Skip to main content
Erschienen in: Neuroinformatics 1/2019

29.06.2018 | Original Article

Using Deep Learning Algorithms to Automatically Identify the Brain MRI Contrast: Implications for Managing Large Databases

verfasst von: Ricardo Pizarro, Haz-Edine Assemlal, Dante De Nigris, Colm Elliott, Samson Antel, Douglas Arnold, Amir Shmuel

Erschienen in: Neuroinformatics | Ausgabe 1/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Neuroimaging science has seen a recent explosion in dataset size driving the need to develop database management with efficient processing pipelines. Multi-center neuroimaging databases consistently receive magnetic resonance imaging (MRI) data with unlabeled or incorrectly labeled contrast. There is a need to automatically identify the contrast of MRI scans to save database-managing facilities valuable resources spent by trained technicians required for visual inspection. We developed a deep learning (DL) algorithm with convolution neural network architecture to automatically infer the contrast of MRI scans based on the image intensity of multiple slices. For comparison, we developed a random forest (RF) algorithm to automatically infer the contrast of MRI scans based on acquisition parameters. The DL algorithm was able to automatically identify the MRI contrast of an unseen dataset with <0.2% error rate. The RF algorithm was able to identify the MRI contrast of the same dataset with 1.74% error rate. Our analysis showed that reduced dataset sizes caused the DL algorithm to lose generalizability. Finally, we developed a confidence measure, which made it possible to detect, with 100% specificity, all MRI volumes that were misclassified by the DL algorithm. This confidence measure can be used to alert the user on the need to inspect the small fraction of MRI volumes that are prone to misclassification. Our study introduces a practical solution for automatically identifying the MRI contrast. Furthermore, it demonstrates the powerful combination of convolution neural networks and DL for analyzing large MRI datasets.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Al-Rfou, R., Alain, G., Almahairi, A., Angermueller, C., Bahdanau, D., Ballas, N., et al. (2016). Theano: A Python framework for fast computation of mathematical expressions arXiv preprint arXiv:1605.02688. Al-Rfou, R., Alain, G., Almahairi, A., Angermueller, C., Bahdanau, D., Ballas, N., et al. (2016). Theano: A Python framework for fast computation of mathematical expressions arXiv preprint arXiv:1605.02688.
Zurück zum Zitat Bengio, Y. (2009). Learning deep architectures for AI. Foundations and trends® in Machine Learning, 2(1), 1–127 %@ 1935–8237. Bengio, Y. (2009). Learning deep architectures for AI. Foundations and trends® in Machine Learning, 2(1), 1–127 %@ 1935–8237.
Zurück zum Zitat Breiman, L. (2001). Random forests. Mach Learn, 45(1), 5–32 %@ 0885–6125. Breiman, L. (2001). Random forests. Mach Learn, 45(1), 5–32 %@ 0885–6125.
Zurück zum Zitat Dahl, G. E., Sainath, T. N., & Hinton, G. E. (2013). Improving deep neural networks for LVCSR using rectified linear units and dropout (acoustics, speech and signal processing (ICASSP), 2013 IEEE international conference on): IEEE. Dahl, G. E., Sainath, T. N., & Hinton, G. E. (2013). Improving deep neural networks for LVCSR using rectified linear units and dropout (acoustics, speech and signal processing (ICASSP), 2013 IEEE international conference on): IEEE.
Zurück zum Zitat Dunne, R. A., & Campbell, N. A. (1997). On the pairing of the softmax activation and cross-entropy penalty functions and the derivation of the softmax activation function (Vol. 185, proc. 8th Aust. Conf. On the neural networks, Melbourne, 181). Dunne, R. A., & Campbell, N. A. (1997). On the pairing of the softmax activation and cross-entropy penalty functions and the derivation of the softmax activation function (Vol. 185, proc. 8th Aust. Conf. On the neural networks, Melbourne, 181).
Zurück zum Zitat Gardner, E. A., Ellis, J. H., Hyde, R. J., Aisen, A. M., Quint, D. J., & Carson, P. L. (1995). Detection of degradation of magnetic resonance (MR) images: Comparison of an automated MR image-quality analysis system with trained human observers. Acad Radiol, 2(4), 277–281.CrossRef Gardner, E. A., Ellis, J. H., Hyde, R. J., Aisen, A. M., Quint, D. J., & Carson, P. L. (1995). Detection of degradation of magnetic resonance (MR) images: Comparison of an automated MR image-quality analysis system with trained human observers. Acad Radiol, 2(4), 277–281.CrossRef
Zurück zum Zitat Ioffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep network training by reducing internal covariate shift arXiv preprint arXiv:1502.03167. Ioffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep network training by reducing internal covariate shift arXiv preprint arXiv:1502.03167.
Zurück zum Zitat Krizhevsky, A., & Hinton, G. (2009). Learning multiple layers of features from tiny images. Krizhevsky, A., & Hinton, G. (2009). Learning multiple layers of features from tiny images.
Zurück zum Zitat Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks (advances in neural information processing systems). Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks (advances in neural information processing systems).
Zurück zum Zitat Marcus, D. S., Harms, M. P., Snyder, A. Z., Jenkinson, M., Wilson, J. A., Glasser, M. F., Barch, D. M., Archie, K. A., Burgess, G. C., Ramaratnam, M., Hodge, M., Horton, W., Herrick, R., Olsen, T., McKay, M., House, M., Hileman, M., Reid, E., Harwell, J., Coalson, T., Schindler, J., Elam, J. S., Curtiss, S. W., van Essen, D., & WU-Minn HCP Consortium. (2013). Human connectome project informatics: Quality control, database services, and data visualization. Neuroimage, 80, 202–219. https://doi.org/10.1016/j.neuroimage.2013.05.077.CrossRefPubMed Marcus, D. S., Harms, M. P., Snyder, A. Z., Jenkinson, M., Wilson, J. A., Glasser, M. F., Barch, D. M., Archie, K. A., Burgess, G. C., Ramaratnam, M., Hodge, M., Horton, W., Herrick, R., Olsen, T., McKay, M., House, M., Hileman, M., Reid, E., Harwell, J., Coalson, T., Schindler, J., Elam, J. S., Curtiss, S. W., van Essen, D., & WU-Minn HCP Consortium. (2013). Human connectome project informatics: Quality control, database services, and data visualization. Neuroimage, 80, 202–219. https://​doi.​org/​10.​1016/​j.​neuroimage.​2013.​05.​077.CrossRefPubMed
Zurück zum Zitat Murphy, K. P. (2012). Machine learning : a probabilistic perspective (adaptive computation and machine learning). Cambridge, mass.: MIT Press. Murphy, K. P. (2012). Machine learning : a probabilistic perspective (adaptive computation and machine learning). Cambridge, mass.: MIT Press.
Zurück zum Zitat Ripley, B. D. (2007). Pattern recognition and neural networks: Cambridge university press. Ripley, B. D. (2007). Pattern recognition and neural networks: Cambridge university press.
Zurück zum Zitat Weiner, M. W., Veitch, D. P., Aisen, P. S., Beckett, L. A., Cairns, N. J., Green, R. C., Harvey, D., Jack, C. R., Jagust, W., Liu, E., Morris, J. C., Petersen, R. C., Saykin, A. J., Schmidt, M. E., Shaw, L., Shen, L., Siuciak, J. A., Soares, H., Toga, A. W., Trojanowski, J. Q., & Alzheimer's Disease Neuroimaging Initiative. (2013). The Alzheimer's disease neuroimaging initiative: A review of papers published since its inception. Alzheimers Dement, 9(5), e111–e194. https://doi.org/10.1016/j.jalz.2013.05.1769.CrossRefPubMedPubMedCentral Weiner, M. W., Veitch, D. P., Aisen, P. S., Beckett, L. A., Cairns, N. J., Green, R. C., Harvey, D., Jack, C. R., Jagust, W., Liu, E., Morris, J. C., Petersen, R. C., Saykin, A. J., Schmidt, M. E., Shaw, L., Shen, L., Siuciak, J. A., Soares, H., Toga, A. W., Trojanowski, J. Q., & Alzheimer's Disease Neuroimaging Initiative. (2013). The Alzheimer's disease neuroimaging initiative: A review of papers published since its inception. Alzheimers Dement, 9(5), e111–e194. https://​doi.​org/​10.​1016/​j.​jalz.​2013.​05.​1769.CrossRefPubMedPubMedCentral
Zurück zum Zitat Youden, W. J. (1950). Index for rating diagnostic tests. Cancer, 3(1), 32–35.CrossRef Youden, W. J. (1950). Index for rating diagnostic tests. Cancer, 3(1), 32–35.CrossRef
Zurück zum Zitat Zuo, X. N., Anderson, J. S., Bellec, P., Birn, R. M., Biswal, B. B., Blautzik, J., Breitner, J. C. S., Buckner, R. L., Calhoun, V. D., Castellanos, F. X., Chen, A., Chen, B., Chen, J., Chen, X., Colcombe, S. J., Courtney, W., Craddock, R. C., di Martino, A., Dong, H. M., Fu, X., Gong, Q., Gorgolewski, K. J., Han, Y., He, Y., He, Y., Ho, E., Holmes, A., Hou, X. H., Huckins, J., Jiang, T., Jiang, Y., Kelley, W., Kelly, C., King, M., LaConte, S. M., Lainhart, J. E., Lei, X., Li, H. J., Li, K., Li, K., Lin, Q., Liu, D., Liu, J., Liu, X., Liu, Y., Lu, G., Lu, J., Luna, B., Luo, J., Lurie, D., Mao, Y., Margulies, D. S., Mayer, A. R., Meindl, T., Meyerand, M. E., Nan, W., Nielsen, J. A., O’Connor, D., Paulsen, D., Prabhakaran, V., Qi, Z., Qiu, J., Shao, C., Shehzad, Z., Tang, W., Villringer, A., Wang, H., Wang, K., Wei, D., Wei, G. X., Weng, X. C., Wu, X., Xu, T., Yang, N., Yang, Z., Zang, Y. F., Zhang, L., Zhang, Q., Zhang, Z., Zhang, Z., Zhao, K., Zhen, Z., Zhou, Y., Zhu, X. T., & Milham, M. P. (2014). An open science resource for establishing reliability and reproducibility in functional connectomics. Sci Data, 1, 140049. https://doi.org/10.1038/sdata.2014.49.CrossRefPubMedPubMedCentral Zuo, X. N., Anderson, J. S., Bellec, P., Birn, R. M., Biswal, B. B., Blautzik, J., Breitner, J. C. S., Buckner, R. L., Calhoun, V. D., Castellanos, F. X., Chen, A., Chen, B., Chen, J., Chen, X., Colcombe, S. J., Courtney, W., Craddock, R. C., di Martino, A., Dong, H. M., Fu, X., Gong, Q., Gorgolewski, K. J., Han, Y., He, Y., He, Y., Ho, E., Holmes, A., Hou, X. H., Huckins, J., Jiang, T., Jiang, Y., Kelley, W., Kelly, C., King, M., LaConte, S. M., Lainhart, J. E., Lei, X., Li, H. J., Li, K., Li, K., Lin, Q., Liu, D., Liu, J., Liu, X., Liu, Y., Lu, G., Lu, J., Luna, B., Luo, J., Lurie, D., Mao, Y., Margulies, D. S., Mayer, A. R., Meindl, T., Meyerand, M. E., Nan, W., Nielsen, J. A., O’Connor, D., Paulsen, D., Prabhakaran, V., Qi, Z., Qiu, J., Shao, C., Shehzad, Z., Tang, W., Villringer, A., Wang, H., Wang, K., Wei, D., Wei, G. X., Weng, X. C., Wu, X., Xu, T., Yang, N., Yang, Z., Zang, Y. F., Zhang, L., Zhang, Q., Zhang, Z., Zhang, Z., Zhao, K., Zhen, Z., Zhou, Y., Zhu, X. T., & Milham, M. P. (2014). An open science resource for establishing reliability and reproducibility in functional connectomics. Sci Data, 1, 140049. https://​doi.​org/​10.​1038/​sdata.​2014.​49.CrossRefPubMedPubMedCentral
Metadaten
Titel
Using Deep Learning Algorithms to Automatically Identify the Brain MRI Contrast: Implications for Managing Large Databases
verfasst von
Ricardo Pizarro
Haz-Edine Assemlal
Dante De Nigris
Colm Elliott
Samson Antel
Douglas Arnold
Amir Shmuel
Publikationsdatum
29.06.2018
Verlag
Springer US
Erschienen in
Neuroinformatics / Ausgabe 1/2019
Print ISSN: 1539-2791
Elektronische ISSN: 1559-0089
DOI
https://doi.org/10.1007/s12021-018-9387-8

Weitere Artikel der Ausgabe 1/2019

Neuroinformatics 1/2019 Zur Ausgabe

Premium Partner