Skip to main content
Erschienen in: Swarm Intelligence 3-4/2019

04.09.2019

Coherent collective behaviour emerging from decentralised balancing of social feedback and noise

verfasst von: Ilja Rausch, Andreagiovanni Reina, Pieter Simoens, Yara Khaluf

Erschienen in: Swarm Intelligence | Ausgabe 3-4/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Decentralised systems composed of a large number of locally interacting agents often rely on coherent behaviour to execute coordinated tasks. Agents cooperate to reach a coherent collective behaviour by aligning their individual behaviour to the one of their neighbours. However, system noise, determined by factors such as individual exploration or errors, hampers and reduces collective coherence. The possibility to overcome noise and reach collective coherence is determined by the strength of social feedback, i.e. the number of communication links. On the one hand, scarce social feedback may lead to a noise-driven system and consequently incoherent behaviour within the group. On the other hand, excessively strong social feedback may require unnecessary computing by individual agents and/or may nullify the possible benefits of noise. In this study, we investigate the delicate balance between social feedback and noise, and its relationship with collective coherence. We perform our analysis through a locust-inspired case study of coherently marching agents, modelling the binary collective decision-making problem of symmetry breaking. For this case study, we analytically approximate the minimal number of communication links necessary to attain maximum collective coherence. To validate our findings, we simulate a 500-robot swarm and obtain good agreement between theoretical results and physics-based simulations. We illustrate through simulation experiments how the robot swarm, using a decentralised algorithm, can adaptively reach coherence for various noise levels by regulating the number of communication links. Moreover, we show that when the system is disrupted by increasing and decreasing the robot density, the robot swarm adaptively responds to these changes in real time. This decentralised adaptive behaviour indicates that the derived relationship between social feedback, noise and coherence is robust and swarm size independent.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
As in this model agents move in one dimension, with velocity we refer to the speed \(\vert u_{i} \vert \) multiplied by \(- 1\) or \(+ 1\), depending on the agent’s motion orientation towards left or right, respectively.
 
2
Note that \(p_{s}\) is only related to \(\delta _{s}\) and not to \(\zeta _{i}\).
 
3
The local collective state \(\phi _i\), similarly to Eq. (4), is the opinion agreement within the local neighbourhood of agent i, and the local coherence degree is its absolute value \(\vert \phi _i \vert \).
 
4
Note that at the steady state \(\vert \phi \vert = \overline{\vert \phi \vert }\), where the latter was averaged over the steady-state period.
 
Literatur
Zurück zum Zitat Ariel, G., & Ayali, A. (2015). Locust collective motion and its modeling. PLoS Computational Biology, 11(12), e1004522. Ariel, G., & Ayali, A. (2015). Locust collective motion and its modeling. PLoS Computational Biology, 11(12), e1004522.
Zurück zum Zitat Baronchelli, A. (2018). The emergence of consensus: A primer. Royal Society Open Science, 5(2), 172189.MathSciNet Baronchelli, A. (2018). The emergence of consensus: A primer. Royal Society Open Science, 5(2), 172189.MathSciNet
Zurück zum Zitat Bayındır, L. (2016). A review of swarm robotics tasks. Neurocomputing, 172(C), 292–321. Bayındır, L. (2016). A review of swarm robotics tasks. Neurocomputing, 172(C), 292–321.
Zurück zum Zitat Berman, S., Halász, Á., Hsieh, M. A., & Kumar, V. (2009). Optimized stochastic policies for task allocation in swarms of robots. IEEE Transactions on Robotics, 25(4), 927–937. Berman, S., Halász, Á., Hsieh, M. A., & Kumar, V. (2009). Optimized stochastic policies for task allocation in swarms of robots. IEEE Transactions on Robotics, 25(4), 927–937.
Zurück zum Zitat Böhme, G. A., & Gross, T. (2012). Fragmentation transitions in multistate voter models. Physical Review E, 85, 066117. Böhme, G. A., & Gross, T. (2012). Fragmentation transitions in multistate voter models. Physical Review E, 85, 066117.
Zurück zum Zitat Bonabeau, E., Dorigo, M., & Theraulaz, G. (1999). Swarm intelligence: From natural to artificial systems. New York: Oxford University Press.MATH Bonabeau, E., Dorigo, M., & Theraulaz, G. (1999). Swarm intelligence: From natural to artificial systems. New York: Oxford University Press.MATH
Zurück zum Zitat Bonani, M., Longchamp, V., Magnenat, S., Rétornaz, P., Burnier, D., Roulet, G., Vaussard, F., Bleuler, H., & Mondada, F. (2010). The marXbot, a miniature mobile robot opening new perspectives for the collective-robotic research. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (IROS 2010) (pp. 4187–4193). IEEE Press. Bonani, M., Longchamp, V., Magnenat, S., Rétornaz, P., Burnier, D., Roulet, G., Vaussard, F., Bleuler, H., & Mondada, F. (2010). The marXbot, a miniature mobile robot opening new perspectives for the collective-robotic research. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (IROS 2010) (pp. 4187–4193). IEEE Press.
Zurück zum Zitat Bose, T., Reina, A., & Marshall, J. A. R. (2017). Collective decision-making. Current Opinion in Behavioral Sciences, 6, 30–34. Bose, T., Reina, A., & Marshall, J. A. R. (2017). Collective decision-making. Current Opinion in Behavioral Sciences, 6, 30–34.
Zurück zum Zitat Brambilla, M., Ferrante, E., Birattari, M., & Dorigo, M. (2013). Swarm robotics: A review from the swarm engineering perspective. Swarm Intelligence, 7(1), 1–41. Brambilla, M., Ferrante, E., Birattari, M., & Dorigo, M. (2013). Swarm robotics: A review from the swarm engineering perspective. Swarm Intelligence, 7(1), 1–41.
Zurück zum Zitat Buhl, J., Sumpter, D. J., Couzin, I. D., Hale, J. J., Despland, E., Miller, E. R., et al. (2006). From disorder to order in marching locusts. Science, 312(5778), 1402–1406. Buhl, J., Sumpter, D. J., Couzin, I. D., Hale, J. J., Despland, E., Miller, E. R., et al. (2006). From disorder to order in marching locusts. Science, 312(5778), 1402–1406.
Zurück zum Zitat Camazine, S., Deneubourg, J.-L., Franks, N. R., Sneyd, J., Bonabeau, E., & Theraulaz, G. (2003). Self-organization in biological systems (Vol. 7). Princeton: Princeton University Press.MATH Camazine, S., Deneubourg, J.-L., Franks, N. R., Sneyd, J., Bonabeau, E., & Theraulaz, G. (2003). Self-organization in biological systems (Vol. 7). Princeton: Princeton University Press.MATH
Zurück zum Zitat Castellano, C., Fortunato, S., & Loreto, V. (2009). Statistical physics of social dynamics. Reviews of Modern Physics, 81(2), 591–646. Castellano, C., Fortunato, S., & Loreto, V. (2009). Statistical physics of social dynamics. Reviews of Modern Physics, 81(2), 591–646.
Zurück zum Zitat Chen, L., Huepe, C., & Gross, T. (2016). Adaptive network models of collective decision making in swarming systems. Physical Review E, 94(2), 022415. Chen, L., Huepe, C., & Gross, T. (2016). Adaptive network models of collective decision making in swarming systems. Physical Review E, 94(2), 022415.
Zurück zum Zitat Czirók, A., Barabási, A.-L., & Vicsek, T. (1999). Collective motion of self-propelled particles: Kinetic phase transition in one dimension. Physical Review Letters, 82, 209–212. Czirók, A., Barabási, A.-L., & Vicsek, T. (1999). Collective motion of self-propelled particles: Kinetic phase transition in one dimension. Physical Review Letters, 82, 209–212.
Zurück zum Zitat Danon, L., Ford, A. P., House, T., Jewell, C. P., Keeling, M. J., Roberts, G. O., et al. (2011). Networks and the epidemiology of infectious disease. Interdisciplinary Perspectives on Infectious Diseases, 2011, 284909. Danon, L., Ford, A. P., House, T., Jewell, C. P., Keeling, M. J., Roberts, G. O., et al. (2011). Networks and the epidemiology of infectious disease. Interdisciplinary Perspectives on Infectious Diseases, 2011, 284909.
Zurück zum Zitat Dussutour, A., Beekman, M., Nicolis, S. C., & Meyer, B. (2009). Noise improves collective decision-making by ants in dynamic environments. Proceedings of the Royal Society of London B: Biological Sciences, 276(1677), 4353–4361. Dussutour, A., Beekman, M., Nicolis, S. C., & Meyer, B. (2009). Noise improves collective decision-making by ants in dynamic environments. Proceedings of the Royal Society of London B: Biological Sciences, 276(1677), 4353–4361.
Zurück zum Zitat Gross, T., D’Lima, C. J. D., & Blasius, B. (2006). Epidemic dynamics on an adaptive network. Physical Review Letters, 96, 208701. Gross, T., D’Lima, C. J. D., & Blasius, B. (2006). Epidemic dynamics on an adaptive network. Physical Review Letters, 96, 208701.
Zurück zum Zitat Hamann, H. (2018). The role of largest connected components in collective motion. In M. Dorigo, M. Birattari, C. Blum, A. L. Christensen, A. Reina, & V. Trianni (Eds.), Swarm intelligence: 11th International conference, ANTS 2018, volume 11172 of LNCS (pp. 290–301). Cham: Springer. Hamann, H. (2018). The role of largest connected components in collective motion. In M. Dorigo, M. Birattari, C. Blum, A. L. Christensen, A. Reina, & V. Trianni (Eds.), Swarm intelligence: 11th International conference, ANTS 2018, volume 11172 of LNCS (pp. 290–301). Cham: Springer.
Zurück zum Zitat Hamann, H., Valentini, G., Khaluf, Y., & Dorigo, M. (2014). Derivation of a micro-macro link for collective decision-making systems. In T. Bartz-Beielstein, J. Branke, B. Filipič, & J. Smith (Eds.), International conference on parallel problem solving from nature—PPSN XIII, PPSN 2014, volume 8672 of LNCS (pp. 181–190). Cham: Springer. Hamann, H., Valentini, G., Khaluf, Y., & Dorigo, M. (2014). Derivation of a micro-macro link for collective decision-making systems. In T. Bartz-Beielstein, J. Branke, B. Filipič, & J. Smith (Eds.), International conference on parallel problem solving from nature—PPSN XIII, PPSN 2014, volume 8672 of LNCS (pp. 181–190). Cham: Springer.
Zurück zum Zitat Hamann, H., & Wörn, H. (2008). A framework of space–time continuous models for algorithm design in swarm robotics. Swarm Intelligence, 2(2), 209–239. Hamann, H., & Wörn, H. (2008). A framework of space–time continuous models for algorithm design in swarm robotics. Swarm Intelligence, 2(2), 209–239.
Zurück zum Zitat House, T., Davies, G., Danon, L., & Keeling, M. J. (2009). A motif-based approach to network epidemics. Bulletin of Mathematical Biology, 71(7), 1693–1706.MathSciNetMATH House, T., Davies, G., Danon, L., & Keeling, M. J. (2009). A motif-based approach to network epidemics. Bulletin of Mathematical Biology, 71(7), 1693–1706.MathSciNetMATH
Zurück zum Zitat Huepe, C., Zschaler, G., Do, A.-L., & Gross, T. (2011). Adaptive-network models of swarm dynamics. New Journal of Physics, 13(7), 073022. Huepe, C., Zschaler, G., Do, A.-L., & Gross, T. (2011). Adaptive-network models of swarm dynamics. New Journal of Physics, 13(7), 073022.
Zurück zum Zitat Keeling, M. J., & Eames, K. T. (2005). Networks and epidemic models. Journal of The Royal Society Interface, 2(4), 295–307. Keeling, M. J., & Eames, K. T. (2005). Networks and epidemic models. Journal of The Royal Society Interface, 2(4), 295–307.
Zurück zum Zitat Keeling, M. J., House, T., Cooper, A. J., & Pellis, L. (2016). Systematic approximations to susceptible-infectious-susceptible dynamics on networks. PLoS Computational Biology, 12(12), e1005296. Keeling, M. J., House, T., Cooper, A. J., & Pellis, L. (2016). Systematic approximations to susceptible-infectious-susceptible dynamics on networks. PLoS Computational Biology, 12(12), e1005296.
Zurück zum Zitat Khaluf, Y., Birattari, M., & Rammig, F. (2016). Analysis of long-term swarm performance based on short-term experiments. Soft Computing, 20(1), 37–48. Khaluf, Y., Birattari, M., & Rammig, F. (2016). Analysis of long-term swarm performance based on short-term experiments. Soft Computing, 20(1), 37–48.
Zurück zum Zitat Khaluf, Y., Ferrante, E., Simoens, P., & Huepe, C. (2017a). Scale invariance in natural and artificial collective systems: A review. Journal of The Royal Society Interface, 14(136), 20170662. Khaluf, Y., Ferrante, E., Simoens, P., & Huepe, C. (2017a). Scale invariance in natural and artificial collective systems: A review. Journal of The Royal Society Interface, 14(136), 20170662.
Zurück zum Zitat Khaluf, Y., & Hamann, H. (2016). On the definition of self-organizing systems: Relevance of positive/negative feedback and fluctuations. In M. Dorigo, M. Birattari, X. Li, M. López-Ibáñez, K. Ohkura, C. Pinciroli, & T. Stützle (Eds.), Swarm intelligence: 10th International conference, ANTS 2016, volume 9882 of LNCS (p. 298). Cham: Springer. (extended abstract). Khaluf, Y., & Hamann, H. (2016). On the definition of self-organizing systems: Relevance of positive/negative feedback and fluctuations. In M. Dorigo, M. Birattari, X. Li, M. López-Ibáñez, K. Ohkura, C. Pinciroli, & T. Stützle (Eds.), Swarm intelligence: 10th International conference, ANTS 2016, volume 9882 of LNCS (p. 298). Cham: Springer. (extended abstract).
Zurück zum Zitat Khaluf, Y., Pinciroli, C., Valentini, G., & Hamann, H. (2017b). The impact of agent density on scalability in collective systems: Noise-induced versus majority-based bistability. Swarm Intelligence, 11(2), 155–179. Khaluf, Y., Pinciroli, C., Valentini, G., & Hamann, H. (2017b). The impact of agent density on scalability in collective systems: Noise-induced versus majority-based bistability. Swarm Intelligence, 11(2), 155–179.
Zurück zum Zitat Khaluf, Y., Rausch, I., & Simoens, P. (2018). The impact of interaction models on the coherence of collective decision-making: A case study with simulated locusts. In M. Dorigo, M. Birattari, C. Blum, A. L. Christensen, A. Reina, & V. Trianni (Eds.), Swarm intelligence: 11th International conference, ANTS 2018, volume 11172 of LNCS (pp. 252–263). Cham: Springer. Khaluf, Y., Rausch, I., & Simoens, P. (2018). The impact of interaction models on the coherence of collective decision-making: A case study with simulated locusts. In M. Dorigo, M. Birattari, C. Blum, A. L. Christensen, A. Reina, & V. Trianni (Eds.), Swarm intelligence: 11th International conference, ANTS 2018, volume 11172 of LNCS (pp. 252–263). Cham: Springer.
Zurück zum Zitat Kimura, D., & Hayakawa, Y. (2008). Coevolutionary networks with homophily and heterophily. Physical Review E, 78, 016103. Kimura, D., & Hayakawa, Y. (2008). Coevolutionary networks with homophily and heterophily. Physical Review E, 78, 016103.
Zurück zum Zitat Lerman, K., Martinoli, A., & Galstyan, A. (2004). A review of probabilistic macroscopic models for swarm robotic systems. In E. Şahin & W. M. Spears (Eds.), International workshop on swarm robotics (pp. 143–152). Berlin, Heidelberg: Springer. Lerman, K., Martinoli, A., & Galstyan, A. (2004). A review of probabilistic macroscopic models for swarm robotic systems. In E. Şahin & W. M. Spears (Eds.), International workshop on swarm robotics (pp. 143–152). Berlin, Heidelberg: Springer.
Zurück zum Zitat Liang, Y., An, K. N., Yang, G., & Huang, J. P. (2013). Contrarian behavior in a complex adaptive system. Physical Review E, 87, 012809. Liang, Y., An, K. N., Yang, G., & Huang, J. P. (2013). Contrarian behavior in a complex adaptive system. Physical Review E, 87, 012809.
Zurück zum Zitat Mateo, D., Horsevad, N., Hassani, V., Chamanbaz, M., & Bouffanais, R. (2019). Optimal network topology for responsive collective behavior. Science Advances, 5(4), eaau0999. Mateo, D., Horsevad, N., Hassani, V., Chamanbaz, M., & Bouffanais, R. (2019). Optimal network topology for responsive collective behavior. Science Advances, 5(4), eaau0999.
Zurück zum Zitat Mateo, D., Kuan, Y. K., & Bouffanais, R. (2017). Effect of correlations in swarms on collective response. Scientific Reports, 7(1), 10388. Mateo, D., Kuan, Y. K., & Bouffanais, R. (2017). Effect of correlations in swarms on collective response. Scientific Reports, 7(1), 10388.
Zurück zum Zitat Mayya, S., Pierpaoli, P., & Egerstedt, M. (2019). Voluntary retreat for decentralized interference reduction in robot swarms. In ICRA 2019. IEEE Press. (in press). Mayya, S., Pierpaoli, P., & Egerstedt, M. (2019). Voluntary retreat for decentralized interference reduction in robot swarms. In ICRA 2019. IEEE Press. (in press).
Zurück zum Zitat Pagliara, R., Gordon, D. M., & Leonard, N. E. (2018). Regulation of harvester ant foraging as a closed-loop excitable system. PLoS Computational Biology, 14(12), e1006200. Pagliara, R., Gordon, D. M., & Leonard, N. E. (2018). Regulation of harvester ant foraging as a closed-loop excitable system. PLoS Computational Biology, 14(12), e1006200.
Zurück zum Zitat Pinciroli, C., Trianni, V., O’Grady, R., Pini, G., Brutschy, A., Brambilla, M., et al. (2012). ARGoS: A modular, parallel, multi-engine simulator for multi-robot systems. Swarm Intelligence, 6(4), 271–295. Pinciroli, C., Trianni, V., O’Grady, R., Pini, G., Brutschy, A., Brambilla, M., et al. (2012). ARGoS: A modular, parallel, multi-engine simulator for multi-robot systems. Swarm Intelligence, 6(4), 271–295.
Zurück zum Zitat Pinero, J., & Sole, R. (2019). Statistical physics of liquid brains. Philosophical Transactions of the Royal Society B, 374(1774), 20180376. Pinero, J., & Sole, R. (2019). Statistical physics of liquid brains. Philosophical Transactions of the Royal Society B, 374(1774), 20180376.
Zurück zum Zitat Pitonakova, L., Crowder, R., & Bullock, S. (2018). The Information-Cost-Reward framework for understanding robot swarm foraging. Swarm Intelligence, 12(1), 71–96. Pitonakova, L., Crowder, R., & Bullock, S. (2018). The Information-Cost-Reward framework for understanding robot swarm foraging. Swarm Intelligence, 12(1), 71–96.
Zurück zum Zitat Rausch, I., Khaluf, Y., & Simoens, P. (2019). Scale-free features in collective robot foraging. Applied Sciences, 9(13), 2667. Rausch, I., Khaluf, Y., & Simoens, P. (2019). Scale-free features in collective robot foraging. Applied Sciences, 9(13), 2667.
Zurück zum Zitat Reina, A., Miletitch, R., Dorigo, M., & Trianni, V. (2015a). A quantitative micro-macro link for collective decisions: The shortest path discovery/selection example. Swarm Intelligence, 9(2–3), 75–102. Reina, A., Miletitch, R., Dorigo, M., & Trianni, V. (2015a). A quantitative micro-macro link for collective decisions: The shortest path discovery/selection example. Swarm Intelligence, 9(2–3), 75–102.
Zurück zum Zitat Reina, A., Valentini, G., Fernández-Oto, C., Dorigo, M., & Trianni, V. (2015b). A design pattern for decentralised decision making. PLoS ONE, 10(10), e0140950. Reina, A., Valentini, G., Fernández-Oto, C., Dorigo, M., & Trianni, V. (2015b). A design pattern for decentralised decision making. PLoS ONE, 10(10), e0140950.
Zurück zum Zitat Roberts, J. F., Stirling, T. S., Zufferey, J.-C., & Floreano, D. (2009). 2.5D infrared range and bearing system for collective robotics. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (IROS 2009) (pp. 3659–3664). IEEE Press. Roberts, J. F., Stirling, T. S., Zufferey, J.-C., & Floreano, D. (2009). 2.5D infrared range and bearing system for collective robotics. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (IROS 2009) (pp. 3659–3664). IEEE Press.
Zurück zum Zitat Saldaña, D., Prorok, A., Sundaram, S., Campos, M. F., & Kumar, V. (2017). Resilient consensus for time-varying networks of dynamic agents. In 2017 American control conference (ACC) (pp. 252–258). Saldaña, D., Prorok, A., Sundaram, S., Campos, M. F., & Kumar, V. (2017). Resilient consensus for time-varying networks of dynamic agents. In 2017 American control conference (ACC) (pp. 252–258).
Zurück zum Zitat Saulnier, K., Saldaña, D., Prorok, A., Pappas, G. J., & Kumar, V. (2017). Resilient flocking for mobile robot teams. IEEE Robotics and Automation Letters, 2(2), 1039–1046. Saulnier, K., Saldaña, D., Prorok, A., Pappas, G. J., & Kumar, V. (2017). Resilient flocking for mobile robot teams. IEEE Robotics and Automation Letters, 2(2), 1039–1046.
Zurück zum Zitat Shang, Y., & Bouffanais, R. (2014). Influence of the number of topologically interacting neighbors on swarm dynamics. Scientific Reports, 4, 4184. Shang, Y., & Bouffanais, R. (2014). Influence of the number of topologically interacting neighbors on swarm dynamics. Scientific Reports, 4, 4184.
Zurück zum Zitat Shklarsh, A., Ariel, G., Schneidman, E., & Ben-Jacob, E. (2011). Smart swarms of bacteria-inspired agents with performance adaptable interactions. PLoS Computational Biology, 7(9), e1002177.MathSciNet Shklarsh, A., Ariel, G., Schneidman, E., & Ben-Jacob, E. (2011). Smart swarms of bacteria-inspired agents with performance adaptable interactions. PLoS Computational Biology, 7(9), e1002177.MathSciNet
Zurück zum Zitat Talamali, M. S., Bose, T., Haire, M., Xu, X., Marshall, J. A. R., & Reina, A. (2019a). Sophisticated collective foraging with minimalist agents: A swarm robotics test. Swarm Intelligence. (in press). Talamali, M. S., Bose, T., Haire, M., Xu, X., Marshall, J. A. R., & Reina, A. (2019a). Sophisticated collective foraging with minimalist agents: A swarm robotics test. Swarm Intelligence. (in press).
Zurück zum Zitat Talamali, M. S., Bose, T., James, M. A., & Reina, A. (2019b). Improving collective decision accuracy via time-varying cross-inhibition. In ICRA 2019. IEEE Press. (in press). Talamali, M. S., Bose, T., James, M. A., & Reina, A. (2019b). Improving collective decision accuracy via time-varying cross-inhibition. In ICRA 2019. IEEE Press. (in press).
Zurück zum Zitat Torney, C. J., Neufeld, Z., & Couzin, I. D. (2009). Context-dependent interaction leads to emergent search behavior in social aggregates. Proceedings of the National Academy of Sciences, 106(52), 22055–22060. Torney, C. J., Neufeld, Z., & Couzin, I. D. (2009). Context-dependent interaction leads to emergent search behavior in social aggregates. Proceedings of the National Academy of Sciences, 106(52), 22055–22060.
Zurück zum Zitat Tsimring, L. S. (2014). Noise in biology. Reports on Progress in Physics, 77(2), 026601. Tsimring, L. S. (2014). Noise in biology. Reports on Progress in Physics, 77(2), 026601.
Zurück zum Zitat Valentini, G., & Hamann, H. (2015). Time-variant feedback processes in collective decision-making systems: Influence and effect of dynamic neighborhood sizes. Swarm Intelligence, 9(2–3), 153–176. Valentini, G., & Hamann, H. (2015). Time-variant feedback processes in collective decision-making systems: Influence and effect of dynamic neighborhood sizes. Swarm Intelligence, 9(2–3), 153–176.
Zurück zum Zitat Vicsek, T., Czirók, A., Ben-Jacob, E., Cohen, I., & Shochet, O. (1995). Novel type of phase transition in a system of self-driven particles. Physical Review Letters, 75, 1226–1229.MathSciNet Vicsek, T., Czirók, A., Ben-Jacob, E., Cohen, I., & Shochet, O. (1995). Novel type of phase transition in a system of self-driven particles. Physical Review Letters, 75, 1226–1229.MathSciNet
Zurück zum Zitat Wahby, M., Petzold, J., Eschke, C., Schmickl, T., & Hamann, H. (2019). Collective change detection: Adaptivity to dynamic swarm densities and light conditions in robot swarms. In The 2018 conference on artificial life: A hybrid of the European conference on artificial life (ECAL) and the international conference on the synthesis and simulation of living systems (ALIFE) (pp. 642–649). MIT Press. Wahby, M., Petzold, J., Eschke, C., Schmickl, T., & Hamann, H. (2019). Collective change detection: Adaptivity to dynamic swarm densities and light conditions in robot swarms. In The 2018 conference on artificial life: A hybrid of the European conference on artificial life (ECAL) and the international conference on the synthesis and simulation of living systems (ALIFE) (pp. 642–649). MIT Press.
Zurück zum Zitat Yates, C. A., Erban, R., Escudero, C., Couzin, I. D., Buhl, J., Kevrekidis, I. G., et al. (2009). Inherent noise can facilitate coherence in collective swarm motion. Proceedings of the National Academy of Sciences, 106(14), 5464–5469. Yates, C. A., Erban, R., Escudero, C., Couzin, I. D., Buhl, J., Kevrekidis, I. G., et al. (2009). Inherent noise can facilitate coherence in collective swarm motion. Proceedings of the National Academy of Sciences, 106(14), 5464–5469.
Zurück zum Zitat Zhong, L.-X., Zheng, D.-F., Zheng, B., & Hui, P. M. (2005). Effects of contrarians in the minority game. Physical Review E, 72, 026134. Zhong, L.-X., Zheng, D.-F., Zheng, B., & Hui, P. M. (2005). Effects of contrarians in the minority game. Physical Review E, 72, 026134.
Metadaten
Titel
Coherent collective behaviour emerging from decentralised balancing of social feedback and noise
verfasst von
Ilja Rausch
Andreagiovanni Reina
Pieter Simoens
Yara Khaluf
Publikationsdatum
04.09.2019
Verlag
Springer US
Erschienen in
Swarm Intelligence / Ausgabe 3-4/2019
Print ISSN: 1935-3812
Elektronische ISSN: 1935-3820
DOI
https://doi.org/10.1007/s11721-019-00173-y

Weitere Artikel der Ausgabe 3-4/2019

Swarm Intelligence 3-4/2019 Zur Ausgabe

Premium Partner