Skip to main content
Erschienen in: International Journal of Computer Assisted Radiology and Surgery 3/2020

20.12.2019 | Original Article

In vivo static and dynamic lengthening measurements of the posterior cruciate ligament at high knee flexion angles

verfasst von: Caecilia Charbonnier, Victoria B. Duthon, Sylvain Chagué, Frank C. Kolo, Jacques Ménétrey

Erschienen in: International Journal of Computer Assisted Radiology and Surgery | Ausgabe 3/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Purpose

Rehabilitation is an important aspect of both non-operative and operative treatments of knee ligament tear. Posterior cruciate ligament (PCL) non-operative treatment consists of a step-by-step rehabilitation protocol and is well described. It goes from rest (phase I) to strengthening exercises (phase IV). More specific and high-intensity exercises such as cutting, sidestepping or jumps are, however, not described in detail, as no in vivo data exist to tell how these exercises constrain the ligaments and whether they have the same effect on all of them, in particular regarding lengthening. The goal of this study was to measure the ligament lengthening in static knee flexion based on 3D reconstructions from magnetic resonance imaging (MRI) and from motion capture and ligament simulation during dynamic exercises.

Methods

The knee of nine volunteers was first imaged in a closed-bore MRI scanner at various static knee flexion angles (up to 110°), and the corresponding lengthening of the PCL and the other major knee ligaments was measured. Then, the volunteers underwent motion capture of the knee where dynamic exercises (sitting, jumping, sidestepping, etc.) were recorded. For each exercise, knee ligament elongation was simulated and evaluated.

Results

According to the MRI scans, maximal lengthening occurred at 110° of flexion in the anterior cruciate ligament and 90° of flexion in the PCL. Daily living movements such as sitting were predicted to elongate the cruciate ligaments, whereas they shortened the collateral ligaments. More active movements such as jumping put the most constrain to cruciate ligaments.

Conclusion

This study provides interesting insights into a tailored postoperative regimen. In particular, knowing the knee ligament lengthening during dynamic exercises can help better define the last stages of the rehabilitation protocol, and hence provide a safe return to play.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Agolley D, Gabr A, Benjamin-Laing H, Haddad F (2017) Successful return to sports in athletes following non-operative management of acute isolated posterior cruciate ligament injuries: medium-term follow-up. Bone Joint J 99-B(6):774–778CrossRef Agolley D, Gabr A, Benjamin-Laing H, Haddad F (2017) Successful return to sports in athletes following non-operative management of acute isolated posterior cruciate ligament injuries: medium-term follow-up. Bone Joint J 99-B(6):774–778CrossRef
2.
Zurück zum Zitat Ali A, Harris M, Shalhoub S, Maletsky L, Rullkoetter P, Shelburne K (2016) Combined measurement and modeling of specimen-specific knee mechanics for healthy and ACL-deficient conditions. J Biomech 24(57):117–124 Ali A, Harris M, Shalhoub S, Maletsky L, Rullkoetter P, Shelburne K (2016) Combined measurement and modeling of specimen-specific knee mechanics for healthy and ACL-deficient conditions. J Biomech 24(57):117–124
3.
Zurück zum Zitat Amis A, Bull A, Gupte C, Hijazi I, Race A, Robinson J (2003) Biomechanics of the PCL and related structures: posterolateral, posteromedial and meniscofemoral ligaments. Knee Surg Sport Traumatol Arthrosc 11(5):271–281CrossRef Amis A, Bull A, Gupte C, Hijazi I, Race A, Robinson J (2003) Biomechanics of the PCL and related structures: posterolateral, posteromedial and meniscofemoral ligaments. Knee Surg Sport Traumatol Arthrosc 11(5):271–281CrossRef
4.
Zurück zum Zitat Chandrasekaran S, Ma D, Scarvell J, Woods K, Smith P (2012) A review of the anatomical, biomechanical and kinematic findings of posterior cruciate ligament injury with respect to non-operative management. Knee 19(6):738–745CrossRef Chandrasekaran S, Ma D, Scarvell J, Woods K, Smith P (2012) A review of the anatomical, biomechanical and kinematic findings of posterior cruciate ligament injury with respect to non-operative management. Knee 19(6):738–745CrossRef
5.
Zurück zum Zitat Charbonnier C, Chagué S, Kolo F, Duthon V, Menetrey J (2017) Multi-body optimization with subject-specific knee models: performance at high knee flexion angles. Comput Meth Biomech Biomed Eng 20(14):1571–1579CrossRef Charbonnier C, Chagué S, Kolo F, Duthon V, Menetrey J (2017) Multi-body optimization with subject-specific knee models: performance at high knee flexion angles. Comput Meth Biomech Biomed Eng 20(14):1571–1579CrossRef
6.
Zurück zum Zitat Charbonnier C, Lädermann A, Kevelham B, Chagué S, Hoffmeyer P, Holzer N (2018) Shoulder strengthening exercises adapted to specific shoulder pathologies can be selected using new simulation techniques: a pilot study. Int J CARS 13(2):321–330CrossRef Charbonnier C, Lädermann A, Kevelham B, Chagué S, Hoffmeyer P, Holzer N (2018) Shoulder strengthening exercises adapted to specific shoulder pathologies can be selected using new simulation techniques: a pilot study. Int J CARS 13(2):321–330CrossRef
7.
Zurück zum Zitat Clément J, Dumas R, Hagemeister N, de Guise J (2015) Soft tissue artifact compensation in knee kinematics by multi-body optimization: performance of subject-specific knee joint models. J Biomech 48:3796–3802CrossRef Clément J, Dumas R, Hagemeister N, de Guise J (2015) Soft tissue artifact compensation in knee kinematics by multi-body optimization: performance of subject-specific knee joint models. J Biomech 48:3796–3802CrossRef
8.
Zurück zum Zitat Clément J, Dumas R, Hagemeister N, de Guise J (2017) Can generic knee joint models improve the measurement of osteoarthritic knee kinematics during squatting activity? Comput Meth Biomech Biomed Eng 20(1):94–103CrossRef Clément J, Dumas R, Hagemeister N, de Guise J (2017) Can generic knee joint models improve the measurement of osteoarthritic knee kinematics during squatting activity? Comput Meth Biomech Biomed Eng 20(1):94–103CrossRef
9.
Zurück zum Zitat de Paula Leite Cury R, Dan Kiyomoto H, Fogolin Rosal G, Fernandes Bryk F, Marques de Oliveira V, Arbix de Camargo O (2012) Rehabilitation protocol after isolated posterior cruciate ligament reconstruction. Rev Bras Orthop 47(4):421–427CrossRef de Paula Leite Cury R, Dan Kiyomoto H, Fogolin Rosal G, Fernandes Bryk F, Marques de Oliveira V, Arbix de Camargo O (2012) Rehabilitation protocol after isolated posterior cruciate ligament reconstruction. Rev Bras Orthop 47(4):421–427CrossRef
10.
Zurück zum Zitat Dragoo J, Phillips C, Schmidt J, Scanlan S, Blazek K, Steadman J, Williams A (2010) Mechanics of the anterior interval of the knee using open dynamic MRI. Clin Biomech 25:433–437CrossRef Dragoo J, Phillips C, Schmidt J, Scanlan S, Blazek K, Steadman J, Williams A (2010) Mechanics of the anterior interval of the knee using open dynamic MRI. Clin Biomech 25:433–437CrossRef
11.
Zurück zum Zitat Duprey S, Chèze L, Dumas R (2010) Influence of joint constraints on lower limb kinematics estimation from skin markers using global optimization. J Biomech 43(14):2858–2862CrossRef Duprey S, Chèze L, Dumas R (2010) Influence of joint constraints on lower limb kinematics estimation from skin markers using global optimization. J Biomech 43(14):2858–2862CrossRef
12.
Zurück zum Zitat Englander ZA, Baldwin E, Smith W, Garrett W, Spritzer C, DeFrate L (2019) In vivo anterior cruciate ligament deformation during a single-legged jump measured by magnetic resonance imaging and high-speed biplanar radiography. Am J Sport Med 47(13):3166–3172CrossRef Englander ZA, Baldwin E, Smith W, Garrett W, Spritzer C, DeFrate L (2019) In vivo anterior cruciate ligament deformation during a single-legged jump measured by magnetic resonance imaging and high-speed biplanar radiography. Am J Sport Med 47(13):3166–3172CrossRef
13.
Zurück zum Zitat Gasparutto X, Sancisi N, Jacquelin E, Parenti-Castelli V, Dumas R (2015) Validation of a multi-body optimization with knee kinematic models including ligament constraints. J Biomech 48:1141–1446CrossRef Gasparutto X, Sancisi N, Jacquelin E, Parenti-Castelli V, Dumas R (2015) Validation of a multi-body optimization with knee kinematic models including ligament constraints. J Biomech 48:1141–1446CrossRef
14.
Zurück zum Zitat Goyal K, Tashman S, Wang J, Li K, Zhang X, Harner C (2012) In vivo analysis of the isolated posterior cruciate ligament-deficient knee during functional activities. Am J Sports Med 40(4):777–785CrossRef Goyal K, Tashman S, Wang J, Li K, Zhang X, Harner C (2012) In vivo analysis of the isolated posterior cruciate ligament-deficient knee during functional activities. Am J Sports Med 40(4):777–785CrossRef
15.
Zurück zum Zitat Kim H, Seo H, Kim H, Nguyenn T, Shetty N, Yoo Y (2011) Tension changes within the bundles of anatomic double-bundle anterior cruciate ligament reconstruction at different knee flexion angles: a study using a 3-dimensional finite element model. Arthroscopy 27(10):1400–1408CrossRef Kim H, Seo H, Kim H, Nguyenn T, Shetty N, Yoo Y (2011) Tension changes within the bundles of anatomic double-bundle anterior cruciate ligament reconstruction at different knee flexion angles: a study using a 3-dimensional finite element model. Arthroscopy 27(10):1400–1408CrossRef
16.
Zurück zum Zitat Kim J, Lee Y, Yang B, Oh S, Yang S (2013) Rehabilitation after posterior cruciate ligament reconstruction: a review of the literature and theoretical support. Arch Orthop Trauma Surg 133(12):1687–1695CrossRef Kim J, Lee Y, Yang B, Oh S, Yang S (2013) Rehabilitation after posterior cruciate ligament reconstruction: a review of the literature and theoretical support. Arch Orthop Trauma Surg 133(12):1687–1695CrossRef
17.
Zurück zum Zitat King AJ, Deng Q, Tyson R, Sharp JC, Matwiy J, Tomanek B, Dunn JF (2014) In vivo open-bore MRI reveals region- and sub-arc-specific lengthening of the unloaded human posterior cruciate ligament. PLoS ONE 7(11):e48714CrossRef King AJ, Deng Q, Tyson R, Sharp JC, Matwiy J, Tomanek B, Dunn JF (2014) In vivo open-bore MRI reveals region- and sub-arc-specific lengthening of the unloaded human posterior cruciate ligament. PLoS ONE 7(11):e48714CrossRef
18.
Zurück zum Zitat Komatsu T, Kadoya Y, Nakagawa S, Yoshida G, Takaoka K (2005) Movement of the posterior cruciate ligament during knee flexion—MRI analysis. J Orthop Res 23:334–339CrossRef Komatsu T, Kadoya Y, Nakagawa S, Yoshida G, Takaoka K (2005) Movement of the posterior cruciate ligament during knee flexion—MRI analysis. J Orthop Res 23:334–339CrossRef
19.
Zurück zum Zitat Laprade C, Civitarese D, Rasmussen M, Laprade R (2015) Emerging updates on the posterior cruciate ligament a review of the current literature. Am J Sport Med 43(12):3077–3092CrossRef Laprade C, Civitarese D, Rasmussen M, Laprade R (2015) Emerging updates on the posterior cruciate ligament a review of the current literature. Am J Sport Med 43(12):3077–3092CrossRef
20.
Zurück zum Zitat Leardini A, Belvedere C, Nardini F, Sancisi N, Conconi M, Parenti-Castelli V (2017) Kinematic models of lower limb joints for musculo-skeletal modelling and optimization in gait analysis. J Biomech 6(62):77–86CrossRef Leardini A, Belvedere C, Nardini F, Sancisi N, Conconi M, Parenti-Castelli V (2017) Kinematic models of lower limb joints for musculo-skeletal modelling and optimization in gait analysis. J Biomech 6(62):77–86CrossRef
21.
Zurück zum Zitat Mueller M, Heidelberger B, Hennix M, Ratcliff J (2007) Position based dynamics. J Vis Comun Image Represent 18(2):109–118CrossRef Mueller M, Heidelberger B, Hennix M, Ratcliff J (2007) Position based dynamics. J Vis Comun Image Represent 18(2):109–118CrossRef
22.
Zurück zum Zitat Nakagawa S, Johal P, Pinskerova V, Komatsu T, Sosna A, Williams A, Freeman M (2004) The posterior cruciate ligament during flexion of the normal knee. J Bone Joint Surg Br 86:450–456CrossRef Nakagawa S, Johal P, Pinskerova V, Komatsu T, Sosna A, Williams A, Freeman M (2004) The posterior cruciate ligament during flexion of the normal knee. J Bone Joint Surg Br 86:450–456CrossRef
23.
Zurück zum Zitat Provot X (1997) Collision and self-collision handling in cloth model dedicated to design garment. In: Computer animation and simulation’97. Springer, Vienna, pp 177–189 Provot X (1997) Collision and self-collision handling in cloth model dedicated to design garment. In: Computer animation and simulation’97. Springer, Vienna, pp 177–189
24.
Zurück zum Zitat Ramaniraka N, Terrier A, Theumann N, Siegrist O (2005) Effects of the posterior cruciate ligament reconstruction on the biomechanics of the knee joint: a finite element analysis. Clin Biomech 20:434–442CrossRef Ramaniraka N, Terrier A, Theumann N, Siegrist O (2005) Effects of the posterior cruciate ligament reconstruction on the biomechanics of the knee joint: a finite element analysis. Clin Biomech 20:434–442CrossRef
25.
Zurück zum Zitat Richard V, Lamberto G, Lu T, Cappozzo A, Dumas R (2016) Knee kinematics estimation using multi-body optimisation embedding a knee joint stiffness matrix: a feasibility study. PLoS ONE 11(6):e0157010CrossRef Richard V, Lamberto G, Lu T, Cappozzo A, Dumas R (2016) Knee kinematics estimation using multi-body optimisation embedding a knee joint stiffness matrix: a feasibility study. PLoS ONE 11(6):e0157010CrossRef
26.
Zurück zum Zitat Richard V, Cappozzo A, Dumas R (2017) Comparative assessment of knee joint models used in multi-body kinematics optimisation for soft tissue artefact compensation. J Biomech 6(62):1–7 Richard V, Cappozzo A, Dumas R (2017) Comparative assessment of knee joint models used in multi-body kinematics optimisation for soft tissue artefact compensation. J Biomech 6(62):1–7
27.
Zurück zum Zitat Sangeux M, Marin F, Charleux F, Duerselen L, Tho MCHB (2006) Quantification of the 3D relative movement of external marker sets vs. bones based on magnetic resonance imaging. Clin Biomech 21:984–991CrossRef Sangeux M, Marin F, Charleux F, Duerselen L, Tho MCHB (2006) Quantification of the 3D relative movement of external marker sets vs. bones based on magnetic resonance imaging. Clin Biomech 21:984–991CrossRef
28.
Zurück zum Zitat Scarvell J, Smith P, Refshauge K, Galloway H, Woods K (2004) Evaluation of a method to map tibiofemoral contact points in the normal knee using MRI. J Orthop Res 22:788–793CrossRef Scarvell J, Smith P, Refshauge K, Galloway H, Woods K (2004) Evaluation of a method to map tibiofemoral contact points in the normal knee using MRI. J Orthop Res 22:788–793CrossRef
29.
Zurück zum Zitat Song Y, Debski R, Musahl V, Thomas M, Woo S (2004) A three-dimensional finite element model of the human anterior cruciate ligament: a computational analysis with experimental validation. J Biomech 37(3):383–390CrossRef Song Y, Debski R, Musahl V, Thomas M, Woo S (2004) A three-dimensional finite element model of the human anterior cruciate ligament: a computational analysis with experimental validation. J Biomech 37(3):383–390CrossRef
30.
Zurück zum Zitat Taylor K, Terry M, Utturkar G, Spritzer C, Queen R, Irribarra L, Garrett W, DeFrate L (2011) Measurement of in vivo anterior cruciate ligament strain during dynamic jump landing. J Biomech 44(3):365–371CrossRef Taylor K, Terry M, Utturkar G, Spritzer C, Queen R, Irribarra L, Garrett W, DeFrate L (2011) Measurement of in vivo anterior cruciate ligament strain during dynamic jump landing. J Biomech 44(3):365–371CrossRef
31.
Zurück zum Zitat Utturkar G, Irribarra L, Taylor K, Spritzer C, Taylor D, Garrett W, Defrate LE (2013) The effects of a valgus collapse knee position on in vivo ACL elongation. Ann Biomed Eng 41(1):123–130CrossRef Utturkar G, Irribarra L, Taylor K, Spritzer C, Taylor D, Garrett W, Defrate LE (2013) The effects of a valgus collapse knee position on in vivo ACL elongation. Ann Biomed Eng 41(1):123–130CrossRef
32.
Zurück zum Zitat Vairis A, Stefanoudakis G, Petousis M, Vidakis N, Tsainis A, Kandyla B (2016) Evaluation of an intact, an ACL-deficient, and a reconstructed human knee joint finite element model. Comput Meth Biomech Biomed Eng 19(3):263–270CrossRef Vairis A, Stefanoudakis G, Petousis M, Vidakis N, Tsainis A, Kandyla B (2016) Evaluation of an intact, an ACL-deficient, and a reconstructed human knee joint finite element model. Comput Meth Biomech Biomed Eng 19(3):263–270CrossRef
33.
Zurück zum Zitat van den Bergen G (1997) Efficient collision detection of complex deformable models using AABB trees. J Graph Tools 2(4):1–14CrossRef van den Bergen G (1997) Efficient collision detection of complex deformable models using AABB trees. J Graph Tools 2(4):1–14CrossRef
34.
Zurück zum Zitat Wu G, Siegler S, Allard P, Kirtley C, Leardini A, Rosenbaum D, Whittle M, Lima D, Cristofolini L, Witte H, Schmid O, Strokes I (2002) ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion—part I: ankle, hip and spine. J Biomech 35(4):543–548CrossRef Wu G, Siegler S, Allard P, Kirtley C, Leardini A, Rosenbaum D, Whittle M, Lima D, Cristofolini L, Witte H, Schmid O, Strokes I (2002) ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion—part I: ankle, hip and spine. J Biomech 35(4):543–548CrossRef
35.
Zurück zum Zitat Yao J, Lancianese S, Hovinga K, Lee J, Lerner A (2008) Magnetic resonance image analysis of meniscal translation and tibio-menisco-femoral contact in deep knee flexion. J Orthop Res 26:673–684CrossRef Yao J, Lancianese S, Hovinga K, Lee J, Lerner A (2008) Magnetic resonance image analysis of meniscal translation and tibio-menisco-femoral contact in deep knee flexion. J Orthop Res 26:673–684CrossRef
Metadaten
Titel
In vivo static and dynamic lengthening measurements of the posterior cruciate ligament at high knee flexion angles
verfasst von
Caecilia Charbonnier
Victoria B. Duthon
Sylvain Chagué
Frank C. Kolo
Jacques Ménétrey
Publikationsdatum
20.12.2019
Verlag
Springer International Publishing
Erschienen in
International Journal of Computer Assisted Radiology and Surgery / Ausgabe 3/2020
Print ISSN: 1861-6410
Elektronische ISSN: 1861-6429
DOI
https://doi.org/10.1007/s11548-019-02107-9

Weitere Artikel der Ausgabe 3/2020

International Journal of Computer Assisted Radiology and Surgery 3/2020 Zur Ausgabe

Premium Partner