Skip to main content
Erschienen in: Journal of Electronic Materials 3/2023

15.12.2022 | Topical Collection: Advanced Materials for Energy Generation and Storage

Influence of Sintering Temperature Strategy on Structural, Dielectric, and Resistive Switching in Bulk Ba0.7Sr0.3TiO3 Ceramics

verfasst von: C. Kaushiga, J. Kaarthik, G. Sradha, Nayak Ram, Salla Gangi Reddy, V. Annapureddy

Erschienen in: Journal of Electronic Materials | Ausgabe 3/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We introduce a modified sintering approach to investigate the microstructure, dielectric, and resistive switching (RS) properties of bulk Ba0.7Sr0.3TiO3 (BST) ceramics. The ceramics were prepared using a solid-state-reaction method, and then sintered using modified double-step sintering (DS) processes, as well as conventional single-step sintering (CSS) at different peak temperatures (1250°C and 1350°C). To find the phase purity, lattice parameters, and tetragonality of the samples, x-ray diffraction patterns were fitted with the pseudo-Voigt function in the FullProf software. With the help of the software, bond angles and bond lengths were found for all the ceramics. Furthermore, Raman spectrum analysis was performed to confirm the samples' structural variations. The microstructure images of the samples show that the grain size was reduced and the grain size distribution was improved for the DS-processed ceramics as compared to the CSS-processed ceramics. The dielectric properties of the BST ceramic capacitors were investigated in a wide range of frequencies and temperatures. All the BST ceramics displayed humps at near-room temperature, corresponding to tetragonal–cubic phase transitions, and a small shift in transition temperature towards higher temperature regions for the DS ceramics compared with the CSS ceramics was observed due to structural modification by a grain size effect. The metal–insulator–metal (MIM) structures, so-called memristors, were designed with these dielectric ceramics. A bipolar RS behavior was observed in these MIM structures which were confirmed through current–voltage (I–V) characteristics. The improved RS in these structures is the result of the migration and redistribution of cations, such as oxygen ions and oxygen vacancies ,as well as the ferroelectric domain orientation.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat G. Zhou, Z. Wang, F. Bai Sun, L. Zhou, H. Sun, X. Zhao, X. Hu, J. Peng, H. Yan, W. Wang, J. Wang, B. Li, D. Yan, Y. Kuang, L. Wang, and S.D. Wang, Volatile and nonvolatile memristive devices for neuromorphic computing. Adv. Electron. Mater. 8, 2101127 (2022).CrossRef G. Zhou, Z. Wang, F. Bai Sun, L. Zhou, H. Sun, X. Zhao, X. Hu, J. Peng, H. Yan, W. Wang, J. Wang, B. Li, D. Yan, Y. Kuang, L. Wang, and S.D. Wang, Volatile and nonvolatile memristive devices for neuromorphic computing. Adv. Electron. Mater. 8, 2101127 (2022).CrossRef
2.
Zurück zum Zitat S. Kaeriyama, T. Sakamoto, H. Sunamura, M. Mizuno, H. Kawaura, T. Hasegawa, K. Terabe, T. Nakayama, and M. Aono, A nonvolatile programmable solid-electrolyte nanometer switch. IEEE J. Solid-State Circuits 40, 168 (2005).CrossRef S. Kaeriyama, T. Sakamoto, H. Sunamura, M. Mizuno, H. Kawaura, T. Hasegawa, K. Terabe, T. Nakayama, and M. Aono, A nonvolatile programmable solid-electrolyte nanometer switch. IEEE J. Solid-State Circuits 40, 168 (2005).CrossRef
3.
Zurück zum Zitat A.A. Minnekhanov, A.V. Emelyanov, D.A. Lapkin, K.E. Nikiruy, B.S. Shvetsov, A.A. Nesmelov, V.V. Rylkov, V.A. Demin, and V.V. Erokhin, Parylene based memristive devices with multilevel resistive switching for neuromorphic applications. Sci. Rep. 9, 10800 (2019).CrossRef A.A. Minnekhanov, A.V. Emelyanov, D.A. Lapkin, K.E. Nikiruy, B.S. Shvetsov, A.A. Nesmelov, V.V. Rylkov, V.A. Demin, and V.V. Erokhin, Parylene based memristive devices with multilevel resistive switching for neuromorphic applications. Sci. Rep. 9, 10800 (2019).CrossRef
4.
Zurück zum Zitat Z. Wang, L. Wang, M. Nagai, L. Xie, M. Yi, and W. Huang, Nanoionics-enabled memristive devices: strategies and materials for neuromorphic applications. Adv. Electron. Mater. 3, 1600510 (2017).CrossRef Z. Wang, L. Wang, M. Nagai, L. Xie, M. Yi, and W. Huang, Nanoionics-enabled memristive devices: strategies and materials for neuromorphic applications. Adv. Electron. Mater. 3, 1600510 (2017).CrossRef
5.
Zurück zum Zitat V. Gupta, S. Kapur, S. Saurabh, and A. Grover, Resistive random Access memory: a review of device challenges. IETE Tech. Rev. 37, 377 (2020).CrossRef V. Gupta, S. Kapur, S. Saurabh, and A. Grover, Resistive random Access memory: a review of device challenges. IETE Tech. Rev. 37, 377 (2020).CrossRef
6.
Zurück zum Zitat Z. Fan, L. Li, X. Mei, F. Zhao, H. Li, X. Zhuo, X. Zhang, Y. Lu, L. Zhang, and M. Liu, Multilayer ceramic film capacitors for high-performance energy storage: progress and outlook. J. Mater. Chem. A 9, 9462 (2021).CrossRef Z. Fan, L. Li, X. Mei, F. Zhao, H. Li, X. Zhuo, X. Zhang, Y. Lu, L. Zhang, and M. Liu, Multilayer ceramic film capacitors for high-performance energy storage: progress and outlook. J. Mater. Chem. A 9, 9462 (2021).CrossRef
7.
Zurück zum Zitat T. Zheng, J. Wu, D. Xiao, and J. Zhu, Recent development in lead-free perovskite piezoelectric bulk materials. Prog. Mater. Sci. 98, 552 (2018).CrossRef T. Zheng, J. Wu, D. Xiao, and J. Zhu, Recent development in lead-free perovskite piezoelectric bulk materials. Prog. Mater. Sci. 98, 552 (2018).CrossRef
9.
Zurück zum Zitat M. Zhou, R. Liang, Z. Zhou, and X. Dong, Novel BaTiO3-based lead-Free ceramic capacitors featuring high energy storage density, high power density, and excellent stability. J. Mater. Chem. C 6, 8528 (2018).CrossRef M. Zhou, R. Liang, Z. Zhou, and X. Dong, Novel BaTiO3-based lead-Free ceramic capacitors featuring high energy storage density, high power density, and excellent stability. J. Mater. Chem. C 6, 8528 (2018).CrossRef
10.
Zurück zum Zitat H. Yang, C. Zhou, X. Liu, Q. Zhou, G. Chen, H. Wang, and W. Li, Structural, microstructural and electrical properties of BiFeO3–BaTiO3 ceramics with high thermal stability. Mater. Res. Bull. 47, 4233 (2012).CrossRef H. Yang, C. Zhou, X. Liu, Q. Zhou, G. Chen, H. Wang, and W. Li, Structural, microstructural and electrical properties of BiFeO3–BaTiO3 ceramics with high thermal stability. Mater. Res. Bull. 47, 4233 (2012).CrossRef
11.
Zurück zum Zitat E. Salernitano, S. Grilli, F. Mazzanti, P. Fabbri, and G. Magnani, Definition of the parameters for the densification of ceramics by two-step solid state sintering. Open Ceram. 9, 100242 (2022).CrossRef E. Salernitano, S. Grilli, F. Mazzanti, P. Fabbri, and G. Magnani, Definition of the parameters for the densification of ceramics by two-step solid state sintering. Open Ceram. 9, 100242 (2022).CrossRef
12.
Zurück zum Zitat Y. Dong, H. Yang, L. Zhang, X. Li, D. Ding, X. Wang, J. Li, J. Li, and I.-W. Chen, Ultra-uniform nanocrystalline materials via two-step sintering. Adv. Funct. Mater. 31, 2007750 (2021).CrossRef Y. Dong, H. Yang, L. Zhang, X. Li, D. Ding, X. Wang, J. Li, J. Li, and I.-W. Chen, Ultra-uniform nanocrystalline materials via two-step sintering. Adv. Funct. Mater. 31, 2007750 (2021).CrossRef
13.
Zurück zum Zitat I.-W. Chen, and X.-H. Wang, Sintering dense nanocrystalline ceramics without final-stage grain growth. Nature 404, 168 (2000).CrossRef I.-W. Chen, and X.-H. Wang, Sintering dense nanocrystalline ceramics without final-stage grain growth. Nature 404, 168 (2000).CrossRef
14.
Zurück zum Zitat H.T. Kim, and Y.H. Han, Sintering of nanocrystalline BaTiO3. Ceram. Int. 30, 1719 (2004).CrossRef H.T. Kim, and Y.H. Han, Sintering of nanocrystalline BaTiO3. Ceram. Int. 30, 1719 (2004).CrossRef
15.
Zurück zum Zitat G.H. Haertling, Ferroelectric ceramics: history and technology. J. Am. Ceram. Soc. 82, 797 (1999).CrossRef G.H. Haertling, Ferroelectric ceramics: history and technology. J. Am. Ceram. Soc. 82, 797 (1999).CrossRef
16.
Zurück zum Zitat J.A. Dawson, D.C. Sinclair, J.H. Harding, and C.L. Freeman, A-site strain and displacement in Ba1–xCaxTiO3 and Ba1–xSrxTiO3 and the consequences for the curie temperature. Chem. Mater. 26, 6104 (2014).CrossRef J.A. Dawson, D.C. Sinclair, J.H. Harding, and C.L. Freeman, A-site strain and displacement in Ba1–xCaxTiO3 and Ba1–xSrxTiO3 and the consequences for the curie temperature. Chem. Mater. 26, 6104 (2014).CrossRef
17.
Zurück zum Zitat S. Balmuchu, and P. Dobbidi, Temperature-dependent broadband Dielectric and Ferroelectric Properties of Ba(1-x)SrxTiO3 Ceramics for Energy Storage Capacitor Applications. J. Mater. Sci. Mater. Electron. 32, 9623 (2021).CrossRef S. Balmuchu, and P. Dobbidi, Temperature-dependent broadband Dielectric and Ferroelectric Properties of Ba(1-x)SrxTiO3 Ceramics for Energy Storage Capacitor Applications. J. Mater. Sci. Mater. Electron. 32, 9623 (2021).CrossRef
18.
Zurück zum Zitat V. Annapu Reddy, N.P. Pathak, and R. Nath, Particle size dependent magnetic properties and phase transitions in multiferroic BiFeO3 nano-particles. J. Alloys Compd. 543, 206 (2012).CrossRef V. Annapu Reddy, N.P. Pathak, and R. Nath, Particle size dependent magnetic properties and phase transitions in multiferroic BiFeO3 nano-particles. J. Alloys Compd. 543, 206 (2012).CrossRef
20.
Zurück zum Zitat M.K. Shamim, S. Sharma, A. Singh, R. Rai, and R. Rani, Study of the structural and electrical behavior of Bi(Mg, Ti)O3 modified (Ba, Ca)TiO3 ceramics. J. Adv. Dielectr. 06, 1650035 (2016).CrossRef M.K. Shamim, S. Sharma, A. Singh, R. Rai, and R. Rani, Study of the structural and electrical behavior of Bi(Mg, Ti)O3 modified (Ba, Ca)TiO3 ceramics. J. Adv. Dielectr. 06, 1650035 (2016).CrossRef
21.
Zurück zum Zitat A. Dixit, S.B. Majumder, P.S. Dobal, R.S. Katiyar, and A.S. Bhalla, Phase transition studies of sol-gel deposited barium zirconate titanate thin films. Thin Solid Films 447–448, 284 (2004).CrossRef A. Dixit, S.B. Majumder, P.S. Dobal, R.S. Katiyar, and A.S. Bhalla, Phase transition studies of sol-gel deposited barium zirconate titanate thin films. Thin Solid Films 447–448, 284 (2004).CrossRef
22.
Zurück zum Zitat V.P. Pavlovic, M.V. Nikolic, V.B. Pavlovic, J. Blanusa, S. Stevanovic, V.V. Mitic, M. Scepanovic, and B. Vlahovic, Raman responses in mechanically activated BaTiO3. J. Am. Ceram. Soc. 97, 601 (2014).CrossRef V.P. Pavlovic, M.V. Nikolic, V.B. Pavlovic, J. Blanusa, S. Stevanovic, V.V. Mitic, M. Scepanovic, and B. Vlahovic, Raman responses in mechanically activated BaTiO3. J. Am. Ceram. Soc. 97, 601 (2014).CrossRef
23.
Zurück zum Zitat Z. Yao, H. Liu, Y. Liu, Z. Wu, Z. Shen, Y. Liu, and M. Cao, Structure and dielectric behavior of Nd-doped BaTiO3 perovskites. Mater. Chem. Phys. 109, 475 (2008).CrossRef Z. Yao, H. Liu, Y. Liu, Z. Wu, Z. Shen, Y. Liu, and M. Cao, Structure and dielectric behavior of Nd-doped BaTiO3 perovskites. Mater. Chem. Phys. 109, 475 (2008).CrossRef
24.
Zurück zum Zitat P.R. Bueno, R. Tararan, R. Parra, E. Joanni, M.A. Ramirez, W.C. Ribeiro, E. Longo, and J. Varela, A polaronic stacking fault defect model for CaCu3Ti4O12 material: an approach for the origin of the huge dielectric constant and semiconducting coexistent features. J. Phys. D Appl. Phys. 42, 055404 (2009).CrossRef P.R. Bueno, R. Tararan, R. Parra, E. Joanni, M.A. Ramirez, W.C. Ribeiro, E. Longo, and J. Varela, A polaronic stacking fault defect model for CaCu3Ti4O12 material: an approach for the origin of the huge dielectric constant and semiconducting coexistent features. J. Phys. D Appl. Phys. 42, 055404 (2009).CrossRef
26.
Zurück zum Zitat Z. Zhao, V. Buscaglia, M. Viviani, M.T. Buscaglia, L. Mitoseriu, A. Testino, M. Nygren, M. Johnsson, and P. Nanni, Grain-size effects on the ferroelectric behavior of dense nanocrystalline BaTiO3 ceramics. Phys. Rev. B 70, 24107 (2004).CrossRef Z. Zhao, V. Buscaglia, M. Viviani, M.T. Buscaglia, L. Mitoseriu, A. Testino, M. Nygren, M. Johnsson, and P. Nanni, Grain-size effects on the ferroelectric behavior of dense nanocrystalline BaTiO3 ceramics. Phys. Rev. B 70, 24107 (2004).CrossRef
27.
Zurück zum Zitat X.-H. Wang, I.-W. Chen, X.-Y. Deng, Y.-D. Wang, and L.-T. Li, New progress in development of ferroelectric and piezoelectric nanoceramics. J. Adv. Ceram. 4, 1 (2015).CrossRef X.-H. Wang, I.-W. Chen, X.-Y. Deng, Y.-D. Wang, and L.-T. Li, New progress in development of ferroelectric and piezoelectric nanoceramics. J. Adv. Ceram. 4, 1 (2015).CrossRef
28.
Zurück zum Zitat L. Wu, Z. Cai, C. Zhu, P. Feng, L. Li, and X. Wang, Significantly enhanced dielectric breakdown strength of ferroelectric energy-storage ceramics via grain size uniformity control: phase-field simulation and experimental realization. Appl. Phys. Lett. 117, 212902 (2020).CrossRef L. Wu, Z. Cai, C. Zhu, P. Feng, L. Li, and X. Wang, Significantly enhanced dielectric breakdown strength of ferroelectric energy-storage ceramics via grain size uniformity control: phase-field simulation and experimental realization. Appl. Phys. Lett. 117, 212902 (2020).CrossRef
29.
Zurück zum Zitat D. Damjanovic, Piezoelectric response and free-energy instability in the perovskite crystals BaTiO3, PbTiO3, and Pb(Zr, Ti)O3. Phys. Rev. B 73, 174106 (2006).CrossRef D. Damjanovic, Piezoelectric response and free-energy instability in the perovskite crystals BaTiO3, PbTiO3, and Pb(Zr, Ti)O3. Phys. Rev. B 73, 174106 (2006).CrossRef
30.
Zurück zum Zitat Y. Yang and W. Lu, Nanoscale resistive switching devices: mechanisms and modeling. Nanoscale 5, 10076 (2013).CrossRef Y. Yang and W. Lu, Nanoscale resistive switching devices: mechanisms and modeling. Nanoscale 5, 10076 (2013).CrossRef
31.
Zurück zum Zitat R. Waser, R. Dittmann, G. Staikov, and K. Szot, Redox-based resistive switching memories – nanoionic mechanisms, prospects, and challenges. Adv. Mater. 21, 2632 (2009).CrossRef R. Waser, R. Dittmann, G. Staikov, and K. Szot, Redox-based resistive switching memories – nanoionic mechanisms, prospects, and challenges. Adv. Mater. 21, 2632 (2009).CrossRef
32.
Zurück zum Zitat C. Singh, V.N. Thakur, and A. Kumar, Polarization controlled resistive switching in bulk ferroelectric ceramics: a universal phenomenon. J. Alloys Compd. 887, 161345 (2021).CrossRef C. Singh, V.N. Thakur, and A. Kumar, Polarization controlled resistive switching in bulk ferroelectric ceramics: a universal phenomenon. J. Alloys Compd. 887, 161345 (2021).CrossRef
33.
Zurück zum Zitat Y. Yang, P. Sheridan, and W. Lu, Complementary resistive switching in tantalum oxide-based resistive memory devices. Appl. Phys. Lett. 100, 203112 (2012).CrossRef Y. Yang, P. Sheridan, and W. Lu, Complementary resistive switching in tantalum oxide-based resistive memory devices. Appl. Phys. Lett. 100, 203112 (2012).CrossRef
Metadaten
Titel
Influence of Sintering Temperature Strategy on Structural, Dielectric, and Resistive Switching in Bulk Ba0.7Sr0.3TiO3 Ceramics
verfasst von
C. Kaushiga
J. Kaarthik
G. Sradha
Nayak Ram
Salla Gangi Reddy
V. Annapureddy
Publikationsdatum
15.12.2022
Verlag
Springer US
Erschienen in
Journal of Electronic Materials / Ausgabe 3/2023
Print ISSN: 0361-5235
Elektronische ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-022-10119-6

Weitere Artikel der Ausgabe 3/2023

Journal of Electronic Materials 3/2023 Zur Ausgabe