and was insensitive to both probe radius and sliding speed. The findings were consistent with the adhesive theory of friction; as speed increased, increased effective hardness reduced the area of solid–solid contact which subsequently reduced the friction force. Where the severity of the sliding conditions dominates the wear and degradation of typical engineering tribomaterials, the results suggest that joint motion is actually beneficial for maintaining low matrix stresses, low contact areas, and effective lubrication for the fluid-saturated porous cartilage tissue. Further, the results demonstrated effective pressurization and lubrication beneath single asperity microscale contacts. With carefully designed experimental conditions, local friction probes can facilitate more fundamental studies of cartilage lubrication, friction and wear, and potentially add important insights into the mechanical mechanisms of OA.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
There is strong evidence that fluid shear is negligible. The plowing contribution depends on the known deformation geometry and the unknown pressure distributions. Based on the deformed geometry, it can be concluded that the plowing friction component from the small probe is approximately twice that of the large probe. Because plowing increases the friction of the smaller probe disproportionately, the similar frictional responses suggest a limited contribution from plowing.
 
2
Assuming 70% water, 30% matrix, the matrix stresses are estimated at 120 and 180 kPa for the 3.2 and 0.8 mm radii, respectively, during sliding; they are 340 and 440 kPa under static loading. At 5 mm/s, the hydrostatic pressures are 1.1 and 2.2 MPa for the 3.2 and 0.8 mm radii, respectively.
 
Literatur
1.
Zurück zum Zitat Murphy, L., Schwartz, T.A., Helmick, C.G., Renner, J.B., Tudor, G., Koch, G., Dragomir, A., Kalsbeek, W.D., Luta, G., Jordan., J.M.: Lifetime risk of symptomatic knee osteoarthritis. Arthritis Rheumatism-Arthritis Care Res 59, 1207–1213 (2008)CrossRef Murphy, L., Schwartz, T.A., Helmick, C.G., Renner, J.B., Tudor, G., Koch, G., Dragomir, A., Kalsbeek, W.D., Luta, G., Jordan., J.M.: Lifetime risk of symptomatic knee osteoarthritis. Arthritis Rheumatism-Arthritis Care Res 59, 1207–1213 (2008)CrossRef
2.
Zurück zum Zitat Lane, N.E., Buckwalter, J.A.: Exercise—a cause of osteoarthritis. Rheum. Dis. Clin. North Am. 19, 617–633 (1993) Lane, N.E., Buckwalter, J.A.: Exercise—a cause of osteoarthritis. Rheum. Dis. Clin. North Am. 19, 617–633 (1993)
3.
Zurück zum Zitat Mow, V.C., Ateshian, G.A., Spilker, R.L.: Biomechanics of diarthroidal joints—a review of 20 years of progress. J. Biomech. Eng. 115, 460–467 (1993)CrossRef Mow, V.C., Ateshian, G.A., Spilker, R.L.: Biomechanics of diarthroidal joints—a review of 20 years of progress. J. Biomech. Eng. 115, 460–467 (1993)CrossRef
4.
Zurück zum Zitat McCutchen, C.W.: The frictional properties of animal joints. Wear 5, 1–17 (1962)CrossRef McCutchen, C.W.: The frictional properties of animal joints. Wear 5, 1–17 (1962)CrossRef
5.
Zurück zum Zitat Mow, V.C., Kuei, S.C., Lai, W.M., Armstrong, C.G.: Biphasic creep and stress-relaxation of articular-cartilage in compression—theory and experiments. J. Biomech. Eng. 102, 73–84 (1980)CrossRef Mow, V.C., Kuei, S.C., Lai, W.M., Armstrong, C.G.: Biphasic creep and stress-relaxation of articular-cartilage in compression—theory and experiments. J. Biomech. Eng. 102, 73–84 (1980)CrossRef
6.
Zurück zum Zitat Park, S.H., Krishnan, R., Nicoll, S.B., Ateshian, G.A.: Cartilage interstitial fluid load support in unconfined compression. J. Biomech. 36, 1785–1796 (2003)CrossRef Park, S.H., Krishnan, R., Nicoll, S.B., Ateshian, G.A.: Cartilage interstitial fluid load support in unconfined compression. J. Biomech. 36, 1785–1796 (2003)CrossRef
7.
Zurück zum Zitat Ateshian, G.A.: The role of interstitial fluid pressurization in articular cartilage lubrication. J. Biomech. 42, 1163–1176 (2009)CrossRef Ateshian, G.A.: The role of interstitial fluid pressurization in articular cartilage lubrication. J. Biomech. 42, 1163–1176 (2009)CrossRef
8.
Zurück zum Zitat Wright, V., Dowson, D.: Lubrication and cartilage. J. Anat. 121, 107–118 (1976) Wright, V., Dowson, D.: Lubrication and cartilage. J. Anat. 121, 107–118 (1976)
9.
Zurück zum Zitat Dowson, D., Wright, V., Longfield, M.D.: Human joint lubrication. Biomed. Eng. 4, 160–165 (1969) Dowson, D., Wright, V., Longfield, M.D.: Human joint lubrication. Biomed. Eng. 4, 160–165 (1969)
10.
Zurück zum Zitat Macconaill, M.A.: The function of intra-articular fibrocartilages, with special reference to the knee and inferior radio-ulnar joints. J. Anat. 66, 210–227 (1932) Macconaill, M.A.: The function of intra-articular fibrocartilages, with special reference to the knee and inferior radio-ulnar joints. J. Anat. 66, 210–227 (1932)
11.
Zurück zum Zitat McCutchen, C.W.: Sponge-hydrostatic and weeping bearings. Nature 184, 1284–1285 (1959)CrossRef McCutchen, C.W.: Sponge-hydrostatic and weeping bearings. Nature 184, 1284–1285 (1959)CrossRef
12.
Zurück zum Zitat Charnley, J.: How our joints are lubricated. Triangle 4, 175–179 (1960) Charnley, J.: How our joints are lubricated. Triangle 4, 175–179 (1960)
13.
Zurück zum Zitat Schmidt, T.A., Gastelum, N.S., Nguyen, Q.T., Schumacher, B.L., Sah, R.L.: Boundary lubrication of articular cartilage—role of synovial fluid constituents. Arthritis Rheum. 56, 882–891 (2007)CrossRef Schmidt, T.A., Gastelum, N.S., Nguyen, Q.T., Schumacher, B.L., Sah, R.L.: Boundary lubrication of articular cartilage—role of synovial fluid constituents. Arthritis Rheum. 56, 882–891 (2007)CrossRef
14.
Zurück zum Zitat Barnett, C.H., Cobbold, A.F.: Lubrication within living joints. J. Bone Joint Surg. 44, 662–674 (1962) Barnett, C.H., Cobbold, A.F.: Lubrication within living joints. J. Bone Joint Surg. 44, 662–674 (1962)
15.
Zurück zum Zitat Little, T., Freeman, M., Swanson, S.A.V.: Experience on friction in the human hip joint. In: Wright, V. (ed.) Lubrication and Wear in Joints, pp. 110–114. Sector Publishing Ltd, London (1969) Little, T., Freeman, M., Swanson, S.A.V.: Experience on friction in the human hip joint. In: Wright, V. (ed.) Lubrication and Wear in Joints, pp. 110–114. Sector Publishing Ltd, London (1969)
16.
Zurück zum Zitat Dowson, D.: Modes of lubrication in human joints. Proc. IMechE 181, 45–54 (1967) Dowson, D.: Modes of lubrication in human joints. Proc. IMechE 181, 45–54 (1967)
17.
Zurück zum Zitat Maroudas, A.: Hyaluronic acid films. Proc. IMechE 181, 122–124 (1967) Maroudas, A.: Hyaluronic acid films. Proc. IMechE 181, 122–124 (1967)
18.
Zurück zum Zitat Walker, P.S., Dowson, D., Longfield, M.D., Wright, V.: “Boosted lubrication” in synovial joints by fluid entrapment and enrichment. Ann. Rheum. Dis. 27, 512–520 (1968)CrossRef Walker, P.S., Dowson, D., Longfield, M.D., Wright, V.: “Boosted lubrication” in synovial joints by fluid entrapment and enrichment. Ann. Rheum. Dis. 27, 512–520 (1968)CrossRef
19.
Zurück zum Zitat Krishnan, R., Kopacz, M., Ateshian, G.A.: Experimental verification of the role of interstitial fluid prezzurization in cartilage lubrication. J. Orthop. Res. 22, 565–570 (2004)CrossRef Krishnan, R., Kopacz, M., Ateshian, G.A.: Experimental verification of the role of interstitial fluid prezzurization in cartilage lubrication. J. Orthop. Res. 22, 565–570 (2004)CrossRef
20.
Zurück zum Zitat Carter, M.J., Basalo, I.M., Ateshian, G.A.: The temporal response of the friction coefficient of articular cartilage depends on the contact area. J. Biomech. 40, 3257–3260 (2007)CrossRef Carter, M.J., Basalo, I.M., Ateshian, G.A.: The temporal response of the friction coefficient of articular cartilage depends on the contact area. J. Biomech. 40, 3257–3260 (2007)CrossRef
21.
Zurück zum Zitat Caligaris, M., Ateshian, G.A.: Effects of sustained interstitial fluid pressurization under migrating contact area, and boundary lubrication by synovial fluid, on cartilage friction. Osteoarthritis Cartilage 16, 1220–1227 (2008)CrossRef Caligaris, M., Ateshian, G.A.: Effects of sustained interstitial fluid pressurization under migrating contact area, and boundary lubrication by synovial fluid, on cartilage friction. Osteoarthritis Cartilage 16, 1220–1227 (2008)CrossRef
22.
Zurück zum Zitat Bell, C.J., Ingham, E., Fisher, J.: Influence of hyaluronic acid on the time-dependent friction response of articular cartilage under different conditions. Proc. Inst. Mech. Eng. H 220, 23–31 (2006)CrossRef Bell, C.J., Ingham, E., Fisher, J.: Influence of hyaluronic acid on the time-dependent friction response of articular cartilage under different conditions. Proc. Inst. Mech. Eng. H 220, 23–31 (2006)CrossRef
23.
Zurück zum Zitat Ateshian, G.A., Wang, H.Q.: A theoretical solution for the frictionless rolling-contact of cylindrical biphasic articular-cartilage layers. J. Biomech. 28, 1341–1355 (1995)CrossRef Ateshian, G.A., Wang, H.Q.: A theoretical solution for the frictionless rolling-contact of cylindrical biphasic articular-cartilage layers. J. Biomech. 28, 1341–1355 (1995)CrossRef
24.
Zurück zum Zitat Ateshian, G.A., Wang, H.: Rolling resistance of articular cartilage due to interstitial fluid flow. Proc. Inst. Mech. Eng. H 211, 419–424 (1997)CrossRef Ateshian, G.A., Wang, H.: Rolling resistance of articular cartilage due to interstitial fluid flow. Proc. Inst. Mech. Eng. H 211, 419–424 (1997)CrossRef
25.
Zurück zum Zitat Park, S., Costa, K.D., Ateshian, G.A.: Microscale frictional response of bovine articular cartilage from atomic force microscopy. J. Biomech. 37, 1679–1687 (2004)CrossRef Park, S., Costa, K.D., Ateshian, G.A.: Microscale frictional response of bovine articular cartilage from atomic force microscopy. J. Biomech. 37, 1679–1687 (2004)CrossRef
26.
Zurück zum Zitat Setton, L.A., Mow, V.C., Muller, F.J., Pita, J.C., Howell, D.S.: Mechanical-properties of canine articular-cartilage are significantly altered following transection of the anterior cruciate ligament. J. Orthop. Res. 12, 451–463 (1994)CrossRef Setton, L.A., Mow, V.C., Muller, F.J., Pita, J.C., Howell, D.S.: Mechanical-properties of canine articular-cartilage are significantly altered following transection of the anterior cruciate ligament. J. Orthop. Res. 12, 451–463 (1994)CrossRef
27.
Zurück zum Zitat Schmitz, T.L., Action, J.E., Ziegert, J.C., Sawyer, W.G.: The difficulty of measuring low friction: uncertainty analysis for friction coefficient measurements. J. Tribol. 127, 673–678 (2005)CrossRef Schmitz, T.L., Action, J.E., Ziegert, J.C., Sawyer, W.G.: The difficulty of measuring low friction: uncertainty analysis for friction coefficient measurements. J. Tribol. 127, 673–678 (2005)CrossRef
28.
Zurück zum Zitat Burris, D.L., Sawyer, W.G.: Addressing practical challenges of low friction coefficient measurements. Tribol. Lett. 35, 17–23 (2009)CrossRef Burris, D.L., Sawyer, W.G.: Addressing practical challenges of low friction coefficient measurements. Tribol. Lett. 35, 17–23 (2009)CrossRef
29.
Zurück zum Zitat Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1985) Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1985)
30.
Zurück zum Zitat Hayes, W.C., Herrmann, G., Mockros, L.F., Keer, L.M.: Mathematical-analysis for indentation tests of articular-cartilage. J. Biomech. 5, 541–551 (1972)CrossRef Hayes, W.C., Herrmann, G., Mockros, L.F., Keer, L.M.: Mathematical-analysis for indentation tests of articular-cartilage. J. Biomech. 5, 541–551 (1972)CrossRef
31.
Zurück zum Zitat Schmitz, T., Action, J., Burris, D., Ziegert, J., Sawyer, W.: Wear-rate uncertainty analysis. J. Tribol. 126, 802–808 (2004)CrossRef Schmitz, T., Action, J., Burris, D., Ziegert, J., Sawyer, W.: Wear-rate uncertainty analysis. J. Tribol. 126, 802–808 (2004)CrossRef
32.
Zurück zum Zitat Pawaskar, S.S., Fisher, J., Jin, Z.M.: Robust and general method for determining surface fluid flow boundary conditions in articular cartilage contact mechanics modeling. J. Biomech. Eng. 132, 031001-1–031001-8 (2010)CrossRef Pawaskar, S.S., Fisher, J., Jin, Z.M.: Robust and general method for determining surface fluid flow boundary conditions in articular cartilage contact mechanics modeling. J. Biomech. Eng. 132, 031001-1–031001-8 (2010)CrossRef
33.
Zurück zum Zitat Ateshian, G.A., Wang, H.Q., Lai, W.M.: The role of interstitial fluid pressurization and surface porosities on the boundary friction of articular cartilage. J. Tribol. 120, 241–248 (1998)CrossRef Ateshian, G.A., Wang, H.Q., Lai, W.M.: The role of interstitial fluid pressurization and surface porosities on the boundary friction of articular cartilage. J. Tribol. 120, 241–248 (1998)CrossRef
34.
Zurück zum Zitat McCutchen, C.W.: Lubrication of Joints, the Joints and Synovial Fluid. Academic Press, New York (1978) McCutchen, C.W.: Lubrication of Joints, the Joints and Synovial Fluid. Academic Press, New York (1978)
35.
Zurück zum Zitat Bowden, F.P., Tabor, D.: Friction and Lubrication of Solids. Clarendon Press, Oxford (1986) Bowden, F.P., Tabor, D.: Friction and Lubrication of Solids. Clarendon Press, Oxford (1986)
36.
Zurück zum Zitat Bowden, F.P., Tabor, D.: The area of contact between stationary and between moving surfaces. Proc. R. Soc. Lond. A Math. Phys. Sci. 169, 0391–0413 (1939)CrossRef Bowden, F.P., Tabor, D.: The area of contact between stationary and between moving surfaces. Proc. R. Soc. Lond. A Math. Phys. Sci. 169, 0391–0413 (1939)CrossRef
37.
Zurück zum Zitat Mclaren, K.G., Tabor, D.: Visco-elastic properties and friction of solids—friction of polymers—influence of speed and temperature. Nature 197, 856–859 (1963)CrossRef Mclaren, K.G., Tabor, D.: Visco-elastic properties and friction of solids—friction of polymers—influence of speed and temperature. Nature 197, 856–859 (1963)CrossRef
Metadaten
Titel
In Situ Studies of Cartilage Microtribology: Roles of Speed and Contact Area
verfasst von
E. D. Bonnevie
V. J. Baro
L. Wang
David L. Burris
Publikationsdatum
01.01.2011
Verlag
Springer US
Erschienen in
Tribology Letters / Ausgabe 1/2011
Print ISSN: 1023-8883
Elektronische ISSN: 1573-2711
DOI
https://doi.org/10.1007/s11249-010-9687-0

Weitere Artikel der Ausgabe 1/2011

Tribology Letters 1/2011 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.