Skip to main content
Erschienen in: The International Journal of Life Cycle Assessment 3/2010

01.03.2010 | PACKAGING SYSTEMS

Environmental impacts of conventional plastic and bio-based carrier bags

Part 1: Life cycle production

verfasst von: Hsien Hui Khoo, Reginald B. H. Tan, Kevin W. L. Chng

Erschienen in: The International Journal of Life Cycle Assessment | Ausgabe 3/2010

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Background, aim, and scope

The use of bio-based products as carrier bags, packaging materials, and many other applications has been increasingly replacing conventional polymer products. One of the main driving forces of bio-plastic applications is the perceived depletion and scarcity of fossil fuels, especially petroleum. However, despite being introduced as an environmentally friendly alternative to plastics made from crude oil, the environmental benefits of bio-plastics remain debatable. This article serves to investigate whether or not bio-based materials are environmentally friendlier options compared to plastics and attempts to explain the rationale of the results.

Materials and methods

The production and disposal of both conventional plastic and bio-plastic carrier bags are investigated using life cycle assessment or LCA. A typical bio-based bag (made from polyhydroxyalkanoate or PHA) from the U.S. was selected to be compared with a locally produced polyethylene plastic (PP) bag in Singapore. In the LCA system, the raw materials for making polyethylene came from crude oil imported from Middle East and natural gas piped from Natuna gas field. The refinery and PP bag production processes are based in Singapore. Bio-bag production was entirely in the U.S., and the finished product was shipped to Singapore. The impact assessment results were generated for global warming potential, acidification, and photochemical ozone formation. Next, normalized results were calculated according to the parameters of Singapore’s annual emission inventory.

Results

The total environmental impacts of bio-bags showed considerable differences under various energy scenarios. When the energy expenditures to make bio-bags are supplied by U.S. electricity mix, the production impacts are about 69% higher, compared to the impacts from PP bags. With coal-fired power supply, the production impacts from bio-bag production turned out to be about five times greater than those from conventional plastics. The life cycle production impacts of PP bags are comparable to bio-bags when the energy supplied to the bio-material production chain is supplied by natural gas. Bio-bags are 80% more environmentally friendly than plastic bags when clean and renewable energy (geothermal) is used throughout its life cycle production stages.

Discussions and conclusions

By the use of LCA with different energy scenarios, this article sheds some light on the extent of environmental benefits (or drawbacks) of replacing plastic carrier bags with PHA bags. It was concluded that the life cycle production of bio-bags can only be considered as environmentally friendly alternatives to conventional plastic bags if clean energy sources are supplied throughout its production processes. It was also highlighted that the results should not be viewed as a global representative since the case study scope was for Singapore alone. Additional work by others on different biodegradable and compostable bags vary in results. Some of the complexities of such work lie in what is included or excluded from the scope and the adoption of different environmental impact assessment methods. Nevertheless, the authors’ attempt to compare the two bags may serve as a basis for identifying the major environmental burdens of such materials’ life cycle production.

Recommendations and perspectives

Although bio-based products have been mostly regarded as a sustainable solution for replacing petroleum-based polymers, in most cases, the amounts of resources and energy required to produce them have not been taken into account. Before bio-based plastics can be recommended as a preferred option to plastics, a few challenges have to be overcome. The main issue lies in reducing the energy used in the life cycle production of the bio-material from crops. The environmental benefits and drawbacks of both materials should also be more clearly highlighted by expanding the system boundary to include end-of-life options; this is carried out in part 2 (Khoo and Tan, Int J Life Cycle Assess, in press, 2010).

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Akiyama M, Tsuge T, Doi Y (2003) Environmental life cycle comparison of polyhydroxyalkanoates produced from renewable carbon resources by bacterial fermentation. Polym Degrad Stab 80:183–194CrossRef Akiyama M, Tsuge T, Doi Y (2003) Environmental life cycle comparison of polyhydroxyalkanoates produced from renewable carbon resources by bacterial fermentation. Polym Degrad Stab 80:183–194CrossRef
Zurück zum Zitat Bertani R (2002) Geothermal power generating plant CO2 emission survey. International Geothermal Association News No. 49 Bertani R (2002) Geothermal power generating plant CO2 emission survey. International Geothermal Association News No. 49
Zurück zum Zitat BUWAL (1991) Eco-balance of packaging materials. Environment Report No. 132, Bern, Switzerland BUWAL (1991) Eco-balance of packaging materials. Environment Report No. 132, Bern, Switzerland
Zurück zum Zitat Chen SS, Hussein WM (2005) Development of life cycle assessment activities in Malaysia. Proceedings of the International Workshop on LCA: Capacity Building in APEC Economies, December 15–16, Bangkok, Thailand Chen SS, Hussein WM (2005) Development of life cycle assessment activities in Malaysia. Proceedings of the International Workshop on LCA: Capacity Building in APEC Economies, December 15–16, Bangkok, Thailand
Zurück zum Zitat Gerngross TU (1999) Can biotechnology move us toward a sustainable society? Nat Biotechnol 17:541–544CrossRef Gerngross TU (1999) Can biotechnology move us toward a sustainable society? Nat Biotechnol 17:541–544CrossRef
Zurück zum Zitat Gross RA, Kalra B (2002) Biodegradable polymer for the environment. Science 297:803–807CrossRef Gross RA, Kalra B (2002) Biodegradable polymer for the environment. Science 297:803–807CrossRef
Zurück zum Zitat Hatti-Kaul R, Törnvall U, Gustafsson L, Börjesson P (2007) Industrial biotechnology for the production of bio-based chemicals—a cradle-to-grave perspective. Trends Biotechnol 25:119–124CrossRef Hatti-Kaul R, Törnvall U, Gustafsson L, Börjesson P (2007) Industrial biotechnology for the production of bio-based chemicals—a cradle-to-grave perspective. Trends Biotechnol 25:119–124CrossRef
Zurück zum Zitat Hauschild MZ (2005) Assessing environmental impacts in a life cycle perspective. Environ Sci Technol 39:905–912CrossRef Hauschild MZ (2005) Assessing environmental impacts in a life cycle perspective. Environ Sci Technol 39:905–912CrossRef
Zurück zum Zitat Hauschild M, Potting J (2003) Spatial differentiation in life cycle impact assessment—the EDIP2003 methodology. Institute for Product Development Technical University of Denmark Hauschild M, Potting J (2003) Spatial differentiation in life cycle impact assessment—the EDIP2003 methodology. Institute for Product Development Technical University of Denmark
Zurück zum Zitat Hetch J (1997) The environmental effects of freight. Organisation for Economic Co-operation and Development (OECD), Paris Hetch J (1997) The environmental effects of freight. Organisation for Economic Co-operation and Development (OECD), Paris
Zurück zum Zitat International Energy Agency (IEA) (2007) Electricity information database 2007 and CO2 emissions from fuel combustion database 2006. International Energy Agency, Paris, Available at http://www.iea.org/. Accessed August 2008CrossRef International Energy Agency (IEA) (2007) Electricity information database 2007 and CO2 emissions from fuel combustion database 2006. International Energy Agency, Paris, Available at http://​www.​iea.​org/​. Accessed August 2008CrossRef
Zurück zum Zitat Jimenez-Gonzalez C, Overcash M (2000) Life cycle inventory of refinery products: review and comparison of commercially available databases. Environ Sci Technol 34:4789–4796CrossRef Jimenez-Gonzalez C, Overcash M (2000) Life cycle inventory of refinery products: review and comparison of commercially available databases. Environ Sci Technol 34:4789–4796CrossRef
Zurück zum Zitat Khoo HH, Tan RBH (2010) Environmental impacts of conventional plastic and bio-based carrier bags—part 2: end-of-life options. Int J Life Cycle Assess (in press) Khoo HH, Tan RBH (2010) Environmental impacts of conventional plastic and bio-based carrier bags—part 2: end-of-life options. Int J Life Cycle Assess (in press)
Zurück zum Zitat Kim S, Dale BE (2005a) LCA study of biopolymers (PHA) derived from no-tilled corn. Int J Life Cycle Assess 10:200–210CrossRef Kim S, Dale BE (2005a) LCA study of biopolymers (PHA) derived from no-tilled corn. Int J Life Cycle Assess 10:200–210CrossRef
Zurück zum Zitat Kim S, Dale BE (2005b) LCI information of the United States electricity system. Int J Life Cycle Assess 10:294–304CrossRef Kim S, Dale BE (2005b) LCI information of the United States electricity system. Int J Life Cycle Assess 10:294–304CrossRef
Zurück zum Zitat Landis AE, Miller SA, Theis TL (2007) Life cycle of the corn-soybean agroecosystem for bio-based production. Environ Sci Technol 41:1457–1464CrossRef Landis AE, Miller SA, Theis TL (2007) Life cycle of the corn-soybean agroecosystem for bio-based production. Environ Sci Technol 41:1457–1464CrossRef
Zurück zum Zitat Narita N, Sagisaka M, Inaba A (2002) Life cycle inventory analysis of CO2 emissions manufacturing commodity plastics in Japan. Int J Life Cycle Assess 7:277–282CrossRef Narita N, Sagisaka M, Inaba A (2002) Life cycle inventory analysis of CO2 emissions manufacturing commodity plastics in Japan. Int J Life Cycle Assess 7:277–282CrossRef
Zurück zum Zitat Ohara T, Akimoto H, Kurokawam J, Horii N, Yamaji K, Yan X, Hayasaka T (2007) An Asian emission inventory of anthropogenic emission sources for the period 1980–2020. Atmos Chem Phys 7:4419–4444CrossRef Ohara T, Akimoto H, Kurokawam J, Horii N, Yamaji K, Yan X, Hayasaka T (2007) An Asian emission inventory of anthropogenic emission sources for the period 1980–2020. Atmos Chem Phys 7:4419–4444CrossRef
Zurück zum Zitat Reed M, Renner J (2004) Environmental compatibility of geothermal energy. In: Sterrett FS (ed) Alternative fuels and the environment. Lewis, Boca Raton, p 25 Reed M, Renner J (2004) Environmental compatibility of geothermal energy. In: Sterrett FS (ed) Alternative fuels and the environment. Lewis, Boca Raton, p 25
Zurück zum Zitat Shapouri H, Duffield JA, Wang M (2003) The energy balance of corn ethanol revisited. Am Soc Agr Eng 46:959–968 Shapouri H, Duffield JA, Wang M (2003) The energy balance of corn ethanol revisited. Am Soc Agr Eng 46:959–968
Zurück zum Zitat Sheehan J, Camobreco V, Duffield J, Graboski M, Shapouri H (1998) Life cycle inventory of biodiesel and petroleum diesel for use in an urban bus. National Renewable Energy Laboratory, NREL/SR-580-24089 UC Category 1503 Sheehan J, Camobreco V, Duffield J, Graboski M, Shapouri H (1998) Life cycle inventory of biodiesel and petroleum diesel for use in an urban bus. National Renewable Energy Laboratory, NREL/SR-580-24089 UC Category 1503
Zurück zum Zitat Spath PL, Mann MK (2000a) Life cycle assessment of a natural gas combined-cycle power generation system. National Renewable Energy Laboratory, NREL/TP-570-27715 Spath PL, Mann MK (2000a) Life cycle assessment of a natural gas combined-cycle power generation system. National Renewable Energy Laboratory, NREL/TP-570-27715
Zurück zum Zitat Spath PL, Mann MK (2000b) Life cycle assessment of a natural gas combined-cycle power generation system. Report no. NREL/TP-570-27715. National Renewable Energy Laboratory, Washington Spath PL, Mann MK (2000b) Life cycle assessment of a natural gas combined-cycle power generation system. Report no. NREL/TP-570-27715. National Renewable Energy Laboratory, Washington
Zurück zum Zitat Spath PL, Mann MK, Kerr DR (1999) LCA of coal-fired power production. National Renewable Energy Laboratory (NREL), National Technical Information Service (NTIS), U.S. Department of Commerce, Washington, DC Spath PL, Mann MK, Kerr DR (1999) LCA of coal-fired power production. National Renewable Energy Laboratory (NREL), National Technical Information Service (NTIS), U.S. Department of Commerce, Washington, DC
Zurück zum Zitat United Nations Statistics Division (2007) Environment statistics country snapshot: Singapore. UN Publications Board United Nations Statistics Division (2007) Environment statistics country snapshot: Singapore. UN Publications Board
Zurück zum Zitat Widiyanto A, Maruyama N, Kato S (2004) Life cycle analysis for electricity grid systems in Japan. Proceedings of 2nd International Energy Conversion Engineering Conference, August 16–19, Rhode Island, New England, USA Widiyanto A, Maruyama N, Kato S (2004) Life cycle analysis for electricity grid systems in Japan. Proceedings of 2nd International Energy Conversion Engineering Conference, August 16–19, Rhode Island, New England, USA
Metadaten
Titel
Environmental impacts of conventional plastic and bio-based carrier bags
Part 1: Life cycle production
verfasst von
Hsien Hui Khoo
Reginald B. H. Tan
Kevin W. L. Chng
Publikationsdatum
01.03.2010
Verlag
Springer-Verlag
Erschienen in
The International Journal of Life Cycle Assessment / Ausgabe 3/2010
Print ISSN: 0948-3349
Elektronische ISSN: 1614-7502
DOI
https://doi.org/10.1007/s11367-010-0162-9

Weitere Artikel der Ausgabe 3/2010

The International Journal of Life Cycle Assessment 3/2010 Zur Ausgabe

POLICIES AND SUPPORT IN RELATION TO LCA

ILCD Handbook Public Consultation Workshop