Skip to main content
Erschienen in: Journal of Electronic Materials 9/2022

09.07.2022 | Original Research Article

Significantly Enhanced Dielectric Behavior of Polyvinylidene Fluoride-Barium Strontium Titanate Flexible Nanocomposite Thick Films: Role of Electric Field-Induced Effects

verfasst von: Sachin Jaidka, Arun Aggarwal, Sandeep Chopra, Dwijendra P. Singh

Erschienen in: Journal of Electronic Materials | Ausgabe 9/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The polyvinylidene fluoride (PVDF)-0.05Ba0.8Sr0.2TiO3 (BST) nanocomposite (0.05 is the fractional weight of BST) facile thick films of thickness ~100 μm have been synthesized by tape-casting. The synthesized films are exposed to an electric field of 22 kV/mm (for different time durations, 0 min, 40 min, 50 min, and 60 min) to investigate the electric field-induced effects on dielectric and structural properties of nanocomposite thick films. Structural studies have shown that the electric field increases the β phase of PVDF in PVDF-BST nanocomposites. The most prominent effect of the applied electric field is observed in the dielectric behavior of the nanocomposite thick films. The film exposed to the electric field for 60 min has the highest dielectric constant (~25) and very low tangent loss (~0.02) at 1 kHz, whereas the unexposed film of nanocomposite has a dielectric constant of ~15 and tangent loss (~0.03). The approximated Debye relaxation theory has been used to understand the correlation between dielectric and structural observations. Analysis confirms the duration of exposure to the electric field enhances the β-phase, which causes the increase in the density of dipoles. The enhanced dielectric performance is attributed to the increased dipolar density due to modification in the structural and interfacial behavior as well as molecular motion of the dipoles in the polymeric chain.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat H. Hu, F. Zhang, S. Luo, W. Chang, J. Yue, and C.-H. Wang, Recent Advances in Rational Design of Polymer Nanocomposite Dielectrics for Energy Storage. Nano Energy 74, 104844 (2020).CrossRef H. Hu, F. Zhang, S. Luo, W. Chang, J. Yue, and C.-H. Wang, Recent Advances in Rational Design of Polymer Nanocomposite Dielectrics for Energy Storage. Nano Energy 74, 104844 (2020).CrossRef
2.
Zurück zum Zitat V. Jella, S. Ippili, J.H. Eom, S.V.N. Pammi, and J.S. Jung, A Comprehensive Review of Flexible Piezoelectric Generators Based on Organic-Inorganic Metal Halide Perovskites. Nano Energy 57, 74 (2019).CrossRef V. Jella, S. Ippili, J.H. Eom, S.V.N. Pammi, and J.S. Jung, A Comprehensive Review of Flexible Piezoelectric Generators Based on Organic-Inorganic Metal Halide Perovskites. Nano Energy 57, 74 (2019).CrossRef
3.
Zurück zum Zitat M. Safaei, H.A. Sodano, and S.R. Anton, A Review of Energy Harvesting Using Piezoelectric Materials: State-of-the-Art a Decade Later (2008–2018). Smart Mater. Struct. 28, 113001 (2019).CrossRef M. Safaei, H.A. Sodano, and S.R. Anton, A Review of Energy Harvesting Using Piezoelectric Materials: State-of-the-Art a Decade Later (2008–2018). Smart Mater. Struct. 28, 113001 (2019).CrossRef
4.
Zurück zum Zitat M.-S. Zheng, Y.-T. Zheng, J.-W. Zha, Y. Yang, P. Han, Y.-Q. Wen, and Z.-M. Dang, Improved Dielectric, Tensile and Energy Storage Properties of Surface Rubberized BaTiO3 /Polypropylene Nanocomposites. Nano Energy 48, 144 (2018).CrossRef M.-S. Zheng, Y.-T. Zheng, J.-W. Zha, Y. Yang, P. Han, Y.-Q. Wen, and Z.-M. Dang, Improved Dielectric, Tensile and Energy Storage Properties of Surface Rubberized BaTiO3 /Polypropylene Nanocomposites. Nano Energy 48, 144 (2018).CrossRef
5.
Zurück zum Zitat I. Hammami, H. Hammami, J. Soulestin, M. Arous, and A. Kallel, Thermal and Dielectric Behavior of Polyamide-6/Clay Nanocomposites. Mater. Chem. Phys. 232, 99 (2019).CrossRef I. Hammami, H. Hammami, J. Soulestin, M. Arous, and A. Kallel, Thermal and Dielectric Behavior of Polyamide-6/Clay Nanocomposites. Mater. Chem. Phys. 232, 99 (2019).CrossRef
6.
Zurück zum Zitat L. Li, B. Zhou, J. Ye, W. Wu, F. Wen, Y. Xie, and P. Bass, Enhanced Dielectric and Energy-Storage Performance of Nanocomposites Using Interface-Modified Anti-ferroelectric Fillers. J. Alloys Compd. 831, 154770 (2020).CrossRef L. Li, B. Zhou, J. Ye, W. Wu, F. Wen, Y. Xie, and P. Bass, Enhanced Dielectric and Energy-Storage Performance of Nanocomposites Using Interface-Modified Anti-ferroelectric Fillers. J. Alloys Compd. 831, 154770 (2020).CrossRef
7.
Zurück zum Zitat X. Hu, Y. Zhou, J. Liu, and B. Chu, Improved Flexoelectricity in PVDF/Barium Strontium Titanate (BST) Nanocomposites. J. Appl. Phys. 123, 154101 (2018).CrossRef X. Hu, Y. Zhou, J. Liu, and B. Chu, Improved Flexoelectricity in PVDF/Barium Strontium Titanate (BST) Nanocomposites. J. Appl. Phys. 123, 154101 (2018).CrossRef
8.
Zurück zum Zitat N. Meng, X. Zhu, R. Mao, M.J. Reece, and E. Bilotti, Nanoscale Interfacial Electroactivity in PVDF/PVDF-TrFE Blended Films with Enhanced Dielectric and Ferroelectric Properties. J. Mater. Chem. C 5, 3296 (2017).CrossRef N. Meng, X. Zhu, R. Mao, M.J. Reece, and E. Bilotti, Nanoscale Interfacial Electroactivity in PVDF/PVDF-TrFE Blended Films with Enhanced Dielectric and Ferroelectric Properties. J. Mater. Chem. C 5, 3296 (2017).CrossRef
9.
Zurück zum Zitat G. Rajitha, and R.K. Dash, Optically Transparent and High Dielectric Constant Reduced Graphene Oxide (RGO)-PDMS Based Flexible Composite for Wearable and Flexible Sensors. Sens. Actuators, A: Phys. 277, 26 (2018).CrossRef G. Rajitha, and R.K. Dash, Optically Transparent and High Dielectric Constant Reduced Graphene Oxide (RGO)-PDMS Based Flexible Composite for Wearable and Flexible Sensors. Sens. Actuators, A: Phys. 277, 26 (2018).CrossRef
10.
Zurück zum Zitat M. Guo, J. Jiang, Z. Shen, Y. Lin, C.-W. Nan, and Y. Shen, High-Energy-Density Ferroelectric Polymer Nanocomposites for Capacitive Energy Storage: Enhanced Breakdown Strength and Improved Discharge Efficiency. Mater. Today 29, 49 (2019).CrossRef M. Guo, J. Jiang, Z. Shen, Y. Lin, C.-W. Nan, and Y. Shen, High-Energy-Density Ferroelectric Polymer Nanocomposites for Capacitive Energy Storage: Enhanced Breakdown Strength and Improved Discharge Efficiency. Mater. Today 29, 49 (2019).CrossRef
11.
Zurück zum Zitat J. Jiang, Z. Shen, J. Qian, Z. Dan, M. Guo, Y. Lin, C.W. Nan, L. Chen, and Y. Shen, Ultrahigh discharge efficiency in Multilayered Polymer Nanocomposites of High Energy Density. Energy Storage Mat. 18, 213 (2019).CrossRef J. Jiang, Z. Shen, J. Qian, Z. Dan, M. Guo, Y. Lin, C.W. Nan, L. Chen, and Y. Shen, Ultrahigh discharge efficiency in Multilayered Polymer Nanocomposites of High Energy Density. Energy Storage Mat. 18, 213 (2019).CrossRef
12.
Zurück zum Zitat M. Kumar, R. Rai, N. Kumar, G. Sharma, A.K. Singh, and S. Kumar, Crystal Structure Correlation of Ferroelectric and Dielectric Properties of Nb Doped PZT95/5. J. Mater. Sci. Mater. Electron. 30, 5014 (2019).CrossRef M. Kumar, R. Rai, N. Kumar, G. Sharma, A.K. Singh, and S. Kumar, Crystal Structure Correlation of Ferroelectric and Dielectric Properties of Nb Doped PZT95/5. J. Mater. Sci. Mater. Electron. 30, 5014 (2019).CrossRef
13.
Zurück zum Zitat C. Manière, G. Riquet, and S. Marinel, Dielectric Properties of Flash Spark Plasma Sintered BaTiO3 and CaCu3Ti4O12. Scr. Mater. 173, 41 (2019).CrossRef C. Manière, G. Riquet, and S. Marinel, Dielectric Properties of Flash Spark Plasma Sintered BaTiO3 and CaCu3Ti4O12. Scr. Mater. 173, 41 (2019).CrossRef
14.
Zurück zum Zitat W. Pan, M. Cao, H. Hao, Z. Yao, Z. Yu, and H. Liu, Defect Engineering Toward the Structures and Dielectric Behaviors of (Nb, Zn) Co-Doped SrTiO3 Ceramics. J. Eur. Ceram. Soc. 40, 49 (2020).CrossRef W. Pan, M. Cao, H. Hao, Z. Yao, Z. Yu, and H. Liu, Defect Engineering Toward the Structures and Dielectric Behaviors of (Nb, Zn) Co-Doped SrTiO3 Ceramics. J. Eur. Ceram. Soc. 40, 49 (2020).CrossRef
15.
Zurück zum Zitat A.K. Abdul Gafoor, M.M. Musthafa, and P.P. Pradyumnan, AC Conductivity and Diffuse Reflectance Studies of Ag-TiO2 Nanoparticles. J. Electron. Mater. 41, 2387 (2012).CrossRef A.K. Abdul Gafoor, M.M. Musthafa, and P.P. Pradyumnan, AC Conductivity and Diffuse Reflectance Studies of Ag-TiO2 Nanoparticles. J. Electron. Mater. 41, 2387 (2012).CrossRef
16.
Zurück zum Zitat W. Xia, and Z. Zhang, PVDF-Based Dielectric Polymers and Their Applications in Electronic Materials. IET Nanodielectr. 1, 17 (2018).CrossRef W. Xia, and Z. Zhang, PVDF-Based Dielectric Polymers and Their Applications in Electronic Materials. IET Nanodielectr. 1, 17 (2018).CrossRef
17.
Zurück zum Zitat A. Ahmed, I.A. Goldthorpe, and A.K. Khandani, Electrically Tunable Materials for Microwave Applications. Appl. Phys. Rev. 2, 11302 (2015).CrossRef A. Ahmed, I.A. Goldthorpe, and A.K. Khandani, Electrically Tunable Materials for Microwave Applications. Appl. Phys. Rev. 2, 11302 (2015).CrossRef
18.
Zurück zum Zitat Y. Song, Y. Shen, P. Hu, Y. Lin, M. Li, and C.W. Nan, Significant Enhancement in Energy Density of Polymer Composites Induced by Dopamine-Modified Ba0.6Sr0.4TiO3 Nanofibers. Appl. Phys. Lett. 101, 152904 (2012).CrossRef Y. Song, Y. Shen, P. Hu, Y. Lin, M. Li, and C.W. Nan, Significant Enhancement in Energy Density of Polymer Composites Induced by Dopamine-Modified Ba0.6Sr0.4TiO3 Nanofibers. Appl. Phys. Lett. 101, 152904 (2012).CrossRef
19.
Zurück zum Zitat Z.B. Pan, L.M. Yao, J.W. Zhai, S.H. Liu, K. Yang, H.T. Wang, and J.H. Liu, Fast Discharge and High Energy Density of Nanocomposite Capacitors Using Ba0.6Sr0.4TiO3 Nanofibers. Ceram. Int. 42, 14667 (2016).CrossRef Z.B. Pan, L.M. Yao, J.W. Zhai, S.H. Liu, K. Yang, H.T. Wang, and J.H. Liu, Fast Discharge and High Energy Density of Nanocomposite Capacitors Using Ba0.6Sr0.4TiO3 Nanofibers. Ceram. Int. 42, 14667 (2016).CrossRef
20.
Zurück zum Zitat Y. Xie, W. Jiang, T. Fu, J. Liu, Z. Zhang, and S. Wang, Achieving High Energy Density and Low Loss in PVDF/BST Nanodielectrics with Enhanced Structural Homogeneity. ACS Appl. Mater. Interfaces 10, 29038 (2018).CrossRef Y. Xie, W. Jiang, T. Fu, J. Liu, Z. Zhang, and S. Wang, Achieving High Energy Density and Low Loss in PVDF/BST Nanodielectrics with Enhanced Structural Homogeneity. ACS Appl. Mater. Interfaces 10, 29038 (2018).CrossRef
21.
Zurück zum Zitat M. Feng, Q. Chi, Y. Feng, Y. Zhang, T. Zhang, C. Zhang, Q. Chen, and Q. Lei, High Energy Storage Density and Efficiency in Aligned Nanofiber Filled Nanocomposites with Multilayer Structure. Compos. B Eng. 198, 108206 (2020).CrossRef M. Feng, Q. Chi, Y. Feng, Y. Zhang, T. Zhang, C. Zhang, Q. Chen, and Q. Lei, High Energy Storage Density and Efficiency in Aligned Nanofiber Filled Nanocomposites with Multilayer Structure. Compos. B Eng. 198, 108206 (2020).CrossRef
22.
Zurück zum Zitat S. Liu, and J. Zhai, A small Loading of Surface-Modified Ba0.6Sr0.4TiO3 Nanofiber-Filled Nanocomposites with Enhanced Dielectric Constant and Energy Density. RSC Adv. 4, 40973 (2014).CrossRef S. Liu, and J. Zhai, A small Loading of Surface-Modified Ba0.6Sr0.4TiO3 Nanofiber-Filled Nanocomposites with Enhanced Dielectric Constant and Energy Density. RSC Adv. 4, 40973 (2014).CrossRef
23.
Zurück zum Zitat I.O. Pariy, A.A. Ivanova, V.V. Shvartsman, D.C. Lupascu, G.B. Sukhorukov, M.A. Surmeneva, and R.A. Surmenev, Poling and Annealing of Piezoelectric Poly(Vinylidene Fluoride) Micropillar Arrays. Mater. Chem. Phys. 239, 122035 (2020).CrossRef I.O. Pariy, A.A. Ivanova, V.V. Shvartsman, D.C. Lupascu, G.B. Sukhorukov, M.A. Surmeneva, and R.A. Surmenev, Poling and Annealing of Piezoelectric Poly(Vinylidene Fluoride) Micropillar Arrays. Mater. Chem. Phys. 239, 122035 (2020).CrossRef
24.
Zurück zum Zitat P. Sapkota, S. Ueno, I. Fujii, G.P. Khanal, S. Kim, and S. Wada, Influence of Grain Size Effect and Ba/Ti Ratios on Dielectric, Ferroelectric, and Piezoelectric Properties of BaTiO3 Ceramics. Jap. J. Appl. Phys. 58, SSLC05 (2019).CrossRef P. Sapkota, S. Ueno, I. Fujii, G.P. Khanal, S. Kim, and S. Wada, Influence of Grain Size Effect and Ba/Ti Ratios on Dielectric, Ferroelectric, and Piezoelectric Properties of BaTiO3 Ceramics. Jap. J. Appl. Phys. 58, SSLC05 (2019).CrossRef
25.
Zurück zum Zitat M. Feng, C. Zhang, G. Zhou, T. Zhang, Y. Feng, Q. Chi, and Q. Lei, Enhanced Energy Storage Characteristics in PVDF-Based Nanodielectrics with Core-Shell Structured and Optimized Shape Fillers. IEEE Access 8, 81542 (2020).CrossRef M. Feng, C. Zhang, G. Zhou, T. Zhang, Y. Feng, Q. Chi, and Q. Lei, Enhanced Energy Storage Characteristics in PVDF-Based Nanodielectrics with Core-Shell Structured and Optimized Shape Fillers. IEEE Access 8, 81542 (2020).CrossRef
26.
Zurück zum Zitat Prateek, S. Siddiqui, R. Bhunia, N. Singh, A. Garg, and R.K. Gupta, Interface Modulation in Multi-layered BaTiO3 Nanofibers/PVDF Using the PVP Linker Layer as an Adhesive for High Energy Density Capacitor Applications. Mater. Adv. 1(4), 680 (2020). Prateek, S. Siddiqui, R. Bhunia, N. Singh, A. Garg, and R.K. Gupta, Interface Modulation in Multi-layered BaTiO3 Nanofibers/PVDF Using the PVP Linker Layer as an Adhesive for High Energy Density Capacitor Applications. Mater. Adv. 1(4), 680 (2020).
27.
Zurück zum Zitat X. Xiong, D. Shen, Q. Zhang, H. Yang, J. Wen, and Z. Zhou, Achieving High Discharged Energy Density in pvdf-Based Nanocomposites Loaded with Fine Ba0.6Sr0.4TiO3 Nanofibers. Compos. Commun. 25, 100682 (2021).CrossRef X. Xiong, D. Shen, Q. Zhang, H. Yang, J. Wen, and Z. Zhou, Achieving High Discharged Energy Density in pvdf-Based Nanocomposites Loaded with Fine Ba0.6Sr0.4TiO3 Nanofibers. Compos. Commun. 25, 100682 (2021).CrossRef
28.
Zurück zum Zitat Z. Wang, T. Wang, C. Wang, Y. Xiao, P. Jing, Y. Cui, and Y. Pu, Poly(Vinylidene Fluoride) Flexible Nanocomposite Films with Dopamine-Coated Giant Dielectric Ceramic Nanopowders, Ba(Fe0.5Ta0.5)O3, for High Energy-Storage Density at Low Electric Field. ACS Appl. Mater. Interfaces 9, 29130 (2017).CrossRef Z. Wang, T. Wang, C. Wang, Y. Xiao, P. Jing, Y. Cui, and Y. Pu, Poly(Vinylidene Fluoride) Flexible Nanocomposite Films with Dopamine-Coated Giant Dielectric Ceramic Nanopowders, Ba(Fe0.5Ta0.5)O3, for High Energy-Storage Density at Low Electric Field. ACS Appl. Mater. Interfaces 9, 29130 (2017).CrossRef
29.
Zurück zum Zitat Y. Wang, Y. Hou, and Y. Deng, Effects of Interfaces Between Adjacent Layers on Breakdown Strength and Energy Density in Sandwich-Structured Polymer Composites. Compos. Sci. Technol. 145, 71 (2017).CrossRef Y. Wang, Y. Hou, and Y. Deng, Effects of Interfaces Between Adjacent Layers on Breakdown Strength and Energy Density in Sandwich-Structured Polymer Composites. Compos. Sci. Technol. 145, 71 (2017).CrossRef
30.
Zurück zum Zitat R. Bhunia, D. Ghosh, B. Ghosh, S. Hussain, R. Bhar, and A.K. Pal, Some Aspects of Microstructural and Dielectric Properties of Nanocrystalline CdS/Poly(Vinylidene Fluoride) Composite Thin Films. Polym. Int. 64, 924 (2015).CrossRef R. Bhunia, D. Ghosh, B. Ghosh, S. Hussain, R. Bhar, and A.K. Pal, Some Aspects of Microstructural and Dielectric Properties of Nanocrystalline CdS/Poly(Vinylidene Fluoride) Composite Thin Films. Polym. Int. 64, 924 (2015).CrossRef
31.
Zurück zum Zitat R. Senthil Kumar, T. Sarathi, K.K. Venkataraman, and A. Bhattacharyya, Enhanced Piezoelectric Properties of Polyvinylidene Fluoride Nanofibers Using Carbon Nanofiber and Electrical Poling. Mater. Lett. 225, 126515 (2019).CrossRef R. Senthil Kumar, T. Sarathi, K.K. Venkataraman, and A. Bhattacharyya, Enhanced Piezoelectric Properties of Polyvinylidene Fluoride Nanofibers Using Carbon Nanofiber and Electrical Poling. Mater. Lett. 225, 126515 (2019).CrossRef
32.
Zurück zum Zitat S. Liu, S. Xue, W. Zhang, and J. Zhai, Enhanced Dielectric and Energy Storage Density Induced by Surface-Modified BaTiO3 Nanofibers In Poly(Vinylidene Fluoride) Nanocomposites. Ceram. Int. 40, 15633 (2014).CrossRef S. Liu, S. Xue, W. Zhang, and J. Zhai, Enhanced Dielectric and Energy Storage Density Induced by Surface-Modified BaTiO3 Nanofibers In Poly(Vinylidene Fluoride) Nanocomposites. Ceram. Int. 40, 15633 (2014).CrossRef
33.
Zurück zum Zitat V. Vinothini, P. Singh, and M. Balasubramanian, Optimization of Barium Titanate Nanopowder Slip for Tape Casting. J. Mater. Sci. 41, 7082 (2006).CrossRef V. Vinothini, P. Singh, and M. Balasubramanian, Optimization of Barium Titanate Nanopowder Slip for Tape Casting. J. Mater. Sci. 41, 7082 (2006).CrossRef
34.
Zurück zum Zitat Z.P. Zheng, S.P. Gong, S.F. Cheng, D.X. Zhou, Y.X. Hu, and H. Liu, Fabrication of BaTiO3-Based Semiconducting Ceramic Thick Films by Aqueous Tape Casting. Key Eng. Mater. 368–372, 469 (2008).CrossRef Z.P. Zheng, S.P. Gong, S.F. Cheng, D.X. Zhou, Y.X. Hu, and H. Liu, Fabrication of BaTiO3-Based Semiconducting Ceramic Thick Films by Aqueous Tape Casting. Key Eng. Mater. 368–372, 469 (2008).CrossRef
35.
Zurück zum Zitat L. Wang, F. Gao, J. Xu, K. Zhang, J. Kong, M. Reece, and H. Yan, Enhanced Dielectric Tunability and Energy Storage Properties of Plate-Like Ba0.6Sr0.4TiO3/Poly(Vinylidene Fluoride) Composites Through Texture Arrangement. Compos. Sci. Technol. 158, 112 (2018).CrossRef L. Wang, F. Gao, J. Xu, K. Zhang, J. Kong, M. Reece, and H. Yan, Enhanced Dielectric Tunability and Energy Storage Properties of Plate-Like Ba0.6Sr0.4TiO3/Poly(Vinylidene Fluoride) Composites Through Texture Arrangement. Compos. Sci. Technol. 158, 112 (2018).CrossRef
36.
Zurück zum Zitat D.J. Griffiths, Introduction to electrodynamics (New Jersey: Prentice Hall, 1962). D.J. Griffiths, Introduction to electrodynamics (New Jersey: Prentice Hall, 1962).
37.
Zurück zum Zitat C. Baek, J.E. Wang, D.S. Kim, and D.K. Kim, Hydrothermal Synthesis and Dielectric Properties of Ba1−xSrxTiO3 Nanoparticles with Enhanced Uniformity. J. Nanosci. Nanotechnol. 16, 11652 (2016).CrossRef C. Baek, J.E. Wang, D.S. Kim, and D.K. Kim, Hydrothermal Synthesis and Dielectric Properties of Ba1−xSrxTiO3 Nanoparticles with Enhanced Uniformity. J. Nanosci. Nanotechnol. 16, 11652 (2016).CrossRef
38.
Zurück zum Zitat P. Gupta, A. Kumar, M. Tomar, V. Gupta, and D.P. Singh, Enhanced Dielectric Properties and Suppressed Leakage Current Density of PVDF Composites Flexible Film Through Small Loading of Submicron Ba0.7Sr0.3TiO3Crystallites. J. Mater. Sci. Mater. Electron. 28, 11806 (2017).CrossRef P. Gupta, A. Kumar, M. Tomar, V. Gupta, and D.P. Singh, Enhanced Dielectric Properties and Suppressed Leakage Current Density of PVDF Composites Flexible Film Through Small Loading of Submicron Ba0.7Sr0.3TiO3Crystallites. J. Mater. Sci. Mater. Electron. 28, 11806 (2017).CrossRef
39.
Zurück zum Zitat B.A. Newman, C.H. Yoon, K.D. Pae, and J.I. Scheinbeim, Piezoelectric Activity and Field-Induced Crystal Structure Transitions in Poled Poly(Vinylidene Fluoride) Films. J. Appl. Phys. 50, 6095 (1979).CrossRef B.A. Newman, C.H. Yoon, K.D. Pae, and J.I. Scheinbeim, Piezoelectric Activity and Field-Induced Crystal Structure Transitions in Poled Poly(Vinylidene Fluoride) Films. J. Appl. Phys. 50, 6095 (1979).CrossRef
40.
Zurück zum Zitat S. Chen, K. Yao, F.E.H. Tay, and C.L. Liow, Ferroelectric Poly(Vinylidene Fluoride) Thin Films on si Substrate With the Β Phase Promoted by Hydrated Magnesium Nitrate. J. Appl. Phys. 102, 104108 (2007).CrossRef S. Chen, K. Yao, F.E.H. Tay, and C.L. Liow, Ferroelectric Poly(Vinylidene Fluoride) Thin Films on si Substrate With the Β Phase Promoted by Hydrated Magnesium Nitrate. J. Appl. Phys. 102, 104108 (2007).CrossRef
41.
Zurück zum Zitat X. Cai, T. Lei, D. Sun, and L. Lin, A Critical Analysis of the α, β and γ Phases in Poly(Vinylidene Fluoride) Using FTIR. RSC Adv. 7, 15382 (2017).CrossRef X. Cai, T. Lei, D. Sun, and L. Lin, A Critical Analysis of the α, β and γ Phases in Poly(Vinylidene Fluoride) Using FTIR. RSC Adv. 7, 15382 (2017).CrossRef
42.
Zurück zum Zitat S. Kaur, and D.P. Singh, On the Structural, Dielectric and Energy Storage Behaviour of PVDF- CaCu3Ti4O12 Nanocomposite Films. Mater. Chem. Phys. 239, 122301 (2020).CrossRef S. Kaur, and D.P. Singh, On the Structural, Dielectric and Energy Storage Behaviour of PVDF- CaCu3Ti4O12 Nanocomposite Films. Mater. Chem. Phys. 239, 122301 (2020).CrossRef
43.
Zurück zum Zitat Y. Ren, Y. Wang, W. Zhang, X. Yan, and B. Huang, Improved Battery Performance Contributed by the Optimized Phase Ratio of β and α of PVDF. RSC Adv. 9, 29760 (2019).CrossRef Y. Ren, Y. Wang, W. Zhang, X. Yan, and B. Huang, Improved Battery Performance Contributed by the Optimized Phase Ratio of β and α of PVDF. RSC Adv. 9, 29760 (2019).CrossRef
44.
Zurück zum Zitat L. Ruan, X. Yao, Y. Chang, L. Zhou, G. Qin, and X. Zhang, Properties and Applications of the β Phase Poly(Vinylidene Fluoride). Polym. (Basel) 10, 1 (2018). L. Ruan, X. Yao, Y. Chang, L. Zhou, G. Qin, and X. Zhang, Properties and Applications of the β Phase Poly(Vinylidene Fluoride). Polym. (Basel) 10, 1 (2018).
45.
Zurück zum Zitat R.I. Mahdi, and W.H. Abd Majid, Piezoelectric and Pyroelectric Properties of bnt-Base Ternary Lead-Free Ceramic-Polymer Nanocomposites Under Different Poling Conditions. RSC Adv. 6, 81296 (2016).CrossRef R.I. Mahdi, and W.H. Abd Majid, Piezoelectric and Pyroelectric Properties of bnt-Base Ternary Lead-Free Ceramic-Polymer Nanocomposites Under Different Poling Conditions. RSC Adv. 6, 81296 (2016).CrossRef
46.
Zurück zum Zitat R.I. Mahdi, W.C. Gan, N.A. Halim, T.S. Velayutham, and W.H.A. Majid, Ferroelectric and Pyroelectric Properties of Novel Lead-Free Polyvinylidenefluoride-Trifluoroethylene-Bi0.5Na0.5TiO3 Nanocomposite Thin Films for Sensing Applications. Ceram. Int. 41, 13836 (2015).CrossRef R.I. Mahdi, W.C. Gan, N.A. Halim, T.S. Velayutham, and W.H.A. Majid, Ferroelectric and Pyroelectric Properties of Novel Lead-Free Polyvinylidenefluoride-Trifluoroethylene-Bi0.5Na0.5TiO3 Nanocomposite Thin Films for Sensing Applications. Ceram. Int. 41, 13836 (2015).CrossRef
47.
Zurück zum Zitat C.V. Chanmal, and J.P. Jog, Study of Dielectric Behavior in PVDF/Clay Nanocomposites. E-Polym. 9, 1 (2009). C.V. Chanmal, and J.P. Jog, Study of Dielectric Behavior in PVDF/Clay Nanocomposites. E-Polym. 9, 1 (2009).
48.
Zurück zum Zitat R.K. Goyal, and A.B. Kulkarni, Electrical Properties of Novel Three-Phase Polymer Nanocomposites with a High Dielectric Constant. J. Phys. D Appl. Phys. 45, 465302 (2012).CrossRef R.K. Goyal, and A.B. Kulkarni, Electrical Properties of Novel Three-Phase Polymer Nanocomposites with a High Dielectric Constant. J. Phys. D Appl. Phys. 45, 465302 (2012).CrossRef
49.
Zurück zum Zitat S. Kaur, A.L. Sharma, A. Kumar, and D.P. Singh, Enhanced Dielectric Properties of the Poly(Vinylidene Fluoride)-CaCu3Ti4O12 Nanocomposite Thick Films by Quenching in Ice Water. Mater. Chem. Phys. 254, 123530 (2020).CrossRef S. Kaur, A.L. Sharma, A. Kumar, and D.P. Singh, Enhanced Dielectric Properties of the Poly(Vinylidene Fluoride)-CaCu3Ti4O12 Nanocomposite Thick Films by Quenching in Ice Water. Mater. Chem. Phys. 254, 123530 (2020).CrossRef
50.
Zurück zum Zitat C.V. Chanmal, and J.P. Jog, Dielectric Relaxations in PVDF/BaTiO3 Nanocomposites. Express Polym. Lett. 2, 294 (2008).CrossRef C.V. Chanmal, and J.P. Jog, Dielectric Relaxations in PVDF/BaTiO3 Nanocomposites. Express Polym. Lett. 2, 294 (2008).CrossRef
51.
Zurück zum Zitat S. Nayak, and D. Khastgir, Polydimethylsiloxane-PbZr0.52Ti0.48O3 Nanocomposites with High Permittivity: Effect of Poling and Temperature on Dielectric Properties. J. Appl. Polym. Sci. 136, 47307 (2019).CrossRef S. Nayak, and D. Khastgir, Polydimethylsiloxane-PbZr0.52Ti0.48O3 Nanocomposites with High Permittivity: Effect of Poling and Temperature on Dielectric Properties. J. Appl. Polym. Sci. 136, 47307 (2019).CrossRef
52.
Zurück zum Zitat M. Sharma, A. Gaur, and J.K. Quamara, Temperature-Dependent Dielectric response of (1–x)PVDF/(x)BaTiO3 Nanocomposite films. Phys. B Condens. Matter 563, 23 (2019).CrossRef M. Sharma, A. Gaur, and J.K. Quamara, Temperature-Dependent Dielectric response of (1–x)PVDF/(x)BaTiO3 Nanocomposite films. Phys. B Condens. Matter 563, 23 (2019).CrossRef
53.
Zurück zum Zitat S. Liu, and J. Zhai, Improving the Dielectric Constant and Energy Density of Poly(Vinylidene Fluoride) Composites Induced by Surface-Modified SrTiO3 Nanofibers by Polyvinylpyrrolidone. J. Mater. Chem. A 3, 1511 (2015).CrossRef S. Liu, and J. Zhai, Improving the Dielectric Constant and Energy Density of Poly(Vinylidene Fluoride) Composites Induced by Surface-Modified SrTiO3 Nanofibers by Polyvinylpyrrolidone. J. Mater. Chem. A 3, 1511 (2015).CrossRef
54.
Zurück zum Zitat H. Zhang, M.A. Marwat, B. Xie, M. Ashtar, K. Liu, Y. Zhu, L. Zhang, P. Fan, C. Samart, and Z.G. Ye, Polymer Matrix Nanocomposites with 1D Ceramic Nanofillers for Energy Storage Capacitor Applications. ACS Appl. Mater. Interfaces 12, 1 (2020).CrossRef H. Zhang, M.A. Marwat, B. Xie, M. Ashtar, K. Liu, Y. Zhu, L. Zhang, P. Fan, C. Samart, and Z.G. Ye, Polymer Matrix Nanocomposites with 1D Ceramic Nanofillers for Energy Storage Capacitor Applications. ACS Appl. Mater. Interfaces 12, 1 (2020).CrossRef
Metadaten
Titel
Significantly Enhanced Dielectric Behavior of Polyvinylidene Fluoride-Barium Strontium Titanate Flexible Nanocomposite Thick Films: Role of Electric Field-Induced Effects
verfasst von
Sachin Jaidka
Arun Aggarwal
Sandeep Chopra
Dwijendra P. Singh
Publikationsdatum
09.07.2022
Verlag
Springer US
Erschienen in
Journal of Electronic Materials / Ausgabe 9/2022
Print ISSN: 0361-5235
Elektronische ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-022-09784-4

Weitere Artikel der Ausgabe 9/2022

Journal of Electronic Materials 9/2022 Zur Ausgabe