Skip to main content
Erschienen in: NanoEthics 1/2010

01.04.2010 | Critical Discussion Notes

Developments in the Debate on Nanoethics: Traditional Approaches and the Need for New Kinds of Analysis

verfasst von: Arianna Ferrari

Erschienen in: NanoEthics | Ausgabe 1/2010

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper aims to review different discourses within the emerging field of ethical reflection on nanotechnology. I will start by analysing the early stages of this debate, showing how it has been focused on searching for legitimacy for this sphere of moral inquiry. I will then characterise an ethical approach, common to many authors, which frames ethical issues in terms of risks and benefits. This approach identifies normative issues where there are conflicts of interest or where challenges to the fundamental values of our society arise. In response to the limitations of this approach, other commentators have called for more profound analysis of the limits of our knowledge, and have appealed to values, such as sustainability or responsibility, which should, they suggest, inform nanotechnological development (I will define this approach as a “sophisticated form of prudence”). After showing the ways in which these frameworks are limited, I will examine more recent developments in debates on nanoethics which call for the contextualisation of ethical discourse in its ontological, epistemic and socio-economic and political reflections. Such contextualisation thus involves inquiry into the ‘metaphysical research program’ (MRP) of nanotechnology/ies and analysis of the socio-economic, political and historical reality of nano. These ideas offer genuinely new insights into the kind of approach required for nanoethical reflection: they recover a sense of the present alongside the need to engage with the past, while avoiding speculation on the future.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
Mnyusiwalla and co-authors [100] analysed literature published between 1985 and September 2002, using survey databases and searching for articles containing ‘nanotechnology’ as a keyword. The articles were then screened for the keywords ‘ethics’ and ‘social implications’.
 
2
Discussion on the challenges posed by nano began in the USA with the publication of a National Science and Technology Council report on ‘Shaping the world atom by atom’ [106], which both anticipated utopian dreams of a better world and gave rise to fears and nightmares of a destructive future. The launch of a programme on ‘converging technologies for improving human performances’ was also particularly important [135]; this was followed by a response by the European Union [78].
 
3
A number of conferences and meetings were particularly important in this initial debate: a Nanoethics conference in March 2005 at the University of South Carolina, USA (see also [25]); a workshop on Converging Technologies organised by the European Commission ([78]; cf. also [26]); and a clustering ‘workshop on the ethics of nanotechnology’, held in Brussels in November 2006 with the aim of coordinating current European projects on the ELSA of nanotechnology. Further interesting groups are the ‘NanoCenter’ at the USC Columbia (since 2001) in the USA; the ‘Working Group for the Study of Philosophy and Ethics of Complexity and Scale (SPECS)’ at the University of South Carolina; the Nanooffice at the University of Darmstadt; the Nanoethics Network based at the Danish University of Aarhus; and the recently founded S.NET (Society for the Study of Nanoscience and Emerging Technologies).
 
4
For a precise explanation of the different notions of nanotechnology see [141, 108].
 
5
As a consequence of this generality, Schummer [144] considers the self-proclaimed common ground of the length scale as being too weak to enable different disciplines (such as chemistry, engineering, and material sciences) to integrate so as to achieve interdisciplinarity.
 
6
Keiper [91] describes, for example, the discipline of nanoethics as being modelled on the development of bioethics.
 
7
Susanne et al. [157] are, however, critical of current bioethical debate, and describe two typical pitfalls it falls into: a technical prejudice which argues for the solution of almost every question through new techniques; and a philosophical prejudice which tends to solve everything through speculative, a priori arguments.
 
8
Allhoff [1] points out that if we consider, for example, issues of distributive justice, we have first of all to figure out which account of distribution we want to follow, then establish whether that account would be violated by a particular application: in doing this there is nothing new with respect to other debates on technologies.
 
9
For Cameron [22], contemporary ‘bioethics’ is experiencing a crisis because it is withdrawing from substantive questions to focus on procedural concerns which concentrate strongly on individual autonomy and ‘informed consent’. In this way it leads to efforts to privatise ethical decision making and assume an atomistic view of society. Cameron sees in the twinning of bioethics and biopolicy the possibility of a “nanoethics that builds a vision for the common good—on the basis of shared convictions about ‘human rights and fundamental freedoms’, and with a flipside in approaches to biopolicy that are not shy to encourage appropriate regulation” ([22], p. 294).
 
10
The principle ‘Verum et factum reciprocantur seu convertuntur’ or ‘verum esse ipsum factum’ (‘the true and the made are...interchangeable,’ or ‘the true is what is made’) was formulated for the first time in 1710 as part of Vico’s work De Italorum Sapientia, and then reformulated and applied in Scienza nuova seconda in 1730, where it is connected with the doctrine that the civil world (history) is made by man. This principle states that human beings can only truly know the things that they have made. Rejecting Descartes’ knowledge principles, which are constructed upon the idea that natural science and mathematics need a ‘metaphysical explanation’, Vico argues that these disciplines demand an analysis of the causes (the activity) through which things are made.
 
11
See also Bond’s speech, entitled ‘Responsible nanotechnology development’, at the SWISSRE Workshop [159] and quoted in [158].
 
12
In this respect, ethical and social issues associated with emerging nanotechnologies are characterised by the following distinctive features: they are determinate, distinct, immediate (because now is not too soon to consider them), significant and actionable—meaning that now is the moment for certain actors to take steps to address some of the issues ([138], p. 8).
 
13
This distinction is a working hypothesis similarly used by the European DEEPEN (Deepening Ethical Engagement in Emerging Nanotechnologies) Project, a EU Sixth Framework Programme funded project and Europe’s leading partnership for integrated understanding of the ethical challenges posed by nanotechnologies (see http://​www.​geography.​dur.​ac.​uk/​projects/​deepen). I would like to acknowledge productive discussions around this topic with the other DEEPEN partners.
 
14
On the one hand, general visions of what nanotechnology is and what it can provide (i.e. nanotechnology in the singular) inform discourse on each specific application and influence the framework for concrete questions in a specific area. On the other hand, the particular questions that emerge in contexts of application (nanotechnologies in the plural) also go back and re-shape global visions of these technologies.
 
15
Exceptions include an anthology edited by Walker and Ivanhoe [164] and recent efforts to develop virtue ethics arguments in the context of environmental discussion (see for example [139]).
 
16
See, among others, [165, 104, 173].
 
17
The work of Poortinga and Pidgeon [122], which refers to technologies in general, is interesting with regard to this. A number of other publications refer to the field of biotechnology [123, 85].
 
18
The first international endorsement of the Precautionary Principle is contained in the World Charter for Nature 1982, which was successively ratified in the famous Rio Declaration, in which, in article 15, the Precautionary Principle is defined in the following terms: “Where there are threats of serious or irreversible damage, lack of full scientific certainty shall not be used as a reason for postponing cost-effective measures to prevent environmental degradation” (http://​www.​unep.​org/​Documents.​Multilingual/​Default.​asp?​DocumentID=​78&​ArticleID=​1163). In 2000 the European Commission developed a communication on the precautionary principle (http://​ec.​europa.​eu/​environment/​docum/​20001_​en.​htm), in which two aspects were distinguished: on the one hand the political decision to act or not to act, which is linked to the factors which trigger recourse to the precautionary principle; on the other the affirmative aspect—i.e. the measures which result from application of the precautionary principle. There is a very broad literature of this topic; for an overview, see [75].
 
19
The principle offers a basis for a different kind of decision-making process to that traditionally proposed by risk assessment: whereas the latter is based upon the idea of balancing harm and benefit, in a precautionary decision-making structure evidence regarding alternatives and of the magnitude of possible harm from an activity are also considered (cf. [160]). In this sense, the principle can be defined as proposing a ‘state of mind’ that may help decision-makers avoid false negatives [119] and as a “salutary spur to greater humility” which draws attention to a broader range of non-reductive methods and which reveals the normative and contestable basis for decisions ([154], p. 312).
 
20
Hull [80] distinguishes three kinds of critique of the precautionary principle: the claim that the principle is not scientific; that it ignores the risks of regulation; and that people make irrational decisions.
 
21
Sunstein [156] argues, for example, that the principle is incoherent “not because it leads in bad directions, but because read for all its worth, it leads in no direction at all. The principle threatens to be paralyzing, forbidding regulation, inaction, and every step between. It provides help only if we blind ourselves to many aspects of risk-related situations and focus on a narrow subset of what is at stake” ([156], pp. 14–15).
 
22
Perhaps an idea from the virtue ethics approach would be helpful in framing this differently: in virtue ethics the rightness of the action is determined by the character traits of the person performing it, or by their intentions.
 
23
On 14th and 15th July 2005 a meeting exploring ‘responsible’ research and development, organised by the European Commission and held in Brussels, took place in order to discuss and further develop the 2004 dialogue launched by the European Commission Communication “Towards a European strategy for nanotechnology” and the June 2004 international meeting held in Alexandria (USA) and organised by the National Science Foundation (see ftp://​ftp.​cordis.​lu/​pub/​nanotechnology/​docs/​intldialogue_​background.​pdf). In the 2004 NSF meeting it was stated that an ongoing dialogue should enable and maximise beneficial contributions of nanotechnologies to society as well as addressing the concerns of the public in reducing risks. However, this appeal to ‘responsible development’ is ambiguous in its description of risk as the only public concern and in its avowed effort towards the maximisation of benefit.
 
24
In 2004 the European Union called for a dialogue with the public on scientific issues (European Commission [50], and under the 6th Framework Programme extensive projects were funded to explore ways of involving citizens in dialogue and participation (see Science and Society program, http://​ec.​europa.​eu/​research/​science-society/​index.​cfm?​fuseaction=​public.​topic&​id=​356). In the UK, partly as a result of recommendations by the Royal Society [137], large numbers of ‘upstream public engagement’ activities (involving constructive and proactive debate on the future of nanotechnologies) have taken place (including Nanojury UK, Nanodialogues, and initiatives organized by the Nano Engagement Group; cf. [63]).
 
25
On the Code of Conduct see: http://​ec.​europa.​eu/​nanotechnology/​index_​en.​html (cf. [103]). In the US there is a similar voluntary measure, the US Nanoscale Materials Stewardship Program (NMSP): http://​www.​epa.​gov/​oppt/​nano/​stewardship.​htm.
 
27
One of the major difficulties, in the case of nanotechnologies, is a lack of appropriate regulation at governmental level, so that ‘voluntary measures’ such as Codes of Conduct involving private companies have become more and more important. These include the UK Responsible NanoCode, promoted by the Royal Society, Insight Investment and the Nanotechnology Industries Association (cf. also [136]); the Code of Conduct developed by BASF; the Nanocare Initiative promoted by a number of chemical companies; the Code of Conduct developed by the Swiss retailer’s association IG DHS; and the ‘Nano Risk Framework to Aid in Responsible Development of Nanotechnology’ developed by Dupont and the NGO Environmental Defense (EDF; [35] and cf. for paragraph 4.2). For an overview of this governance landscape see [89].
 
28
The term ‘stakeholder’ (which literally means a person or organisation that has a legitimate interest in a project or entity, in our case a technology) comes from business ethics and the debate on corporate social responsibility. Interestingly, the exercises which identify different stakeholders in a particular situation—in our case the development of a technology—imply that a person has particular interests which are different from those of others, depending on his or her specific role in society: it seems that a consumer has different interests from an entrepreneur or scientist. However, this fragmentation of societal roles can be considered fundamentally problematic, in that an individual in a society always takes a number of different roles and positions (an entrepreneur, for example, is also a consumer and a citizen).
 
29
This report sketches a particular regime of the economics of technoscientific promises (ETP), characterised by taking public opinion into account, whereas the development of dialogue on benefits and concerns ends up taking the form of polarised interactions between those for or against these technoscientific promises [52].
 
30
It is not possible, in this article, to further investigate the implications of this new regime of responsible development. For further analysis of this topic see [103, 132,133].
 
31
However, already in its first call for a moratorium the ETC Group highlighted the tension between, on the one hand, a lack of research on the toxicity of nanoproducts, and, on the other, the rapid commercialisation of these products: “No one expects the scientific community to have all the answers at this early stage; every consumer would expect, however, that scientists and regulators get it right before nanoproducts are sold or released in the environment and before they potentially endanger the health of workers in labs” (ETC Group [46], p. 6).
 
32
These principles are abbreviated in the acronym CHISEL: criticality, holism, interaction, self-organisation, emergence and long-termism [82].
 
33
Dupuy [37] proposes abandoning the traditional metaphysics of time typical of modern science, which has its highest rational expression in Leibniz’s philosophy and which underpins the theory of rational choice ([37], p.162 ff). In contrast, he highlights the importance of Bergsonian metaphysics of time.
 
34
They argue that if, on the one hand it is not credible to be too optimistic, on the other we will end by undergoing the catastrophe if we close ourselves off in cognitive paralysis. In this sense the methodology of ongoing normative assessment can be seen as a conjunction of inverse prescription [42].
 
35
The notion of a metaphysical research programme goes back to the theories of Karl Popper, who highlighted that every scientific theory relies on a set of values and worldviews which are built on general presuppositions about the structure of the world. In his work, ‘metaphysical’ assumptions are ones which are non-falsifiable, i.e. those which cannot undergo empirical testing. In the ‘Metaphysical Epilogue’ to his work Quantum Theory and the Schism in Physics (originally 1982), Popper pointed out that, in almost every phase of the development of science, metaphysical ideas not only determine which problems of explanation we choose to attack, but also the kinds of answers we consider satisfactory additions to our knowledge ([124], p. 161). Popper followed the lead of Emile Meyerson’s De l’explication dans les sciences, originally published in 1927 (see [98]). The fact that he chooses the word ‘programme’ serves to stress the fact that these metaphysical ideas tend to cluster together and support each other in various ways. He then uses this notion to identify and criticise ideas within rival theories such as determinism, justificationism, subjectivism and essentialism. In Popper’s opinion, these rival metaphysical research programs are basic categories of thought that operate as invisible boundaries, dictating the types of problems that scientists choose to work on, the way that they are formulated, and the kinds of solutions that are accepted.
 
36
The expression ‘ethics without ontology’ is taken from a series of lectures by Hilary Putnam [127]. Putnam argues that ‘ontology’ is not meant as a synonym of ‘metaphysics’ but rather is a part of it: that concerning the ‘science of Being’. Putnam then distinguishes the so-called ‘inflationary ontologists’, such as Plato or Moore, and ‘deflationary ontologists’, who are further distinguished as reductionists and eliminationists. Putnam, who here refers clearly to the nature of discursive entities, rejects every kind of Ontology (with a capital ‘O’, as he writes) and defends “what one might call pragmatic pluralism, the recognition that it is no accident that in everyday language we employ many different kinds of discourses, discourses subject to different standards and possessing different sorts of applications, with different logical and grammatical features—different ‘language games’ in Wittgenstein’s sense—no accident because it is an illusion that there could be just one sort of language game which could be sufficient for the description of all of reality!” ([127], p. 20).
 
37
Dupuy [40] sees many of the same tensions, contradictions, paradoxes, and confusions as he found in cybernetics and within cognitive science in the philosophical foundation of converging technologies—in particular within the NBIC’s conception of these, although he sees, in this new project, more far-reaching and dangerous consequences because it is an entire programme founded upon acting upon nature and mankind.
 
38
[145] points out, for example, that the trend of patenting DNA sequence databases similarly has doubtful benefits.
 
39
For this reason, in analysis of possible impacts of these technologies on a global scale the race for control of patents and the question of consumption of material resources (since the economies of developing countries largely depend on mining and exporting these materials to industrialised countries) are of fundamental importance (cf. [145, 146]). The latest changes in intellectual property rights are in the field of materials—since 2000, all existing and aspiring member countries of the World Trade Organisation (WTO) have to sign the Trade Related Intellectual Property Rights agreement (TRIPs). Such legislation seems to have particularly negative side effects on developing countries, because the impact of property rights now depends on the imitation/innovation capacity of developing countries. Whereas the know-how gap between rich and poor countries was certainly large enough previously, and developing countries could neither imitate the products of developed countries nor compete with their innovations, before the development of nanotechnological materials TRIPs was not especially influential on the economy of these countries. Now, its impact on welfare is expected to produce clearly negative effects, especially for the least developed countries with little innovation but some imitation potential [145]. Furthermore, for Schummer [145, 146] many nanotechnologies promote the substitution of material resources for more expensive and ‘technological’ ones and are clearly following a long-term trend—begun in the late 19th century—which has been proven to have drastic effects on national economies.
 
40
In particular this idea is highly visible in those papers which try to manage the tension between unexpected developments in science and technology and the necessity of preventing and minimising side-effects (see for example [65]). The problem with such thinking is that it refuses to analyse the development of new technologies in a historical manner, for example by comparing them with earlier, similar technologies or with technologies developed in a similar socio-economic context.
 
41
See [49, 69]; [61, 102] and IUF [84].
 
42
As already mentioned, in 2007 the ETC Group changed its strategy on its call for a moratorium on nano-products.
 
43
For an analysis of the Framework proposed by Dupont and Environmental Defense see [89].
 
44
It therefore requires “democratic involvement for the entire range of processes by which nanotechnologies are developed and used and is necessary at each stage of development on a continuing basis to ensure that public concerns, values and preferences inform and guide nanotechnology oversight” (NanoAction p. 9).
 
45
For Nordmann and Rip [115], the implications for this relationship are more concrete and urgent than questions about personalised medicine, an idea which, due to the difficulties of establishing causal links between genetic data and disposition to disease, still seems too speculative.
 
46
In the USA, for example, positive promises and great visions for nanotechnology have been a matter for political support, first under Clinton [107] and then under Bush (who signed the 21st Century Nanotechnology Research and Development Act in December 2003), and have been seen as constituting powerful economic motors. The US debate on nanotechnology is characterised by an alliance between ‘visionary engineers’, science-fiction authors, business people and transhumanists. It takes technology to be a “given mysterious and autonomous force with one way impact on the society” [143], and sees cultural and social scientists as marginal actors in the debate.
 
47
See for example the initiatives of the European Commission in [81]; in the USA the US Nanotechnology Initiative (http://​www.​nano.​gov/​). See also, amongst others, the project Observatory Nano which has prepared an ELSA literature on nanotechnology (http://​www.​observatorynano.​eu/​project/​filesystem/​files/​Literature.​doc) and the Nanoethics Bank (http://​ethics.​iit.​edu/​NanoEthicsBank/​popular_​search.​php?​cmd=​search&​words=​ethics&​mode=​normal).
 
48
To summarise: for some authors, these issues are extraordinarily new because they involve new technological possibilities, but do not need a new framework of reflection [11, 70, 71, 73, 74, 159]. For others, these issues are new and therefore need new ethical insights because of the extraordinary transformative technological power of both nature and the human being [14]. For others again, these issues are old because they touch traditional ethical questions raised by technological development and so can be fruitfully analysed using established frameworks such as approaches in bioethics [43]. Finally, for some these issues are old problems which need new kinds of reflection, because traditional ethical frameworks do not appear to satisfyingly capture the issues at stake (see [172, 40]).
 
Literatur
1.
Zurück zum Zitat Allhoff F (2007) On the autonomy and justification of nanoethics. In: Nanoethics 1(3): 185–210 Allhoff F (2007) On the autonomy and justification of nanoethics. In: Nanoethics 1(3): 185–210
2.
Zurück zum Zitat Allhoff F, Lin P (2006) What’s so special about nanotechnology and nanoethics? Introductory paper to nanoethics symposium published in. Int J Appl Philos 20(2):179–190 Allhoff F, Lin P (2006) What’s so special about nanotechnology and nanoethics? Introductory paper to nanoethics symposium published in. Int J Appl Philos 20(2):179–190
3.
Zurück zum Zitat Allhoff F, Lin P (2008) Nanotechnology and society. Current and emerging ethical issues. Springer, Dordrecht Allhoff F, Lin P (2008) Nanotechnology and society. Current and emerging ethical issues. Springer, Dordrecht
4.
Zurück zum Zitat Bachmann G (1998) Innovationsschub aus dem Nanokosmos. Technologieanalyse. VDI- Technologiezentrum, Düsseldorf Bachmann G (1998) Innovationsschub aus dem Nanokosmos. Technologieanalyse. VDI- Technologiezentrum, Düsseldorf
5.
Zurück zum Zitat Baird D, Nordmann A, Schummer J (2004) Discovering the nanoscale. IOS, Amsterdam Baird D, Nordmann A, Schummer J (2004) Discovering the nanoscale. IOS, Amsterdam
6.
Zurück zum Zitat Ball P (2003) Nanoethics and the purpose of new technologies. Talk delivered at “Material Choices” Symposium, Royal Society For Arts, London, March 2003 Ball P (2003) Nanoethics and the purpose of new technologies. Talk delivered at “Material Choices” Symposium, Royal Society For Arts, London, March 2003
7.
Zurück zum Zitat Barnett J, Carr A, Clift R (2006) Going public: risk, trust and public understanding of nanotechnologies. In: Hunt G, Mehta M (eds) Nanotechnology, risk and law. Earthscan, UK and USA, pp 196–212 Barnett J, Carr A, Clift R (2006) Going public: risk, trust and public understanding of nanotechnologies. In: Hunt G, Mehta M (eds) Nanotechnology, risk and law. Earthscan, UK and USA, pp 196–212
8.
Zurück zum Zitat Bensaude-Vincent B (2004) Two cultures of nanotechnology? In: HYLE 10, 2: 65–82 Bensaude-Vincent B (2004) Two cultures of nanotechnology? In: HYLE 10, 2: 65–82
10.
Zurück zum Zitat Bensaude-Vincent B (2009) Les vertiges de la technoscience. Editions La Découverte, Paris Bensaude-Vincent B (2009) Les vertiges de la technoscience. Editions La Découverte, Paris
11.
Zurück zum Zitat Berne RW (2005) Nanoethics. In: Mitcham C (ed) Encyclopedia of science, technology and ethics, vol. 3. Thomson-Gale, Detroit, pp 1259–1262 Berne RW (2005) Nanoethics. In: Mitcham C (ed) Encyclopedia of science, technology and ethics, vol. 3. Thomson-Gale, Detroit, pp 1259–1262
14.
Zurück zum Zitat Bond P (2004) Vision for converging technologies and future society. In: Roco M, Montemagno C (eds) The coevolution of human potential and converging technologies. Annals of the New York Academy of Sciences 1013: 17–24 Bond P (2004) Vision for converging technologies and future society. In: Roco M, Montemagno C (eds) The coevolution of human potential and converging technologies. Annals of the New York Academy of Sciences 1013: 17–24
15.
Zurück zum Zitat Bostrom N (2007) Technological revolutions: ethics and policy in the dark. In: Cameron NM, Mitchell EM (eds) Nanoscale: issues and perspectives for the nano century. Wiley, Hoboken, pp 129–152 Bostrom N (2007) Technological revolutions: ethics and policy in the dark. In: Cameron NM, Mitchell EM (eds) Nanoscale: issues and perspectives for the nano century. Wiley, Hoboken, pp 129–152
16.
Zurück zum Zitat Bostrom N, Ord T (2006) The reversal test: eliminating status quo bias in applied ethics. In: Ethics 116: 656–679 Bostrom N, Ord T (2006) The reversal test: eliminating status quo bias in applied ethics. In: Ethics 116: 656–679
17.
Zurück zum Zitat Braithwaite V, Levi M (eds) (1998) Trust and governance. Russell Sage Foundation, New York Braithwaite V, Levi M (eds) (1998) Trust and governance. Russell Sage Foundation, New York
19.
Zurück zum Zitat Browne W R, Feringa WL (2006) Making molecular nanomachines work. In: Nature Nanotechnology 1(I1): 25–35 Browne W R, Feringa WL (2006) Making molecular nanomachines work. In: Nature Nanotechnology 1(I1): 25–35
20.
Zurück zum Zitat Bundesministerium für Bildung und Forschung (BMBF) (2004a) Nanotechnologie. Innovationen für die Welt von morgen. Bonifatius GmbH, Bonn Bundesministerium für Bildung und Forschung (BMBF) (2004a) Nanotechnologie. Innovationen für die Welt von morgen. Bonifatius GmbH, Bonn
21.
Zurück zum Zitat Bundesministerium für Bildung und Forschung (BMBF) (2004b) Nanotechnologie erobert Märkte. Deutsche Zukunftsoffensive für Nanotechnologie. Bonifatius GmbH, Bonn Bundesministerium für Bildung und Forschung (BMBF) (2004b) Nanotechnologie erobert Märkte. Deutsche Zukunftsoffensive für Nanotechnologie. Bonifatius GmbH, Bonn
22.
Zurück zum Zitat Cameron NM (2007) Toward nanoethics? In: Cameron NM, Mitchell EM (eds) Nanoscale: issues and perspectives fort he nano century. Wiley, Hoboken, pp 281–294 Cameron NM (2007) Toward nanoethics? In: Cameron NM, Mitchell EM (eds) Nanoscale: issues and perspectives fort he nano century. Wiley, Hoboken, pp 281–294
24.
Zurück zum Zitat Cobb MD, Macoubrie J (2004) Public perceptions about nanotechnology. Risks, benefits, & trust. J Nano Res 6:395–405CrossRef Cobb MD, Macoubrie J (2004) Public perceptions about nanotechnology. Risks, benefits, & trust. J Nano Res 6:395–405CrossRef
26.
Zurück zum Zitat Coenen C, Fleischer T, Rader M (2004) Of visions, dreams, and nightmares: the debate on converging technologies. Report on the Conference “Converging Technologies for a Diverse Europe”, Brussels September 14–15, 2004. In: Technikfolgenabschätzung—Theorie und Praxis, Nr. 3(13): 118–125; http://www.itas.fzk.de/tatup/043/coua04a.htm Coenen C, Fleischer T, Rader M (2004) Of visions, dreams, and nightmares: the debate on converging technologies. Report on the Conference “Converging Technologies for a Diverse Europe”, Brussels September 14–15, 2004. In: Technikfolgenabschätzung—Theorie und Praxis, Nr. 3(13): 118–125; http://​www.​itas.​fzk.​de/​tatup/​043/​coua04a.​htm
27.
Zurück zum Zitat COMEST (2005) The precautionary principle. Report of the expert group on the precautionary principle commission on the ethics of scientific knowledge and technology. Geneva, Unesco COMEST (2005) The precautionary principle. Report of the expert group on the precautionary principle commission on the ethics of scientific knowledge and technology. Geneva, Unesco
30.
Zurück zum Zitat Commission de l’Éthique de la Science et de la Technologie (2008) Ethics, risk, and nanotechnology: responsible approaches to dealing with risk. In: Allhoff F, Lin P (eds) Nanotechnology and society. Current and emerging ethical issues. Springer, Dordrecht, pp 75–89 Commission de l’Éthique de la Science et de la Technologie (2008) Ethics, risk, and nanotechnology: responsible approaches to dealing with risk. In: Allhoff F, Lin P (eds) Nanotechnology and society. Current and emerging ethical issues. Springer, Dordrecht, pp 75–89
32.
Zurück zum Zitat Crandall BC (ed) (1996) Nanotechnology: molecular speculations on global abundance. MIT, Cambridge Crandall BC (ed) (1996) Nanotechnology: molecular speculations on global abundance. MIT, Cambridge
33.
Zurück zum Zitat Davies S et al (2009) Reconfiguring responsiility: lessons for public policy (Part 1 of the report on deepening the debate on nanotechnology). Duhram University, Duhram Davies S et al (2009) Reconfiguring responsiility: lessons for public policy (Part 1 of the report on deepening the debate on nanotechnology). Duhram University, Duhram
34.
Zurück zum Zitat Drexler E (1986) Engines of creation- the coming era of nanotechnology. Anchor Books, USA Drexler E (1986) Engines of creation- the coming era of nanotechnology. Anchor Books, USA
36.
Zurück zum Zitat Dupuy J-P (2000) The mechanization of mind: on the origins of cognitive science. Princeton University Press, Princeton Dupuy J-P (2000) The mechanization of mind: on the origins of cognitive science. Princeton University Press, Princeton
37.
Zurück zum Zitat Dupuy J-P (2002) Pour une catastrophisme eclairé. Editions du Seuil, France Dupuy J-P (2002) Pour une catastrophisme eclairé. Editions du Seuil, France
40.
Zurück zum Zitat Dupuy J-P (2007) Some pitfalls in the philosophical foundations of nanoethics. In: Journal of Medicine and Philosophy 32(3): 237–261 Dupuy J-P (2007) Some pitfalls in the philosophical foundations of nanoethics. In: Journal of Medicine and Philosophy 32(3): 237–261
41.
Zurück zum Zitat Dupuy J-P (2009) “Preface to the new edition”: the mechanization of mind: on the origins of cognitive science. Princeton, Princeton University Press Dupuy J-P (2009) “Preface to the new edition”: the mechanization of mind: on the origins of cognitive science. Princeton, Princeton University Press
42.
Zurück zum Zitat Dupuy J-P, Grinbaum A (2004) Living with uncertainty: toward the ongoing normative. Assessment of Nanotechnology. In: Techné 8: 4–25 Dupuy J-P, Grinbaum A (2004) Living with uncertainty: toward the ongoing normative. Assessment of Nanotechnology. In: Techné 8: 4–25
43.
Zurück zum Zitat Ebbesen M, Andersen S, Besenbacher F (2006) Ethics in nanotechnology: starting from scratch? In Bulletin of Science Technology Society, 26: 451–462 Ebbesen M, Andersen S, Besenbacher F (2006) Ethics in nanotechnology: starting from scratch? In Bulletin of Science Technology Society, 26: 451–462
44.
Zurück zum Zitat EGE (2006) Nanomedicine. Nanotechnology for health. European technology platform, stretegy research agenda for nanomedicine, November 2006, Belgium: European Commission EGE (2006) Nanomedicine. Nanotechnology for health. European technology platform, stretegy research agenda for nanomedicine, November 2006, Belgium: European Commission
53.
Zurück zum Zitat Ferrari A (2008) Is it all about human nature? The ethical challenges of converging technologies beyond a polarized debate. In: Innovation. The European Journal of Social Science Research 1(21): 1–24 Ferrari A (2008) Is it all about human nature? The ethical challenges of converging technologies beyond a polarized debate. In: Innovation. The European Journal of Social Science Research 1(21): 1–24
54.
Zurück zum Zitat Ferrari A (2009a) Controlling the ethics of nanorisks. In: Arnaldi S, Lorenzet A, Russo F (eds) Managing the uncertainty of nanotechnology: ethics, policy and public engagement. IOS, Amsterdam Ferrari A (2009a) Controlling the ethics of nanorisks. In: Arnaldi S, Lorenzet A, Russo F (eds) Managing the uncertainty of nanotechnology: ethics, policy and public engagement. IOS, Amsterdam
55.
Zurück zum Zitat Ferrari A (2009b) The Nano-control freak: multi-faceted strategies for taming nature. In: Kjolberg K, Wickson F (eds) Nano goes Macro—Social Perspectives on Nano-scaled Sciences & Technologies, Pan Stanford (in press) Ferrari A (2009b) The Nano-control freak: multi-faceted strategies for taming nature. In: Kjolberg K, Wickson F (eds) Nano goes Macro—Social Perspectives on Nano-scaled Sciences & Technologies, Pan Stanford (in press)
56.
Zurück zum Zitat Ferrari A (2010) Visions of a better world in nanotechnologies. In: Ferrari A, Gammel S (eds) Visionen der nanotechnologie. AKA Verlag, Heidelberg, pp 203–227 Ferrari A (2010) Visions of a better world in nanotechnologies. In: Ferrari A, Gammel S (eds) Visionen der nanotechnologie. AKA Verlag, Heidelberg, pp 203–227
57.
Zurück zum Zitat Ferrari A, Nordmann A (2009) Reconfiguring responsibility: lessons for nanoethics (Part 2 of the report on deepening the debate on nanotechnology). Duhram University, Duhram Ferrari A, Nordmann A (2009) Reconfiguring responsibility: lessons for nanoethics (Part 2 of the report on deepening the debate on nanotechnology). Duhram University, Duhram
58.
Zurück zum Zitat Foladori G, Invernizzi N (2005) Nanotechnology in its socio-economic context. In: Science Studies 18, 2: 67–73 Foladori G, Invernizzi N (2005) Nanotechnology in its socio-economic context. In: Science Studies 18, 2: 67–73
59.
Zurück zum Zitat Foladori G, Invernizzi N (2006) Nanotecnologías disruptivas. Implicaciones sociales de las nanotecnologías. Miguel Ángel Porrúa and Universidad Autónoma de Zacatecas, Zacatecas Foladori G, Invernizzi N (2006) Nanotecnologías disruptivas. Implicaciones sociales de las nanotecnologías. Miguel Ángel Porrúa and Universidad Autónoma de Zacatecas, Zacatecas
60.
Zurück zum Zitat Foladori G, Invernizzi N (2008) The workers’ push to democratize nanotechnology. In: Fisher E et al (eds) The yearbook of nanotechnology in society 1: 23–36 (originally posted at estudiosdeldesarrollo.net/relans/documentos/UITA-English-1.pdf Foladori G, Invernizzi N (2008) The workers’ push to democratize nanotechnology. In: Fisher E et al (eds) The yearbook of nanotechnology in society 1: 23–36 (originally posted at estudiosdeldesarrollo.net/relans/documentos/UITA-English-1.pdf
62.
Zurück zum Zitat Fukuyama F (2002) Our posthuman future. The consequences of the biotechnology revolution. Profile Books, Chicago Fukuyama F (2002) Our posthuman future. The consequences of the biotechnology revolution. Profile Books, Chicago
64.
Zurück zum Zitat Goodsell DS (2004) Bionanotechnology: lessons from nature. Wiley-Liss Inc, Hoboken Goodsell DS (2004) Bionanotechnology: lessons from nature. Wiley-Liss Inc, Hoboken
65.
Zurück zum Zitat Gordijn B (2006) Nanoethik—eine Neufassung der Debatte. In: Nordmann A, Schummer J, Schwarz A (eds) Nanotechnologien im Kontext. Philosophische, ethische und gesellschaftliche Perspektiven. Akademische Verlagsgesellschaft, Berlin, pp 311–323 Gordijn B (2006) Nanoethik—eine Neufassung der Debatte. In: Nordmann A, Schummer J, Schwarz A (eds) Nanotechnologien im Kontext. Philosophische, ethische und gesellschaftliche Perspektiven. Akademische Verlagsgesellschaft, Berlin, pp 311–323
66.
Zurück zum Zitat Gordon R (2007) Reasoning about the future of nanotechnology. In: Cameron NM, Ellen MM (eds) Nanoscale. Issues and perspectives for the nanocentury. Wiley, Hoboken, pp 97–114 Gordon R (2007) Reasoning about the future of nanotechnology. In: Cameron NM, Ellen MM (eds) Nanoscale. Issues and perspectives for the nanocentury. Wiley, Hoboken, pp 97–114
70.
Zurück zum Zitat Grunwald A (2004a) Vision assessment as a new element of technology future analysis tool-box. In: Proceedings of the EU-US Scientific Seminar: New Technology foresight, forecasting & assessment methods, Seville, May 13–14 2004 Grunwald A (2004a) Vision assessment as a new element of technology future analysis tool-box. In: Proceedings of the EU-US Scientific Seminar: New Technology foresight, forecasting & assessment methods, Seville, May 13–14 2004
71.
Zurück zum Zitat Grunwald A (2004b) Ethische Aspekte der Nanotechnologie. Eine Felderkundung, In: Technikfolgenabschätzung 2(13): 71–78 Grunwald A (2004b) Ethische Aspekte der Nanotechnologie. Eine Felderkundung, In: Technikfolgenabschätzung 2(13): 71–78
72.
Zurück zum Zitat Grunwald A (2005) Nanotechnology—a new field of ethical enquiry? In: Science and Engineering Ethics 11, 2: 187–201 Grunwald A (2005) Nanotechnology—a new field of ethical enquiry? In: Science and Engineering Ethics 11, 2: 187–201
73.
Zurück zum Zitat Grunwald A (2006) Nanotechnologie als Chiffre der Zukunft. In: Nordmann A, Schummer J, Schwarz A (eds) Nanotechnologien im Kontext. Philosophische, ethische und gesellschaftliche Perspektiven. Akademische Verlagsgesellschaft, Berlin, pp 49–80 Grunwald A (2006) Nanotechnologie als Chiffre der Zukunft. In: Nordmann A, Schummer J, Schwarz A (eds) Nanotechnologien im Kontext. Philosophische, ethische und gesellschaftliche Perspektiven. Akademische Verlagsgesellschaft, Berlin, pp 49–80
74.
Zurück zum Zitat Grunwald A (2008) Auf dem Weg in eine nanotechnologische Zukunft. Philosophisch- ethische Fragen. Freiburg I.B.: Karl Alber Grunwald A (2008) Auf dem Weg in eine nanotechnologische Zukunft. Philosophisch- ethische Fragen. Freiburg I.B.: Karl Alber
75.
Zurück zum Zitat Harremoës P et al (2002) The precautionary principle in the 20th century: late lessons from early warnings. Earthscan, London Harremoës P et al (2002) The precautionary principle in the 20th century: late lessons from early warnings. Earthscan, London
76.
Zurück zum Zitat Harris J (2007) Enhancing evolution? The ethical case for making better people. Princeton University Press, Princeton Harris J (2007) Enhancing evolution? The ethical case for making better people. Princeton University Press, Princeton
77.
Zurück zum Zitat Harris J, Chan S (2006) Cognitive regeneration or enhancement: the ethical issues. In: Regenerative Medicine 1(3): 361–366 Harris J, Chan S (2006) Cognitive regeneration or enhancement: the ethical issues. In: Regenerative Medicine 1(3): 361–366
78.
Zurück zum Zitat HLEG (2004) Converging technologies—shaping the future of European societies, a report to the European Commission Rappeurteur: Alfred Nordmann HLEG (2004) Converging technologies—shaping the future of European societies, a report to the European Commission Rappeurteur: Alfred Nordmann
79.
Zurück zum Zitat Holm S, Harris J (1999) Precautionary principle stifles discovery. In: Nature 400: 398 Holm S, Harris J (1999) Precautionary principle stifles discovery. In: Nature 400: 398
80.
Zurück zum Zitat Hull G (2007) Normative aspects of a “Substantive” precautionary principle. In: Social Science and Research Network (SSRN) available at: SSRN_ID1013357_code861170.pdf Hull G (2007) Normative aspects of a “Substantive” precautionary principle. In: Social Science and Research Network (SSRN) available at: SSRN_ID1013357_code861170.pdf
82.
Zurück zum Zitat Hunt G (2006) Nanotechnoscience and complex systems: the case for nanology. In: Hunt G, Mehta M (eds) Nanotechnology. Risks, ethics and law. Earthscan, UK and USA, pp 43–58 Hunt G (2006) Nanotechnoscience and complex systems: the case for nanology. In: Hunt G, Mehta M (eds) Nanotechnology. Risks, ethics and law. Earthscan, UK and USA, pp 43–58
83.
Zurück zum Zitat Invernizzi N, Foladori G, Maclurcan D (2008) Nanotechnology’s controversial role for the south. In: Science Technology Society 13: 123–148 Invernizzi N, Foladori G, Maclurcan D (2008) Nanotechnology’s controversial role for the south. In: Science Technology Society 13: 123–148
84.
Zurück zum Zitat IUF (IUF (International Union of Food, Agricultural Hotel, Restaurant, Catering, Tobacco and Allied Workers’ Association) (2007) Resolution on nanotechnologies at the IUF Congress meeting in Geneva. March 19-22, 2007, http://www.iuf.org IUF (IUF (International Union of Food, Agricultural Hotel, Restaurant, Catering, Tobacco and Allied Workers’ Association) (2007) Resolution on nanotechnologies at the IUF Congress meeting in Geneva. March 19-22, 2007, http://​www.​iuf.​org
86.
Zurück zum Zitat Janich P (2006) Wissenschaftstheorie der Nanotechnologie. In: Nordmann A, Schummer J, Schwarz A (eds) Nanotechnologien im Kontext. Philosophische, ethische und gesellschaftliche Perspektiven. Akademische Verlagsgesellschaft, Berlin, pp 1–32 Janich P (2006) Wissenschaftstheorie der Nanotechnologie. In: Nordmann A, Schummer J, Schwarz A (eds) Nanotechnologien im Kontext. Philosophische, ethische und gesellschaftliche Perspektiven. Akademische Verlagsgesellschaft, Berlin, pp 1–32
87.
Zurück zum Zitat Kaiser M (2009) Visionen der Öffentlichkeit als Elemente nanotechnologischer Identitätsarbeit In: Ferrari A, Gammel S. Visionen der Kaiser M (2009) Visionen der Öffentlichkeit als Elemente nanotechnologischer Identitätsarbeit In: Ferrari A, Gammel S. Visionen der
88.
Zurück zum Zitat Kearnes M (2009) Nanotechnology and the constitution of the social. In: Ferrari A, Gammel S. Visionen der Nanotechnologie. Heidelberg Aka Verlag: 187–201 Kearnes M (2009) Nanotechnology and the constitution of the social. In: Ferrari A, Gammel S. Visionen der Nanotechnologie. Heidelberg Aka Verlag: 187–201
89.
Zurück zum Zitat Kearnes M, Rip A (2009) The emerging governance landscape of nanotechnology. In: Gammel S, Lösch A, Nordmann A (eds) Jenseits von Regulierung: Zum politischen Umgang mit der Nanotechnologie. Aka Verlag, Heidelberg Kearnes M, Rip A (2009) The emerging governance landscape of nanotechnology. In: Gammel S, Lösch A, Nordmann A (eds) Jenseits von Regulierung: Zum politischen Umgang mit der Nanotechnologie. Aka Verlag, Heidelberg
90.
Zurück zum Zitat Kearnes M et al (2006) Governing at the nanoscale: people, policies and emerging technologies. Demos, London Kearnes M et al (2006) Governing at the nanoscale: people, policies and emerging technologies. Demos, London
93.
Zurück zum Zitat Kjolberg K, Wickson F (2007) Social and ethical interactions with nano: mapping the early literature. In: Nanoethics 1: 89–104 Kjolberg K, Wickson F (2007) Social and ethical interactions with nano: mapping the early literature. In: Nanoethics 1: 89–104
95.
Zurück zum Zitat Lee R, Jose D (2008) Self-interest, self-restraint and corporate responsibility for nanotechnologies: emerging dilemmas for modern managers. Technol Anal Strat Manag 20(1):113–125CrossRef Lee R, Jose D (2008) Self-interest, self-restraint and corporate responsibility for nanotechnologies: emerging dilemmas for modern managers. Technol Anal Strat Manag 20(1):113–125CrossRef
97.
Zurück zum Zitat Macoubrie J (2006) Nanotechnology: public concerns, reasoning, and trust in government. Public Underst Sci 15(2):221–241CrossRef Macoubrie J (2006) Nanotechnology: public concerns, reasoning, and trust in government. Public Underst Sci 15(2):221–241CrossRef
98.
Zurück zum Zitat Meyerson E, Sipfle MA, Sipfle D (1991) Explanation in the sciences. Springer, Boston Meyerson E, Sipfle MA, Sipfle D (1991) Explanation in the sciences. Springer, Boston
99.
Zurück zum Zitat Miller G (2008) Nanotechnology and the public interest: Repeating the mistakes of GM foods? In: International Journal of Technology Transfer and Commercialisation 7(2–3): 274–280 Miller G (2008) Nanotechnology and the public interest: Repeating the mistakes of GM foods? In: International Journal of Technology Transfer and Commercialisation 7(2–3): 274–280
100.
Zurück zum Zitat Mnyusiwalla A, Daar AS, Singer PA (2003) Mind the gap. Science and ethics in nanotechnology. In: Nanotechnology 14: R9-R13 Mnyusiwalla A, Daar AS, Singer PA (2003) Mind the gap. Science and ethics in nanotechnology. In: Nanotechnology 14: R9-R13
101.
Zurück zum Zitat Moor J, Weckert J (2004) Nanoethics: assessing the nanoscale from an ethical point of view. In: Baird D, Nordmann A, Schummer J (eds) Discovering the nanoscale. IOS, Amsterdam, pp 301–310 Moor J, Weckert J (2004) Nanoethics: assessing the nanoscale from an ethical point of view. In: Baird D, Nordmann A, Schummer J (eds) Discovering the nanoscale. IOS, Amsterdam, pp 301–310
104.
Zurück zum Zitat National Academy of Sciences, National Academy of Engineering, Institute of Medicine (1995) The national academy press on being a scientist: responsible conduct in research, Second Edition National Academy of Sciences, National Academy of Engineering, Institute of Medicine (1995) The national academy press on being a scientist: responsible conduct in research, Second Edition
105.
Zurück zum Zitat National Research Council (2006) A matter of size. Triennial review of the national nanotechnology initiative National Research Council (2006) A matter of size. Triennial review of the national nanotechnology initiative
107.
Zurück zum Zitat National Science and Technology Council (NSCT) (2000) National nanotechnology initiative: The initiative and its implementation plan. Washington, DC National Science and Technology Council (NSCT) (2000) National nanotechnology initiative: The initiative and its implementation plan. Washington, DC
110.
Zurück zum Zitat Nordmann A (2005) Noumenal technology: reflections on the incredible tininess of nano. In: Techné 8: 1–20 Nordmann A (2005) Noumenal technology: reflections on the incredible tininess of nano. In: Techné 8: 1–20
111.
Zurück zum Zitat Nordmann A (2007a) No future for nanotechnology? Historical development vs. global expansion. In: Jotterand F (ed) Nanotechnology and nanoethics: framing the field. Springer, Dordrecht, pp 43–63 Nordmann A (2007a) No future for nanotechnology? Historical development vs. global expansion. In: Jotterand F (ed) Nanotechnology and nanoethics: framing the field. Springer, Dordrecht, pp 43–63
112.
Zurück zum Zitat Nordmann A (2007b) Design choices in the nanoworld: a space odyssey. In: Deblonde M, Goorden L et al.: Nano researchers facing choices. In: Timmerman C, Segaert B (eds) The Dialogue Series, Universitair Centrum Sint-Ignatius Antwerpen 10: 13–30 Nordmann A (2007b) Design choices in the nanoworld: a space odyssey. In: Deblonde M, Goorden L et al.: Nano researchers facing choices. In: Timmerman C, Segaert B (eds) The Dialogue Series, Universitair Centrum Sint-Ignatius Antwerpen 10: 13–30
113.
Zurück zum Zitat Nordmann A (2007c) If and then: a critique of speculative NanoEthics. In Nanoethics 1.1: 31–46 Nordmann A (2007c) If and then: a critique of speculative NanoEthics. In Nanoethics 1.1: 31–46
114.
Zurück zum Zitat Nordmann A, Schwarz AE (2009) The lure of the “yes”: The seductive power of technoscience. In: Kaiser M, Kurath M, Maasen S, Rehmannn-Sutter C (eds) Assessment Regimes of Technology. Regulation, Deliberation & Identity Politics of Nanotechnology. Dordrecht, NL: Springer Nordmann A, Schwarz AE (2009) The lure of the “yes”: The seductive power of technoscience. In: Kaiser M, Kurath M, Maasen S, Rehmannn-Sutter C (eds) Assessment Regimes of Technology. Regulation, Deliberation & Identity Politics of Nanotechnology. Dordrecht, NL: Springer
115.
Zurück zum Zitat Nordmann A, Rip A (2009) Mind the gap revisited. In: Nature nanotechnology, 4: 273–274 Nordmann A, Rip A (2009) Mind the gap revisited. In: Nature nanotechnology, 4: 273–274
117.
Zurück zum Zitat Pereira AG, Schomberg R, Funtowicz S (2007) Foresight knowledge assessment. In: International Journal of Foresight and Innovation Policy (IJFIP) 3(1): 53–75 Pereira AG, Schomberg R, Funtowicz S (2007) Foresight knowledge assessment. In: International Journal of Foresight and Innovation Policy (IJFIP) 3(1): 53–75
118.
Zurück zum Zitat Petersen A, Anderson A (2007) A question of balance or blind faith?: Scientists’ and science policymakers’ representations of the benefits and risks of nanotechnologies. In: NanoEthics 1: 243–256 Petersen A, Anderson A (2007) A question of balance or blind faith?: Scientists’ and science policymakers’ representations of the benefits and risks of nanotechnologies. In: NanoEthics 1: 243–256
119.
Zurück zum Zitat Peterson M (2007) The precautionary principle should not be used as a basis for decision-making. In: EMBO Reports 8, 4: 305–308 Peterson M (2007) The precautionary principle should not be used as a basis for decision-making. In: EMBO Reports 8, 4: 305–308
121.
Zurück zum Zitat Pidgeon N et al (2008) Deliberating the risks of nanotechnologies for energy and health applications in the United states and United Kingdom, Nature Nanotechnology. Published Online, 7(December) Pidgeon N et al (2008) Deliberating the risks of nanotechnologies for energy and health applications in the United states and United Kingdom, Nature Nanotechnology. Published Online, 7(December)
122.
Zurück zum Zitat Poortinga W, Pidgeon NF (2003) Exploring the dimensionality of trust in risk regulation. In: Risk Analysis 23(5): 961–972 Poortinga W, Pidgeon NF (2003) Exploring the dimensionality of trust in risk regulation. In: Risk Analysis 23(5): 961–972
123.
Zurück zum Zitat Poortinga W, Pidgeon NF (2005) Trust in risk regulation: cause or consequence of the acceptability of GM food? In: Risk Analysis 25, 1: 199–209 Poortinga W, Pidgeon NF (2005) Trust in risk regulation: cause or consequence of the acceptability of GM food? In: Risk Analysis 25, 1: 199–209
124.
Zurück zum Zitat Popper K (1992) Quantum theory and the schism in physics. From the postscript to the logic of scientific discovery. Routledge, London Popper K (1992) Quantum theory and the schism in physics. From the postscript to the logic of scientific discovery. Routledge, London
125.
Zurück zum Zitat Powell MC (2007) New risk or old risk, high risk or no risk? How scientists’ standpoints shape their nanotechnology risk frames. In: Health Risk Soc 9(2):173–190 Powell MC (2007) New risk or old risk, high risk or no risk? How scientists’ standpoints shape their nanotechnology risk frames. In: Health Risk Soc 9(2):173–190
127.
Zurück zum Zitat Putnam H (1994) Ethics without ontology. Harvard University Press, Harvard Putnam H (1994) Ethics without ontology. Harvard University Press, Harvard
128.
Zurück zum Zitat Rip A (2001) Contributions from social studies of science and constructive technology assessment. In: Stirling A (ed) On Science and Precaution in the Management of Technological Risk. Volume II. Case Studies. Sevilla: institute for prospective technology studies (European Commission Joint Research Centre), November 2001: 94–122 Rip A (2001) Contributions from social studies of science and constructive technology assessment. In: Stirling A (ed) On Science and Precaution in the Management of Technological Risk. Volume II. Case Studies. Sevilla: institute for prospective technology studies (European Commission Joint Research Centre), November 2001: 94–122
131.
Zurück zum Zitat Rip A (2006) The tension between fiction and precaution in nanotechnology. In: Fisher E, Jones J, Schomberg R (eds) Implementing the precautionary principle. Perspectives and prospects. Edwar Elgar, Cheltentham Rip A (2006) The tension between fiction and precaution in nanotechnology. In: Fisher E, Jones J, Schomberg R (eds) Implementing the precautionary principle. Perspectives and prospects. Edwar Elgar, Cheltentham
132.
Zurück zum Zitat Rip A (2008a) A co-evolutionary approach to reflexive governance- and its ironies. In: Voss JP, Kemp R (eds) Reflexive governance for sustainable development. Edward Elgar Publishing Rip A (2008a) A co-evolutionary approach to reflexive governance- and its ironies. In: Voss JP, Kemp R (eds) Reflexive governance for sustainable development. Edward Elgar Publishing
134.
Zurück zum Zitat Rip A, Shelley-Egan C (2010) Positions and responsibilities in the ‘real’ world of nanotechnology. In: von Schomberg R, Davies S (eds) Understanding public debate on nanotechnologies: options for framing public policies: A working document by the services of the European Commission. European Commission, Brussels Rip A, Shelley-Egan C (2010) Positions and responsibilities in the ‘real’ world of nanotechnology. In: von Schomberg R, Davies S (eds) Understanding public debate on nanotechnologies: options for framing public policies: A working document by the services of the European Commission. European Commission, Brussels
135.
Zurück zum Zitat Roco M, Bainbridge W (eds) (2002) Converging technologies for improving human performance: nanotechnology. Biotechnology, information technology and cognitive science. National Science Foundation, Arlington Roco M, Bainbridge W (eds) (2002) Converging technologies for improving human performance: nanotechnology. Biotechnology, information technology and cognitive science. National Science Foundation, Arlington
136.
Zurück zum Zitat Royal Commission on Environmental Pollution (2008) Novel materials in the environment: the case of nanotechnology. HMSO, London Royal Commission on Environmental Pollution (2008) Novel materials in the environment: the case of nanotechnology. HMSO, London
138.
Zurück zum Zitat Sandler R (2009) Nanotechnology: the social and ethical issues. PEN 16. Washington: Woodrow Wilson Center, Project on Emerging Technologies Sandler R (2009) Nanotechnology: the social and ethical issues. PEN 16. Washington: Woodrow Wilson Center, Project on Emerging Technologies
139.
Zurück zum Zitat Sandler R, Cafaro P (2005) Environmental virtue ethics. Rowman & Littlefield, New York Sandler R, Cafaro P (2005) Environmental virtue ethics. Rowman & Littlefield, New York
140.
Zurück zum Zitat Sarewitz D et al (2004) Science policy in its social context. In: Philosophy Today, Supplement: 67–83 Sarewitz D et al (2004) Science policy in its social context. In: Philosophy Today, Supplement: 67–83
142.
Zurück zum Zitat Schomberg R (2007) From the ethics of technology to the ethics of knowledge assessment. In: Goujon P et al (eds) The information society: innovation, legitimacy, ethics and democracy. Springer, Boston, pp 39–55 Schomberg R (2007) From the ethics of technology to the ethics of knowledge assessment. In: Goujon P et al (eds) The information society: innovation, legitimacy, ethics and democracy. Springer, Boston, pp 39–55
143.
Zurück zum Zitat Schummer J (2004) Societal and ethical implications of nanotechnology: meanings, interest groups, and social dynamics. In: Techné—Research in Philosophy and Technology, 8, 2 (2004): 56–87 (reprinted in: J. Schummer, Baird D. (eds.): Nanotechnology Challenges: Implications for Philosophy, Ethics and Society, Singapore: World Scientific Publishing, 2006: 413–449) Schummer J (2004) Societal and ethical implications of nanotechnology: meanings, interest groups, and social dynamics. In: Techné—Research in Philosophy and Technology, 8, 2 (2004): 56–87 (reprinted in: J. Schummer, Baird D. (eds.): Nanotechnology Challenges: Implications for Philosophy, Ethics and Society, Singapore: World Scientific Publishing, 2006: 413–449)
144.
Zurück zum Zitat Schummer J (2006) Cultural diversity in nanotechnology ethics. In: Interdisciplinary Science Reviews 31: 217–230 Schummer J (2006) Cultural diversity in nanotechnology ethics. In: Interdisciplinary Science Reviews 31: 217–230
145.
Zurück zum Zitat Schummer J (2007a) Identifying ethical issues of nanotechnologies. In: ten Have HAMJ (ed) Nanotechnologies, ethics and politics. UNESCO, Paris, pp 79–98 Schummer J (2007a) Identifying ethical issues of nanotechnologies. In: ten Have HAMJ (ed) Nanotechnologies, ethics and politics. UNESCO, Paris, pp 79–98
146.
Zurück zum Zitat Schummer J (2007) The impact of nanotechnologies on developing countries. In: Allhoff F, Lin P, Moor J, Weckert J (eds) Nanoethics: examining the social impact of nanotechnology. Wiley, Hoboken Schummer J (2007) The impact of nanotechnologies on developing countries. In: Allhoff F, Lin P, Moor J, Weckert J (eds) Nanoethics: examining the social impact of nanotechnology. Wiley, Hoboken
147.
Zurück zum Zitat Schummer J (2008) Cultural diversity in nanotechnology ethics. In: Allhoff F, Lin P (eds) Nanotechnology and society. Current and emerging ethical issues. Springer, Dordrecht, pp 265–280 Schummer J (2008) Cultural diversity in nanotechnology ethics. In: Allhoff F, Lin P (eds) Nanotechnology and society. Current and emerging ethical issues. Springer, Dordrecht, pp 265–280
148.
Zurück zum Zitat Schummer J (2009) Nanotechnologie: Spiele mit Grenzen. Frankfurt a.M.: Suhrkamp Schummer J (2009) Nanotechnologie: Spiele mit Grenzen. Frankfurt a.M.: Suhrkamp
149.
Zurück zum Zitat Schwarz A (2004) Shrinking the ecological footprint with NanoTechnoScience? In: Baird D, Nordmann A, Schummer J (eds) Discovering the nanoscale. IOS, Amsterdam, pp 203–208 Schwarz A (2004) Shrinking the ecological footprint with NanoTechnoScience? In: Baird D, Nordmann A, Schummer J (eds) Discovering the nanoscale. IOS, Amsterdam, pp 203–208
150.
Zurück zum Zitat Shrader-Frechette K (2007) Nanotoxicology and ethical conditions for informed consent. In: Nanoethics 1: 47–56 Shrader-Frechette K (2007) Nanotoxicology and ethical conditions for informed consent. In: Nanoethics 1: 47–56
151.
Zurück zum Zitat Siegrist M et al (2007) Public acceptance of nanotechnology foods and food packaging: the influence of affect and trust. In: Appetite 49(2): 459–466 Siegrist M et al (2007) Public acceptance of nanotechnology foods and food packaging: the influence of affect and trust. In: Appetite 49(2): 459–466
152.
Zurück zum Zitat Spagnolo A, Daloiso V (2009) Outlining ethical issues in nanotechnologies. In: Bioethics 23(7): 394–402 Spagnolo A, Daloiso V (2009) Outlining ethical issues in nanotechnologies. In: Bioethics 23(7): 394–402
154.
Zurück zum Zitat Stirling A (2007) Risk, precaution and science: towards a more constructive policy. In: EMBO Reports 8(4): 309–315 Stirling A (2007) Risk, precaution and science: towards a more constructive policy. In: EMBO Reports 8(4): 309–315
156.
Zurück zum Zitat Sunstein CR (2005) Laws of fear: beyond the precautionary principle. Cambridge University Press, Cambridge Sunstein CR (2005) Laws of fear: beyond the precautionary principle. Cambridge University Press, Cambridge
157.
Zurück zum Zitat Susanne C, Casado M, Buxo MJ (2005) What challenges offers nanotechnology to bioethics? In: Law and the human genome review 22: 27–45 Susanne C, Casado M, Buxo MJ (2005) What challenges offers nanotechnology to bioethics? In: Law and the human genome review 22: 27–45
158.
Zurück zum Zitat Swiestra T, Rip A (2007) Nano-ethics as NEST-ethics: patterns of moral argumentation about new and emerging science and technology. In: Nanoethics 1(1): 3–20 Swiestra T, Rip A (2007) Nano-ethics as NEST-ethics: patterns of moral argumentation about new and emerging science and technology. In: Nanoethics 1(1): 3–20
160.
Zurück zum Zitat Tickner J (1999) A map toward precautionary decision-making. In: Raffensperger C, Tickner J (eds) Protecting public health and the environment: implementing the precautionary principle. Island, Washington Tickner J (1999) A map toward precautionary decision-making. In: Raffensperger C, Tickner J (eds) Protecting public health and the environment: implementing the precautionary principle. Island, Washington
161.
Zurück zum Zitat UNESCO (2006) The ethics and politics of nanotechnology. UNESCO, Geneva UNESCO (2006) The ethics and politics of nanotechnology. UNESCO, Geneva
162.
Zurück zum Zitat Van Lente H (2000) Forceful futures: from promise to requirement. In: Brown N, Rappert B, Webster A (eds) Contested futures: a sociology of prospective techno-science. Aldershot, Ashgate, pp 43–63 Van Lente H (2000) Forceful futures: from promise to requirement. In: Brown N, Rappert B, Webster A (eds) Contested futures: a sociology of prospective techno-science. Aldershot, Ashgate, pp 43–63
163.
Zurück zum Zitat Van Lente H, Rip A (1998) Expectations in technological developments: an example of prospective structures to be filled in by agency. In: Disco C, van der Meulen BJR (eds) Getting new technologies together. Walter de Gruyter, Berlin, pp 195–220 Van Lente H, Rip A (1998) Expectations in technological developments: an example of prospective structures to be filled in by agency. In: Disco C, van der Meulen BJR (eds) Getting new technologies together. Walter de Gruyter, Berlin, pp 195–220
164.
Zurück zum Zitat Walker RL, Ivanhoe PJ (eds) (2007) Working virtue. Oxford University Press, Oxford Walker RL, Ivanhoe PJ (eds) (2007) Working virtue. Oxford University Press, Oxford
165.
Zurück zum Zitat What Do You Care What Other People Think?: Further Adventures of a Curious Character by Richard Feynman (1988) What Do You Care What Other People Think?: Further Adventures of a Curious Character by Richard Feynman (1988)
166.
Zurück zum Zitat Wickson F (2008) Narratives of nature and nanotechnology. In: Nature Nanotechnology 3: 313–315 Wickson F (2008) Narratives of nature and nanotechnology. In: Nature Nanotechnology 3: 313–315
167.
Zurück zum Zitat Wilsdon J, Willis R (2004) See-through science: Why public engagement needs to move upstream. Demos, London Wilsdon J, Willis R (2004) See-through science: Why public engagement needs to move upstream. Demos, London
168.
Zurück zum Zitat Woods S, Jones R, Geldart A (2003) The social and economic challenges of nanotechnology. UK: Report to the Economic and Social Research Council (ESRC). ESRC, London Woods S, Jones R, Geldart A (2003) The social and economic challenges of nanotechnology. UK: Report to the Economic and Social Research Council (ESRC). ESRC, London
169.
Zurück zum Zitat Wullweber J (2006) Der mythos nanotechnologie. Die Entstehung einer neuen Inwertsetzungstechnologie. In: Peripherie—Zeitschrift für Politik und Ökonomie, 101/102: 99–118 Wullweber J (2006) Der mythos nanotechnologie. Die Entstehung einer neuen Inwertsetzungstechnologie. In: Peripherie—Zeitschrift für Politik und Ökonomie, 101/102: 99–118
170.
Zurück zum Zitat Wullweber J (2008) Nanotechnology—an empty signifier à venir? A delineation of a techno-socio-economical Innovation Strategy. Iin: Science, Technology and Innovation Studies 4 (1): 27–45 Wullweber J (2008) Nanotechnology—an empty signifier à venir? A delineation of a techno-socio-economical Innovation Strategy. Iin: Science, Technology and Innovation Studies 4 (1): 27–45
171.
Zurück zum Zitat Wynne B (2001) Creating public alienation: expert discourse of risk and ethics on GMOs. In: Science as Culture 10(1): 1–40 Wynne B (2001) Creating public alienation: expert discourse of risk and ethics on GMOs. In: Science as Culture 10(1): 1–40
173.
Zurück zum Zitat Ziman JM (1994) Prometheus bound: science in a dynamic steady state. University of Chicago Press, ChicagoCrossRef Ziman JM (1994) Prometheus bound: science in a dynamic steady state. University of Chicago Press, ChicagoCrossRef
Metadaten
Titel
Developments in the Debate on Nanoethics: Traditional Approaches and the Need for New Kinds of Analysis
verfasst von
Arianna Ferrari
Publikationsdatum
01.04.2010
Verlag
Springer Netherlands
Erschienen in
NanoEthics / Ausgabe 1/2010
Print ISSN: 1871-4757
Elektronische ISSN: 1871-4765
DOI
https://doi.org/10.1007/s11569-009-0081-z

Weitere Artikel der Ausgabe 1/2010

NanoEthics 1/2010 Zur Ausgabe

Premium Partner