Skip to main content
Erschienen in: Tribology Letters 1/2014

01.10.2014 | Original Paper

The Contact of Elastic Regular Wavy Surfaces Revisited

verfasst von: Vladislav A. Yastrebov, Guillaume Anciaux, Jean-François Molinari

Erschienen in: Tribology Letters | Ausgabe 1/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We revisit the classic problem of an elastic solid with a two-dimensional wavy surface squeezed against an elastic flat half-space from infinitesimal to full contact. Through extensive numerical calculations and analytic derivations, we discover previously overlooked transition regimes. These are seen in particular in the evolution with applied load of the contact area and perimeter, the mean pressure and the probability density of contact pressure. These transitions are correlated with the contact area shape, which is affected by long range elastic interactions. Our analysis has implications for general random rough surfaces, as similar local transitions occur continuously at detached areas or coalescing contact zones. We show that the probability density of null contact pressures is nonzero at full contact. This might suggest revisiting the conditions necessary for applying Persson’s model at partial contacts and guide the comparisons with numerical simulations. We also address the evaluation of the contact perimeter for discrete geometries and the applicability of Westergaard’s solution for three-dimensional geometries.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
The original formulation of the FFT algorithm [25] contains some errors. The most relevant is that the solution is shifted in Fourier space by one wave number. For the current and previous studies [30, 31], we use a corrected version of this method, which was validated on many cases.
 
2
The nominal contact area is \(A_0=\lambda ^2\) as we carry out our simulations on a surface \(\lambda \times \lambda \) to make use of periodic boundary conditions. In the following, however, due to symmetry, all results will be shown only on a quarter of the simulation domain.
 
3
This method is quite similar to the one [25] used in this paper, both are based on the Kalker’s variational formulation [15, 16].
 
4
The FFT-based method, which we use, fails to predict accurately the contact area evolution near full contact \(A^{\prime } \gtrapprox 97\,\%\). Thus, to compare with the asymptotic solution near full contact (3), we used a more accurate axisymmetric finite element model with discretization 6,400 points per wavelength (triangles in Fig. 4b).
 
5
One can use Ramanujan’s approximation for the perimeter of an ellipse with semi-axes \(a\) and \(b\), \(S\approx \pi (3(a+b)-\sqrt{(3a+b)(a+3b)})\).
 
6
See also a discussion in [31].
 
7
The term contact perimeter, which is introduced in these references, should not be confused with the contact perimeter employed here. By contact perimeter, the author of [1, 2] understands the number of boundaries between neighboring pixels that form the discrete shape.
 
8
We found the closure compactness close to the percolation limit to be \(c_{\mathrm{closure}}\approx 4.04\). Regardless the fact that for “closing gap” regime, the shape of the contact boundary cannot be approximated by a square, its compactness measurement near the percolation limit can be with a good accuracy approximated by \(c\approx 4\).
 
9
Hereinafter, the PDF of contact pressure is computed only in contact regions; the integral of the PDF over all contact pressures is equal to one.
 
10
We cannot show rigorously that the peak observed in Fig. 10 is a singularity, but we can assume that if at full contact a singularity exists, see Eq. (14), it is probable that it also persists at smaller pressures.
 
11
We recall that in this case, the contact pressure is \(p(r)=p_{\max }\sqrt{1-(r/a)^2}\).
 
12
Differentiation under the integral sign: \(\frac{\hbox {d}}{\hbox {d}x}\!\!\!\int \limits _{a(x)}^{b(x)}\!\!\!\!f(x,t)\hbox {d}t = \!f(x,b(x))\frac{\hbox {d}b(x)}{\hbox {d}x} - f(x,a(x))\frac{\hbox {d}a(x)}{\hbox {d}x} + \!\!\!\int \limits _{a(x)}^{b(x)} \!\!\frac{\hbox {d}f(x,t)}{\hbox {d}x}\hbox {d}t\).
 
Literatur
1.
Zurück zum Zitat Bribiesca, E.: Measuring 2-D shape compactness using the contact perimeter. Comput. Math. Appl. 33(11), 1–9 (1997)CrossRef Bribiesca, E.: Measuring 2-D shape compactness using the contact perimeter. Comput. Math. Appl. 33(11), 1–9 (1997)CrossRef
2.
Zurück zum Zitat Bribiesca, E.: An easy measure of compactness for 2D and 3D shapes. Pattern Recognit. 41(2), 543–554 (2008)CrossRef Bribiesca, E.: An easy measure of compactness for 2D and 3D shapes. Pattern Recognit. 41(2), 543–554 (2008)CrossRef
3.
Zurück zum Zitat Bush, A.W., Gibson, R.D., Thomas, T.R.: The elastic contact of a rough surface. Wear 35(1), 87–111 (1975)CrossRef Bush, A.W., Gibson, R.D., Thomas, T.R.: The elastic contact of a rough surface. Wear 35(1), 87–111 (1975)CrossRef
4.
Zurück zum Zitat Carbone, G., Bottiglione, F.: Asperity contact theories: Do they predict linearity between contact area and load? J. Mech. Phys. Solids 56, 2555–2572 (2008)CrossRef Carbone, G., Bottiglione, F.: Asperity contact theories: Do they predict linearity between contact area and load? J. Mech. Phys. Solids 56, 2555–2572 (2008)CrossRef
5.
Zurück zum Zitat Dapp, W.B., Lücke, A., Persson, B.N.J., Müser, M.H.: Self-affine elastic contacts: percolation and leakage. Phys. Rev. Lett. 108, 244,301 (2012)CrossRef Dapp, W.B., Lücke, A., Persson, B.N.J., Müser, M.H.: Self-affine elastic contacts: percolation and leakage. Phys. Rev. Lett. 108, 244,301 (2012)CrossRef
6.
Zurück zum Zitat Dieterich, J.H., Kilgore, B.D.: Imaging surface contacts: power law contact distributions and contact stresses in quartz, calcite, glass and acrylic plastic. Tectonophysics 256(1–4), 219–239 (1996)CrossRef Dieterich, J.H., Kilgore, B.D.: Imaging surface contacts: power law contact distributions and contact stresses in quartz, calcite, glass and acrylic plastic. Tectonophysics 256(1–4), 219–239 (1996)CrossRef
7.
Zurück zum Zitat Dorsey, G., Kuhlmann-Wilsdorf, D.: Metal fiber brushes. In: Slade, P.G. (ed.) Electric Contacts: Principles and Applications, 2nd edn. CRC Press, Boca Raton, FL (2014) Dorsey, G., Kuhlmann-Wilsdorf, D.: Metal fiber brushes. In: Slade, P.G. (ed.) Electric Contacts: Principles and Applications, 2nd edn. CRC Press, Boca Raton, FL (2014)
8.
Zurück zum Zitat Einzel, D., Panzer, P., Liu, M.: Boundary condition for fluid flow: curved or rough surfaces. Phys. Rev. Lett. 64, 2269–2272 (1990)CrossRef Einzel, D., Panzer, P., Liu, M.: Boundary condition for fluid flow: curved or rough surfaces. Phys. Rev. Lett. 64, 2269–2272 (1990)CrossRef
9.
Zurück zum Zitat Gielis, J.: A generic geometric transformation that unifies a wide range of natural and abstract shapes. Am. J. Bot. 90(3), 333–338 (2003)CrossRef Gielis, J.: A generic geometric transformation that unifies a wide range of natural and abstract shapes. Am. J. Bot. 90(3), 333–338 (2003)CrossRef
10.
Zurück zum Zitat Greenwood, J.A.: A simplified elliptic model of rough surface contact. Wear 261, 191–200 (2006)CrossRef Greenwood, J.A.: A simplified elliptic model of rough surface contact. Wear 261, 191–200 (2006)CrossRef
11.
Zurück zum Zitat Greenwood, J.A., Williamson, J.B.P.: Contact of nominally flat surfaces. Proc. R. Soc. Lond. A Math. Phys. Sci. 295, 300–319 (1966)CrossRef Greenwood, J.A., Williamson, J.B.P.: Contact of nominally flat surfaces. Proc. R. Soc. Lond. A Math. Phys. Sci. 295, 300–319 (1966)CrossRef
12.
Zurück zum Zitat Hyun, S., Robbins, M.O.: Elastic contact between rough surfaces: effect of roughness at large and small wavelengths. Tribol. Int. 40, 1413–1422 (2007)CrossRef Hyun, S., Robbins, M.O.: Elastic contact between rough surfaces: effect of roughness at large and small wavelengths. Tribol. Int. 40, 1413–1422 (2007)CrossRef
13.
Zurück zum Zitat Johnson, K., Greenwood, J., Higginson, J.: The contact of elastic regular wavy surfaces. Int. J. Mech. Sci. 27(6), 383–396 (1985)CrossRef Johnson, K., Greenwood, J., Higginson, J.: The contact of elastic regular wavy surfaces. Int. J. Mech. Sci. 27(6), 383–396 (1985)CrossRef
14.
Zurück zum Zitat Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1987) Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1987)
15.
Zurück zum Zitat Kalker, J.J.: Variational principles of contact elastostatics. J. Inst. Math. Appl. 20, 199–219 (1977)CrossRef Kalker, J.J.: Variational principles of contact elastostatics. J. Inst. Math. Appl. 20, 199–219 (1977)CrossRef
16.
Zurück zum Zitat Kalker, J.J., van Randen, Y.A.: A minimum principle for frictionless elastic contact with application to non Hertzian problems. J. Eng. Math. 6, 193–206 (1972)CrossRef Kalker, J.J., van Randen, Y.A.: A minimum principle for frictionless elastic contact with application to non Hertzian problems. J. Eng. Math. 6, 193–206 (1972)CrossRef
17.
Zurück zum Zitat Krithivasan, V., Jackson, R.L.: An analysis of three-dimensional elasto-plastic sinusoidal contact. Tribol. Lett. 27(1), 31–43 (2007)CrossRef Krithivasan, V., Jackson, R.L.: An analysis of three-dimensional elasto-plastic sinusoidal contact. Tribol. Lett. 27(1), 31–43 (2007)CrossRef
18.
Zurück zum Zitat Manners, W., Greenwood, J.A.: Some observations on Persson’s diffusion theory of elastic contact. Wear 261, 600–610 (2006)CrossRef Manners, W., Greenwood, J.A.: Some observations on Persson’s diffusion theory of elastic contact. Wear 261, 600–610 (2006)CrossRef
19.
Zurück zum Zitat McCool, J.I.: Comparison of models for the contact of rough surfaces. Wear 107(1), 37–60 (1986)CrossRef McCool, J.I.: Comparison of models for the contact of rough surfaces. Wear 107(1), 37–60 (1986)CrossRef
20.
Zurück zum Zitat Nayak, P.R.: Random process model of rough surfaces. J. Lubr. Technol. (ASME) 93, 398–407 (1971)CrossRef Nayak, P.R.: Random process model of rough surfaces. J. Lubr. Technol. (ASME) 93, 398–407 (1971)CrossRef
21.
Zurück zum Zitat Pastewka, L., Robbins, M.O.: Contact between rough surfaces and a criterion for macroscopic adhesion. Proc. Natl. Acad. Sci. USA 111(9), 3298–3303 (2014)CrossRef Pastewka, L., Robbins, M.O.: Contact between rough surfaces and a criterion for macroscopic adhesion. Proc. Natl. Acad. Sci. USA 111(9), 3298–3303 (2014)CrossRef
22.
Zurück zum Zitat Persson, B.N.J.: Elastoplastic contact between randomly rough surfaces. Phys. Rev. Lett. 87, 116,101 (2001)CrossRef Persson, B.N.J.: Elastoplastic contact between randomly rough surfaces. Phys. Rev. Lett. 87, 116,101 (2001)CrossRef
23.
Zurück zum Zitat Persson, B.N.J.: Theory of rubber friction and contact mechanics. J. Chem. Phys. 115, 3840–3861 (2001)CrossRef Persson, B.N.J.: Theory of rubber friction and contact mechanics. J. Chem. Phys. 115, 3840–3861 (2001)CrossRef
24.
Zurück zum Zitat Persson, B.N.J., Bucher, F., Chiaia, B.: Elastic contact between randomly rough surfaces: comparison of theory with numerical results. Phys. Rev. B 65, 184,106 (2002)CrossRef Persson, B.N.J., Bucher, F., Chiaia, B.: Elastic contact between randomly rough surfaces: comparison of theory with numerical results. Phys. Rev. B 65, 184,106 (2002)CrossRef
25.
Zurück zum Zitat Stanley, H.M., Kato, T.: An FFT-based method for rough surface contact. J. Tribol-T ASME 119, 481–485 (1997)CrossRef Stanley, H.M., Kato, T.: An FFT-based method for rough surface contact. J. Tribol-T ASME 119, 481–485 (1997)CrossRef
26.
Zurück zum Zitat Stover, J.C.: Optical Scattering: Measurements and Analysis, 3rd edn. SPIE Press, Bellingham (2012) Stover, J.C.: Optical Scattering: Measurements and Analysis, 3rd edn. SPIE Press, Bellingham (2012)
27.
Zurück zum Zitat Thomas, T.R.: Rough Surfaces, 2nd edn. Imperial College Press, London (1999) Thomas, T.R.: Rough Surfaces, 2nd edn. Imperial College Press, London (1999)
28.
Zurück zum Zitat Westergaard, H.M.: Bearing pressures and cracks. J. Appl. Mech. (ASME) 6, 49 (1939) Westergaard, H.M.: Bearing pressures and cracks. J. Appl. Mech. (ASME) 6, 49 (1939)
29.
Zurück zum Zitat Yang, C., Persson, B.N.J.: Contact mechanics: contact area and interfacial separation from small contact to full contact. J. Phys.-Condens. Matter 20(21), 215,214+ (2008)CrossRef Yang, C., Persson, B.N.J.: Contact mechanics: contact area and interfacial separation from small contact to full contact. J. Phys.-Condens. Matter 20(21), 215,214+ (2008)CrossRef
30.
Zurück zum Zitat Yastrebov, V.A., Anciaux, G., Molinari, J.F.: Contact between representative rough surfaces. Phys. Rev. E 86(3), 035,601(R) (2012)CrossRef Yastrebov, V.A., Anciaux, G., Molinari, J.F.: Contact between representative rough surfaces. Phys. Rev. E 86(3), 035,601(R) (2012)CrossRef
31.
Zurück zum Zitat Yastrebov, V.A., Anciaux, G., Molinari, J.F.: From infinitesimal to full contact between rough surfaces: evolution of the contact area (2014) arxiv.1401.3800 Yastrebov, V.A., Anciaux, G., Molinari, J.F.: From infinitesimal to full contact between rough surfaces: evolution of the contact area (2014) arxiv.​1401.​3800
Metadaten
Titel
The Contact of Elastic Regular Wavy Surfaces Revisited
verfasst von
Vladislav A. Yastrebov
Guillaume Anciaux
Jean-François Molinari
Publikationsdatum
01.10.2014
Verlag
Springer US
Erschienen in
Tribology Letters / Ausgabe 1/2014
Print ISSN: 1023-8883
Elektronische ISSN: 1573-2711
DOI
https://doi.org/10.1007/s11249-014-0395-z

Weitere Artikel der Ausgabe 1/2014

Tribology Letters 1/2014 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.