Skip to main content
Erschienen in: Metals and Materials International 8/2020

06.12.2019

Manufacturing Methods, Microstructural and Mechanical Properties Evolutions of High-Entropy Alloys: A Review

verfasst von: Yaser A. Alshataif, S. Sivasankaran, Fahad A. Al-Mufadi, Abdulaziz S. Alaboodi, Hany R. Ammar

Erschienen in: Metals and Materials International | Ausgabe 8/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

High entropy alloys (HEAs) are being attracted recently by several researchers, scientists, and academicians to achieve extraordinary and outstanding properties that cannot be obtained from conventional alloys. HEAs are multicomponent alloys in which a minimum of five metallic elements are mixed in an equal molar or non-equal molar ratio. The rapid growth of this field produces a huge amount of scientific papers over the last decade. However, still, there is a need to review various manufacturing methods and their results. Also, the outcome of the scientific articles related to HEAs has ignored the various methods of synthesizing and manufacturing. In this review article, an attempt was made and largely concentrated on the methods and techniques that can be used in the manufacturing and synthesizing of the HEAs. Recently, the properties of HEAs become much better when compared to conventional alloys. Some techniques have succeeded in producing ultrafine microstructure grains which become a leap in industrial fields. Now, the manufacturing methods of conventional alloys are almost familiar and implemented according to the suggestions given by the researchers and academicians based on their work. Therefore, the present review article has demonstrated various methods of manufacturing of HEAs with novel schematics with a preview description for more understanding of the basic work criteria. Besides, this article has reviewed the outcomes of several research articles related to several methods, then compared the outcome of each method with the corresponding mechanical properties, and major challenges of HEAs are discussed and reported.

Graphic Abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat D.B. Miracle, J.D. Miller, O.N. Senkov, C. Woodward, M.D. Uchic, J. Tiley, Exploration and development of high entropy alloys for structural applications. Entropy 16(1), 494–525 (2014) D.B. Miracle, J.D. Miller, O.N. Senkov, C. Woodward, M.D. Uchic, J. Tiley, Exploration and development of high entropy alloys for structural applications. Entropy 16(1), 494–525 (2014)
2.
Zurück zum Zitat Y. J. Huang, K.H. Chen, Master’s Thesis, Natl. Tsing Hua Univ. (1996) Y. J. Huang, K.H. Chen, Master’s Thesis, Natl. Tsing Hua Univ. (1996)
3.
Zurück zum Zitat J. Yeh et al., Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv. Eng. Mater. 6(5), 299–303 (2004) J. Yeh et al., Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv. Eng. Mater. 6(5), 299–303 (2004)
4.
Zurück zum Zitat C.-Y. Hsu, J.-W. Yeh, S.-K. Chen, T.-T. Shun, Wear resistance and high-temperature compression strength of Fcc CuCoNiCrAl 0.5 Fe alloy with boron addition. Metall. Mater. Trans. A 35(5), 1465–1469 (2004) C.-Y. Hsu, J.-W. Yeh, S.-K. Chen, T.-T. Shun, Wear resistance and high-temperature compression strength of Fcc CuCoNiCrAl 0.5 Fe alloy with boron addition. Metall. Mater. Trans. A 35(5), 1465–1469 (2004)
5.
Zurück zum Zitat Y. Jien-Wei, Recent progress in high entropy alloys. Ann. Chim. Sci. Mat 31(6), 633–648 (2006) Y. Jien-Wei, Recent progress in high entropy alloys. Ann. Chim. Sci. Mat 31(6), 633–648 (2006)
6.
Zurück zum Zitat J. Chen et al., A review on fundamental of high entropy alloys with promising high–temperature properties. J. Alloys Compd. 760, 15–30 (2018) J. Chen et al., A review on fundamental of high entropy alloys with promising high–temperature properties. J. Alloys Compd. 760, 15–30 (2018)
7.
Zurück zum Zitat T. Bhattacharjee et al., Effect of low temperature on tensile properties of AlCoCrFeNi2.1 eutectic high entropy alloy. Mater. Chem. Phys. 210, 207–212 (2018) T. Bhattacharjee et al., Effect of low temperature on tensile properties of AlCoCrFeNi2.1 eutectic high entropy alloy. Mater. Chem. Phys. 210, 207–212 (2018)
8.
Zurück zum Zitat Y.F. Ye, Q. Wang, J. Lu, C.T. Liu, Y. Yang, High-entropy alloy: challenges and prospects. Mater. Today 19(6), 349–362 (2016) Y.F. Ye, Q. Wang, J. Lu, C.T. Liu, Y. Yang, High-entropy alloy: challenges and prospects. Mater. Today 19(6), 349–362 (2016)
9.
Zurück zum Zitat P.F. Yu et al., The high-entropy alloys with high hardness and soft magnetic property prepared by mechanical alloying and high-pressure sintering. Intermetallics 70, 82–87 (2016) P.F. Yu et al., The high-entropy alloys with high hardness and soft magnetic property prepared by mechanical alloying and high-pressure sintering. Intermetallics 70, 82–87 (2016)
10.
Zurück zum Zitat Y.Y.Y. Chen, T. Duval, U.D.D. Hung, J.W.W. Yeh, H.C.C. Shih, Microstructure and electrochemical properties of high entropy alloys—a comparison with type-304 stainless steel. Corros. Sci. 47(9), 2257–2279 (2005) Y.Y.Y. Chen, T. Duval, U.D.D. Hung, J.W.W. Yeh, H.C.C. Shih, Microstructure and electrochemical properties of high entropy alloys—a comparison with type-304 stainless steel. Corros. Sci. 47(9), 2257–2279 (2005)
11.
Zurück zum Zitat L.J.J. Zhang et al., The microstructural evolution and hardness of the equiatomic CoCrCuFeNi high-entropy alloy in the semi-solid state. J. Alloys Compd. 745, 75–83 (2018) L.J.J. Zhang et al., The microstructural evolution and hardness of the equiatomic CoCrCuFeNi high-entropy alloy in the semi-solid state. J. Alloys Compd. 745, 75–83 (2018)
12.
Zurück zum Zitat W. Huo et al., Ultrahigh hardness and high electrical resistivity in nano-twinned, nanocrystalline high-entropy alloy films. Appl. Surf. Sci. 439, 222–225 (2018) W. Huo et al., Ultrahigh hardness and high electrical resistivity in nano-twinned, nanocrystalline high-entropy alloy films. Appl. Surf. Sci. 439, 222–225 (2018)
13.
Zurück zum Zitat G. Jin et al., High temperature wear performance of laser-cladded FeNiCoAlCu high-entropy alloy coating. Appl. Surf. Sci. 445, 113–122 (2018) G. Jin et al., High temperature wear performance of laser-cladded FeNiCoAlCu high-entropy alloy coating. Appl. Surf. Sci. 445, 113–122 (2018)
14.
Zurück zum Zitat C. Shang, E. Axinte, W. Ge, Z. Zhang, Y. Wang, High-entropy alloy coatings with excellent mechanical, corrosion resistance and magnetic properties prepared by mechanical alloying and hot pressing sintering. Surfaces Interfaces 9, 36–43 (2017) C. Shang, E. Axinte, W. Ge, Z. Zhang, Y. Wang, High-entropy alloy coatings with excellent mechanical, corrosion resistance and magnetic properties prepared by mechanical alloying and hot pressing sintering. Surfaces Interfaces 9, 36–43 (2017)
15.
Zurück zum Zitat K.V. Yusenko et al., High-pressure high-temperature tailoring of High Entropy Alloys for extreme environments. J. Alloys Compd. 738, 491–500 (2018) K.V. Yusenko et al., High-pressure high-temperature tailoring of High Entropy Alloys for extreme environments. J. Alloys Compd. 738, 491–500 (2018)
16.
Zurück zum Zitat M.D.D. Cropper, Thin films of AlCrFeCoNiCu high-entropy alloy by pulsed laser deposition. Appl. Surf. Sci. 455(May), 153–159 (2018) M.D.D. Cropper, Thin films of AlCrFeCoNiCu high-entropy alloy by pulsed laser deposition. Appl. Surf. Sci. 455(May), 153–159 (2018)
17.
Zurück zum Zitat S. Mohanty et al., Powder metallurgical processing of equiatomic AlCoCrFeNi high entropy alloy: microstructure and mechanical properties. Mater. Sci. Eng. A 679, 299–313 (2017) S. Mohanty et al., Powder metallurgical processing of equiatomic AlCoCrFeNi high entropy alloy: microstructure and mechanical properties. Mater. Sci. Eng. A 679, 299–313 (2017)
18.
Zurück zum Zitat X.W. Qiu, Y.P. Zhang, L. He, C.G. Liu, Microstructure and corrosion resistance of AlCrFeCuCo high entropy alloy. J. Alloys Compd. 549, 195–199 (2013) X.W. Qiu, Y.P. Zhang, L. He, C.G. Liu, Microstructure and corrosion resistance of AlCrFeCuCo high entropy alloy. J. Alloys Compd. 549, 195–199 (2013)
19.
Zurück zum Zitat R. Wang, W. Chen, J. Zhong, L. Zhang, Experimental and numerical studies on the sluggish diffusion in face centered cubic Co–Cr–Cu–Fe–Ni high-entropy alloys. J. Mater. Sci. Technol. 34(10), 1791–1798 (2018) R. Wang, W. Chen, J. Zhong, L. Zhang, Experimental and numerical studies on the sluggish diffusion in face centered cubic Co–Cr–Cu–Fe–Ni high-entropy alloys. J. Mater. Sci. Technol. 34(10), 1791–1798 (2018)
20.
Zurück zum Zitat K. Tsai, M. Tsai, J. Yeh, Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys. Acta Mater. 61(13), 4887–4897 (2013) K. Tsai, M. Tsai, J. Yeh, Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys. Acta Mater. 61(13), 4887–4897 (2013)
21.
Zurück zum Zitat B.S. Murty, J.-W. Yeh, S. Ranganathan, P.P. Bhattacharjee, High-Entropy Alloys (Elsevier, Amsterdam, 2019) B.S. Murty, J.-W. Yeh, S. Ranganathan, P.P. Bhattacharjee, High-Entropy Alloys (Elsevier, Amsterdam, 2019)
22.
Zurück zum Zitat K. Alagarsamy et al., Mechanical Properties of High Entropy Alloy Al 0.1 CoCrFeNi for Peripheral Vascular Stent Application. Cardiovasc. Eng. Technol. 7(4), 448–454 (2016) K. Alagarsamy et al., Mechanical Properties of High Entropy Alloy Al 0.1 CoCrFeNi for Peripheral Vascular Stent Application. Cardiovasc. Eng. Technol. 7(4), 448–454 (2016)
23.
Zurück zum Zitat J. Li, W. Jia, J. Wang, H. Kou, D. Zhang, E. Beaugnon, Enhanced mechanical properties of a CoCrFeNi high entropy alloy by supercooling method. JMADE 95, 183–187 (2016) J. Li, W. Jia, J. Wang, H. Kou, D. Zhang, E. Beaugnon, Enhanced mechanical properties of a CoCrFeNi high entropy alloy by supercooling method. JMADE 95, 183–187 (2016)
24.
Zurück zum Zitat H.W. Yao, J.W. Qiao, J.A. Hawk, H.F. Zhou, M.W. Chen, M.C. Gao, Mechanical properties of refractory high-entropy alloys: experiments and modeling. J. Alloys Compd. 696, 1139–1150 (2017) H.W. Yao, J.W. Qiao, J.A. Hawk, H.F. Zhou, M.W. Chen, M.C. Gao, Mechanical properties of refractory high-entropy alloys: experiments and modeling. J. Alloys Compd. 696, 1139–1150 (2017)
25.
Zurück zum Zitat C.C. Juan et al., Enhanced mechanical properties of HfMoTaTiZr and HfMoNbTaTiZr refractory high-entropy alloys. Intermetallics 62, 76–83 (2015) C.C. Juan et al., Enhanced mechanical properties of HfMoTaTiZr and HfMoNbTaTiZr refractory high-entropy alloys. Intermetallics 62, 76–83 (2015)
26.
Zurück zum Zitat Y. Zhang et al., Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 61, 1–93 (2013) Y. Zhang et al., Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 61, 1–93 (2013)
27.
Zurück zum Zitat C. Li, Y. Zhou, Y. Xie, D. Zhou, D. Zhang, Effects of milling time and sintering temperature on structural evolution, densification behavior and properties of a W-20 wt% Cu alloy. J. Alloys Compd. 731, 537–545 (2018) C. Li, Y. Zhou, Y. Xie, D. Zhou, D. Zhang, Effects of milling time and sintering temperature on structural evolution, densification behavior and properties of a W-20 wt% Cu alloy. J. Alloys Compd. 731, 537–545 (2018)
28.
Zurück zum Zitat M.D.D. Alcalá, C. Real, I. Fombella, I. Trigo, J.M.M. Córdoba, Effects of milling time, sintering temperature, Al content on the chemical nature, microhardness and microstructure of mechanochemically synthesized FeCoNiCrMn high entropy alloy. J. Alloys Compd. 749, 834–843 (2018) M.D.D. Alcalá, C. Real, I. Fombella, I. Trigo, J.M.M. Córdoba, Effects of milling time, sintering temperature, Al content on the chemical nature, microhardness and microstructure of mechanochemically synthesized FeCoNiCrMn high entropy alloy. J. Alloys Compd. 749, 834–843 (2018)
29.
Zurück zum Zitat S.-H. Joo et al., Structure and properties of ultrafine-grained CoCrFeMnNi high-entropy alloys produced by mechanical alloying and spark plasma sintering. J. Alloys Compd. 698, 591–604 (2017) S.-H. Joo et al., Structure and properties of ultrafine-grained CoCrFeMnNi high-entropy alloys produced by mechanical alloying and spark plasma sintering. J. Alloys Compd. 698, 591–604 (2017)
30.
Zurück zum Zitat G.D.S.M.Z.J.R.G.C.L.C.-W.T.J.-W.Y.P.P. Bhattacharjee, Microstructure and texture evolution during annealing of equiatomic\nCoCrFeMnNi high-entropy alloy. J. Alloys Compd. 587, 544–552 (2014) G.D.S.M.Z.J.R.G.C.L.C.-W.T.J.-W.Y.P.P. Bhattacharjee, Microstructure and texture evolution during annealing of equiatomic\nCoCrFeMnNi high-entropy alloy. J. Alloys Compd. 587, 544–552 (2014)
31.
Zurück zum Zitat T.T. Shun, Y.C. Du, Age hardening of the Al0.3CoCrFeNiC0.1high entropy alloy. J. Alloys Compd. 478(1–2), 269–272 (2009) T.T. Shun, Y.C. Du, Age hardening of the Al0.3CoCrFeNiC0.1high entropy alloy. J. Alloys Compd. 478(1–2), 269–272 (2009)
32.
Zurück zum Zitat A. Lawley, Atomization of specialty alloy powders. JOM 33(1), 13–18 (1989) A. Lawley, Atomization of specialty alloy powders. JOM 33(1), 13–18 (1989)
33.
Zurück zum Zitat R. Li, Y. Shi, Z. Wang, L. Wang, J. Liu, W. Jiang, Densification behavior of gas and water atomized 316L stainless steel powder during selective laser melting. Appl. Surf. Sci. 256(13), 4350–4356 (2010) R. Li, Y. Shi, Z. Wang, L. Wang, J. Liu, W. Jiang, Densification behavior of gas and water atomized 316L stainless steel powder during selective laser melting. Appl. Surf. Sci. 256(13), 4350–4356 (2010)
34.
Zurück zum Zitat C.C. Yang, J.L. Hang Chau, C.J. Weng, C.S. Chen, Y.H. Chou, Preparation of high-entropy AlCoCrCuFeNiSi alloy powders by gas atomization process. Mater. Chem. Phys. 202, 151–158 (2017) C.C. Yang, J.L. Hang Chau, C.J. Weng, C.S. Chen, Y.H. Chou, Preparation of high-entropy AlCoCrCuFeNiSi alloy powders by gas atomization process. Mater. Chem. Phys. 202, 151–158 (2017)
35.
Zurück zum Zitat S. Zhou et al., Microstructure evolution of Al0. 6CoCrFeNi high entropy alloy powder prepared by high pressure gas atomization. Trans. Nonferrous Met. Soc. China 28(5), 939–945 (2018) S. Zhou et al., Microstructure evolution of Al0. 6CoCrFeNi high entropy alloy powder prepared by high pressure gas atomization. Trans. Nonferrous Met. Soc. China 28(5), 939–945 (2018)
36.
Zurück zum Zitat D. Yim et al., Compaction behavior of water-atomized CoCrFeMnNi high-entropy alloy powders. Mater. Chem. Phys. 210, 95–102 (2018) D. Yim et al., Compaction behavior of water-atomized CoCrFeMnNi high-entropy alloy powders. Mater. Chem. Phys. 210, 95–102 (2018)
37.
Zurück zum Zitat Y. Liu, J. Wang, Q. Fang, B. Liu, Y. Wu, S. Chen, Preparation of superfine-grained high entropy alloy by spark plasma sintering gas atomized powder. Intermetallics 68, 16–22 (2016) Y. Liu, J. Wang, Q. Fang, B. Liu, Y. Wu, S. Chen, Preparation of superfine-grained high entropy alloy by spark plasma sintering gas atomized powder. Intermetallics 68, 16–22 (2016)
38.
Zurück zum Zitat J. Wang et al., Flow behavior and microstructures of powder metallurgical CrFeCoNiMo0. 2 high entropy alloy during high temperature deformation. Mater. Sci. Eng., A 689, 233–242 (2017) J. Wang et al., Flow behavior and microstructures of powder metallurgical CrFeCoNiMo0. 2 high entropy alloy during high temperature deformation. Mater. Sci. Eng., A 689, 233–242 (2017)
39.
Zurück zum Zitat R. Clinktan, V. Senthil, K.R. Ramkumar, S. Sivasankaran, F.A. Al-Mufadi, Effect of boron carbide nano particles in CuSi4Zn14 silicone bronze nanocomposites on matrix powder surface morphology and structural evolution via mechanical alloying. Ceram. Int. 45, 33492 (2018) R. Clinktan, V. Senthil, K.R. Ramkumar, S. Sivasankaran, F.A. Al-Mufadi, Effect of boron carbide nano particles in CuSi4Zn14 silicone bronze nanocomposites on matrix powder surface morphology and structural evolution via mechanical alloying. Ceram. Int. 45, 33492 (2018)
40.
Zurück zum Zitat B. Madavali, J.-H. Lee, J.K. Lee, K.Y. Cho, S. Challapalli, S.-J. Hong, Effects of atmosphere and milling time on the coarsening of copper powders during mechanical milling. Powder Technol. 256, 251–256 (2014) B. Madavali, J.-H. Lee, J.K. Lee, K.Y. Cho, S. Challapalli, S.-J. Hong, Effects of atmosphere and milling time on the coarsening of copper powders during mechanical milling. Powder Technol. 256, 251–256 (2014)
41.
Zurück zum Zitat F.T. Mahi, O.-H. Kwon, Liquid Phase Sintering: Ceramics (Elsevier, Amsterdam, 2016) F.T. Mahi, O.-H. Kwon, Liquid Phase Sintering: Ceramics (Elsevier, Amsterdam, 2016)
42.
Zurück zum Zitat H. Cheng, X. Liu, Q. Tang, W. Wang, X. Yan, P. Dai, Microstructure and mechanical properties of FeCoCrNiMnAlx high-entropy alloys prepared by mechanical alloying and hot-pressed sintering. J. Alloys Compd. 775, 742–751 (2019) H. Cheng, X. Liu, Q. Tang, W. Wang, X. Yan, P. Dai, Microstructure and mechanical properties of FeCoCrNiMnAlx high-entropy alloys prepared by mechanical alloying and hot-pressed sintering. J. Alloys Compd. 775, 742–751 (2019)
43.
Zurück zum Zitat D. Oleszak, A. Antolak-dudka, T. Kulik, High entropy multicomponent WMoNbZrV alloy processed by mechanical alloying. Mater. Lett. 232, 160–162 (2018) D. Oleszak, A. Antolak-dudka, T. Kulik, High entropy multicomponent WMoNbZrV alloy processed by mechanical alloying. Mater. Lett. 232, 160–162 (2018)
44.
Zurück zum Zitat A.I. Yurkova, V.V. Cherniavsky, V. Bolbut, M. Krüger, I. Bogomol, Structure formation and mechanical properties of the high-entropy AlCuNiFeCr alloy prepared by mechanical alloying and spark plasma sintering. J. Alloys Compd. 786, 139–148 (2019) A.I. Yurkova, V.V. Cherniavsky, V. Bolbut, M. Krüger, I. Bogomol, Structure formation and mechanical properties of the high-entropy AlCuNiFeCr alloy prepared by mechanical alloying and spark plasma sintering. J. Alloys Compd. 786, 139–148 (2019)
45.
Zurück zum Zitat A. Emamifar, B. Sadeghi, P. Cavaliere, H. Ziaei, Microstructural evolution and mechanical properties of AlCrFeNiCoC high entropy alloy produced via spark plasma sintering. Powder Metall. 62(1), 61–70 (2019) A. Emamifar, B. Sadeghi, P. Cavaliere, H. Ziaei, Microstructural evolution and mechanical properties of AlCrFeNiCoC high entropy alloy produced via spark plasma sintering. Powder Metall. 62(1), 61–70 (2019)
46.
Zurück zum Zitat C. Suryanarayana, Mechanical alloying and milling. Prog. Mater Sci. 46(1–2), 1–184 (2001) C. Suryanarayana, Mechanical alloying and milling. Prog. Mater Sci. 46(1–2), 1–184 (2001)
47.
Zurück zum Zitat F. Yuhu, Z. Yunpeng, G. Hongyan, S. Huimin, H. Li, Alnicrfexmo0. 2CoCu high entropy alloys prepared by powder metallurgy. Rare Met. Mater. Eng. 42(6), 1127–1129 (2013) F. Yuhu, Z. Yunpeng, G. Hongyan, S. Huimin, H. Li, Alnicrfexmo0. 2CoCu high entropy alloys prepared by powder metallurgy. Rare Met. Mater. Eng. 42(6), 1127–1129 (2013)
48.
Zurück zum Zitat V. Shivam, J. Basu, V.K. Pandey, Y. Shadangi, N.K. Mukhopadhyay, Alloying behaviour, thermal stability and phase evolution in quinary AlCoCrFeNi high entropy alloy. Adv. Powder Technol. 29(9), 2221–2230 (2018) V. Shivam, J. Basu, V.K. Pandey, Y. Shadangi, N.K. Mukhopadhyay, Alloying behaviour, thermal stability and phase evolution in quinary AlCoCrFeNi high entropy alloy. Adv. Powder Technol. 29(9), 2221–2230 (2018)
49.
Zurück zum Zitat F.J. Baldenebro-Lopez, J.M. Herrera-Ramírez, S.P. Arredondo-Rea, C.D. Gómez-Esparza, R. Martínez-Sánchez, Simultaneous effect of mechanical alloying and arc-melting processes in the microstructure and hardness of an AlCoFeMoNiTi high-entropy alloy. J. Alloys Compd. 643, S250–S255 (2015) F.J. Baldenebro-Lopez, J.M. Herrera-Ramírez, S.P. Arredondo-Rea, C.D. Gómez-Esparza, R. Martínez-Sánchez, Simultaneous effect of mechanical alloying and arc-melting processes in the microstructure and hardness of an AlCoFeMoNiTi high-entropy alloy. J. Alloys Compd. 643, S250–S255 (2015)
50.
Zurück zum Zitat C. Sun, P. Li, S. Xi, Y. Zhou, S. Li, X. Yang, A new type of high entropy alloy composite Fe18Ni23Co25Cr21Mo8WNb3C2 prepared by mechanical alloying and hot pressing sintering. Mater. Sci. Eng. A 728, 144–150 (2018) C. Sun, P. Li, S. Xi, Y. Zhou, S. Li, X. Yang, A new type of high entropy alloy composite Fe18Ni23Co25Cr21Mo8WNb3C2 prepared by mechanical alloying and hot pressing sintering. Mater. Sci. Eng. A 728, 144–150 (2018)
51.
Zurück zum Zitat Z. Xu, M.A. Hodgson, P. Cao, A comparative study of powder metallurgical (PM) and wrought Fe–Mn–Si alloys. Mater. Sci. Eng., A 630, 116–124 (2015) Z. Xu, M.A. Hodgson, P. Cao, A comparative study of powder metallurgical (PM) and wrought Fe–Mn–Si alloys. Mater. Sci. Eng., A 630, 116–124 (2015)
52.
Zurück zum Zitat Z. Fu et al., Microstructure and strengthening mechanisms in an FCC structured single-phase nanocrystalline Co25Ni25Fe25Al7. 5Cu17. 5 high-entropy alloy. Acta Mater. 107, 59–71 (2016) Z. Fu et al., Microstructure and strengthening mechanisms in an FCC structured single-phase nanocrystalline Co25Ni25Fe25Al7. 5Cu17. 5 high-entropy alloy. Acta Mater. 107, 59–71 (2016)
53.
Zurück zum Zitat Z. Tang et al., Tensile ductility of an AlCoCrFeNi multi-phase high-entropy alloy through hot isostatic pressing (HIP) and homogenization. Mater. Sci. Eng., A 647, 229–240 (2015) Z. Tang et al., Tensile ductility of an AlCoCrFeNi multi-phase high-entropy alloy through hot isostatic pressing (HIP) and homogenization. Mater. Sci. Eng., A 647, 229–240 (2015)
54.
Zurück zum Zitat L.F. Francis, Powder Processes, in Materials Processing, ed. by L.F.B.T.-M.P. Francis (Academic Press, Boston, 2016), pp. 343–414 L.F. Francis, Powder Processes, in Materials Processing, ed. by L.F.B.T.-M.P. Francis (Academic Press, Boston, 2016), pp. 343–414
55.
Zurück zum Zitat Z. Fu, W. Chen, H. Wen, Z. Chen, E.J. Lavernia, Effects of Co and sintering method on microstructure and mechanical behavior of a high-entropy Al0. 6NiFeCrCo alloy prepared by powder metallurgy. J. Alloys Compd. 646, 175–182 (2015) Z. Fu, W. Chen, H. Wen, Z. Chen, E.J. Lavernia, Effects of Co and sintering method on microstructure and mechanical behavior of a high-entropy Al0. 6NiFeCrCo alloy prepared by powder metallurgy. J. Alloys Compd. 646, 175–182 (2015)
56.
Zurück zum Zitat N. Eißmann, B. Klöden, T. Weißgärber, B. Kieback, High-entropy alloy CoCrFeMnNi produced by powder metallurgy. Powder Metall. 60(3), 184–197 (2017) N. Eißmann, B. Klöden, T. Weißgärber, B. Kieback, High-entropy alloy CoCrFeMnNi produced by powder metallurgy. Powder Metall. 60(3), 184–197 (2017)
57.
Zurück zum Zitat J. Pan, T. Dai, T. Lu, X. Ni, J. Dai, M. Li, Microstructure and mechanical properties of Nb25Mo25Ta25W25 and Ti8Nb23Mo23Ta23W23 high entropy alloys prepared by mechanical alloying and spark plasma sintering. Mater. Sci. Eng. A 738, 362–366 (2018) J. Pan, T. Dai, T. Lu, X. Ni, J. Dai, M. Li, Microstructure and mechanical properties of Nb25Mo25Ta25W25 and Ti8Nb23Mo23Ta23W23 high entropy alloys prepared by mechanical alloying and spark plasma sintering. Mater. Sci. Eng. A 738, 362–366 (2018)
58.
Zurück zum Zitat D. Yim, P. Sathiyamoorthi, S.-J. Hong, H.S. Kim, Fabrication and mechanical properties of TiC reinforced CoCrFeMnNi high-entropy alloy composite by water atomization and spark plasma sintering. J. Alloys Compd. 781, 389–396 (2019) D. Yim, P. Sathiyamoorthi, S.-J. Hong, H.S. Kim, Fabrication and mechanical properties of TiC reinforced CoCrFeMnNi high-entropy alloy composite by water atomization and spark plasma sintering. J. Alloys Compd. 781, 389–396 (2019)
59.
Zurück zum Zitat S. Mohanty, N.P. Gurao, P. Padaikathan, K. Biswas, Ageing behaviour of equiatomic consolidated Al20Co20Cu20Ni20Zn20 high entropy alloy. Mater. Charact. 129, 127–134 (2017) S. Mohanty, N.P. Gurao, P. Padaikathan, K. Biswas, Ageing behaviour of equiatomic consolidated Al20Co20Cu20Ni20Zn20 high entropy alloy. Mater. Charact. 129, 127–134 (2017)
60.
Zurück zum Zitat K.B. Zhang, Z.Y. Fu, J.Y. Zhang, W.M. Wang, S.W. Lee, K. Niihara, Characterization of nanocrystalline CoCrFeNiTiAl high-entropy solid solution processed by mechanical alloying. J. Alloys Compd. 495(1), 33–38 (2010) K.B. Zhang, Z.Y. Fu, J.Y. Zhang, W.M. Wang, S.W. Lee, K. Niihara, Characterization of nanocrystalline CoCrFeNiTiAl high-entropy solid solution processed by mechanical alloying. J. Alloys Compd. 495(1), 33–38 (2010)
61.
Zurück zum Zitat R.S. Ganji, P.S. Karthik, K.B.S. Rao, K.V. Rajulapati, Strengthening mechanisms in equiatomic ultrafine grained AlCoCrCuFeNi high-entropy alloy studied by micro-and nanoindentation methods. Acta Mater. 125, 58–68 (2017) R.S. Ganji, P.S. Karthik, K.B.S. Rao, K.V. Rajulapati, Strengthening mechanisms in equiatomic ultrafine grained AlCoCrCuFeNi high-entropy alloy studied by micro-and nanoindentation methods. Acta Mater. 125, 58–68 (2017)
62.
Zurück zum Zitat S.-J.L. Kang, S.-J.L. Kang, Basis of liquid phase sintering, in Sintering, ed. by S.-J.L.B.T.-S. Kang (Butterworth-Heinemann, Oxford, 2005), pp. 199–203 S.-J.L. Kang, S.-J.L. Kang, Basis of liquid phase sintering, in Sintering, ed. by S.-J.L.B.T.-S. Kang (Butterworth-Heinemann, Oxford, 2005), pp. 199–203
63.
Zurück zum Zitat M.A. Hemphill et al., Fatigue behavior of Al0. 5CoCrCuFeNi high entropy alloys. Acta Mater. 60(16), 5723–5734 (2012) M.A. Hemphill et al., Fatigue behavior of Al0. 5CoCrCuFeNi high entropy alloys. Acta Mater. 60(16), 5723–5734 (2012)
64.
Zurück zum Zitat S. Singh, N. Wanderka, B.S. Murty, U. Glatzel, J. Banhart, Decomposition in multi-component AlCoCrCuFeNi high-entropy alloy. Acta Mater. 59(1), 182–190 (2011) S. Singh, N. Wanderka, B.S. Murty, U. Glatzel, J. Banhart, Decomposition in multi-component AlCoCrCuFeNi high-entropy alloy. Acta Mater. 59(1), 182–190 (2011)
65.
Zurück zum Zitat F. Otto, N.L. Hanold, E.P. George, Microstructural evolution after thermomechanical processing in an equiatomic, single-phase CoCrFeMnNi high-entropy alloy with special focus on twin boundaries. Intermetallics 54, 39–48 (2014) F. Otto, N.L. Hanold, E.P. George, Microstructural evolution after thermomechanical processing in an equiatomic, single-phase CoCrFeMnNi high-entropy alloy with special focus on twin boundaries. Intermetallics 54, 39–48 (2014)
66.
Zurück zum Zitat L.C. Tsao, C.S. Chen, C.P. Chu, Age hardening reaction of the Al0.3CrFe1.5MnNi0.5 high entropy alloy. Mater. Des. 36, 854–858 (2012) L.C. Tsao, C.S. Chen, C.P. Chu, Age hardening reaction of the Al0.3CrFe1.5MnNi0.5 high entropy alloy. Mater. Des. 36, 854–858 (2012)
67.
Zurück zum Zitat M. Zhan, C. Gu, Z. Jiang, L. Hu, H. Yang, Application of ductile fracture criteria in spin-forming and tube-bending processes. Comput. Mater. Sci. 47(2), 353–365 (2009) M. Zhan, C. Gu, Z. Jiang, L. Hu, H. Yang, Application of ductile fracture criteria in spin-forming and tube-bending processes. Comput. Mater. Sci. 47(2), 353–365 (2009)
68.
Zurück zum Zitat L. Hou, J. Hui, Y. Yao, J. Chen, J. Liu, Effects of Boron Content on microstructure and mechanical properties of AlFeCoNiBx High Entropy Alloy Prepared by vacuum arc melting. Vacuum 164, 212–218 (2019) L. Hou, J. Hui, Y. Yao, J. Chen, J. Liu, Effects of Boron Content on microstructure and mechanical properties of AlFeCoNiBx High Entropy Alloy Prepared by vacuum arc melting. Vacuum 164, 212–218 (2019)
69.
Zurück zum Zitat Y. Du, Y. Lu, T. Wang, T. Li, G. Zhang, Effect of electromagnetic stirring on microstructure and properties of Al0.5CoCrCuFeNi alloy. Procedia Eng. 27(2011), 1129–1134 (2012) Y. Du, Y. Lu, T. Wang, T. Li, G. Zhang, Effect of electromagnetic stirring on microstructure and properties of Al0.5CoCrCuFeNi alloy. Procedia Eng. 27(2011), 1129–1134 (2012)
70.
Zurück zum Zitat H. Luo, Z. Li, A.M. Mingers, D. Raabe, Corrosion behavior of an equiatomic CoCrFeMnNi high-entropy alloy compared with 304 stainless steel in sulfuric acid solution. Corros. Sci. 134, 131–139 (2018) H. Luo, Z. Li, A.M. Mingers, D. Raabe, Corrosion behavior of an equiatomic CoCrFeMnNi high-entropy alloy compared with 304 stainless steel in sulfuric acid solution. Corros. Sci. 134, 131–139 (2018)
71.
Zurück zum Zitat E. Fazakas, J.Q. Wang, V. Zadorozhnyy, L.K. Varga, Microstructural evolution and corrosion behavior of Al 25 Ti 25 Ga 25 Be 25 equi-molar composition alloy. Mater. Corros. 119049(7), 691–695 (2014) E. Fazakas, J.Q. Wang, V. Zadorozhnyy, L.K. Varga, Microstructural evolution and corrosion behavior of Al 25 Ti 25 Ga 25 Be 25 equi-molar composition alloy. Mater. Corros. 119049(7), 691–695 (2014)
72.
Zurück zum Zitat Y. Liu et al., Microstructure and mechanical properties of refractory HfMo0. 5NbTiV0. 5Six high-entropy composites. J. Alloys Compd. 694, 869–876 (2017) Y. Liu et al., Microstructure and mechanical properties of refractory HfMo0. 5NbTiV0. 5Six high-entropy composites. J. Alloys Compd. 694, 869–876 (2017)
73.
Zurück zum Zitat H. Qiu, H. Zhu, J. Zhang, Z. Xie, Effect of Fe content upon the microstructures and mechanical properties of FexCoNiCu high entropy alloys. Mater. Sci. Eng. A 769, 138514 (2020) H. Qiu, H. Zhu, J. Zhang, Z. Xie, Effect of Fe content upon the microstructures and mechanical properties of FexCoNiCu high entropy alloys. Mater. Sci. Eng. A 769, 138514 (2020)
74.
Zurück zum Zitat D.G. Kim et al., Effects of annealing temperature on microstructures and tensile properties of a single FCC phase CoCuMnNi high-entropy alloy. J. Alloys Compd. 812, 152111 (2020) D.G. Kim et al., Effects of annealing temperature on microstructures and tensile properties of a single FCC phase CoCuMnNi high-entropy alloy. J. Alloys Compd. 812, 152111 (2020)
75.
Zurück zum Zitat Z. Yao, Comparison of structures and properties of arc-melted and induction-melted high entropy alloys, Master’s thesis, Tampere Univ. Technol. (2016) Z. Yao, Comparison of structures and properties of arc-melted and induction-melted high entropy alloys, Master’s thesis, Tampere Univ. Technol. (2016)
76.
Zurück zum Zitat H. Zheng et al., Transition of solid-liquid interface and tensile properties of CoCrFeNi high-entropy alloys during directional solidification. J. Alloys Compd. 787, 1023–1031 (2019) H. Zheng et al., Transition of solid-liquid interface and tensile properties of CoCrFeNi high-entropy alloys during directional solidification. J. Alloys Compd. 787, 1023–1031 (2019)
77.
Zurück zum Zitat H. Zheng et al., Microstructure evolution, Cu segregation and tensile properties of CoCrFeNiCu high entropy alloy during directional solidification. J. Mater. Sci. Technol. 38, 19–27 (2019) H. Zheng et al., Microstructure evolution, Cu segregation and tensile properties of CoCrFeNiCu high entropy alloy during directional solidification. J. Mater. Sci. Technol. 38, 19–27 (2019)
78.
Zurück zum Zitat S.T. Mileiko, S.A. Firstov, N.A. Novokhatskaya, V.F. Gorban, N.P. Krapivka, Oxide-fibre/high-entropy-alloy-matrix composites. Compos. Part A Appl. Sci. Manuf. 76, 131–134 (2015) S.T. Mileiko, S.A. Firstov, N.A. Novokhatskaya, V.F. Gorban, N.P. Krapivka, Oxide-fibre/high-entropy-alloy-matrix composites. Compos. Part A Appl. Sci. Manuf. 76, 131–134 (2015)
79.
Zurück zum Zitat F. He et al., Designing eutectic high entropy alloys of CoCrFeNiNbx. J. Alloys Compd. 656, 284–289 (2016) F. He et al., Designing eutectic high entropy alloys of CoCrFeNiNbx. J. Alloys Compd. 656, 284–289 (2016)
80.
Zurück zum Zitat Y. Yu, F. He, Z. Qiao, Z. Wang, W. Liu, J. Yang, Effects of temperature and microstructure on the triblogical properties of CoCrFeNiNbx eutectic high entropy alloys. J. Alloys Compd. 775, 1376–1385 (2019) Y. Yu, F. He, Z. Qiao, Z. Wang, W. Liu, J. Yang, Effects of temperature and microstructure on the triblogical properties of CoCrFeNiNbx eutectic high entropy alloys. J. Alloys Compd. 775, 1376–1385 (2019)
81.
Zurück zum Zitat N.A. Khan et al., High entropy alloy thin films of AlCoCrCu05FeNi with controlled microstructure. Appl. Surf. Sci. 495, 143560 (2019) N.A. Khan et al., High entropy alloy thin films of AlCoCrCu05FeNi with controlled microstructure. Appl. Surf. Sci. 495, 143560 (2019)
82.
Zurück zum Zitat M. M. Hassan, 16—Antimicrobial Coatings for Textiles, A. B. T.-H. of A. C. Tiwari, Ed. Elsevier, 2018, pp. 321–355 M. M. Hassan, 16—Antimicrobial Coatings for Textiles, A. B. T.-H. of A. C. Tiwari, Ed. Elsevier, 2018, pp. 321–355
83.
Zurück zum Zitat J.A. Juhasz, S.M. Best, 6—Surface modification of biomaterials by calcium phosphate deposition, in Woodhead Publishing Series in Biomaterials, ed. by B. Williams (Woodhead Publishing, Cambridge, 2011), pp. 143–169 J.A. Juhasz, S.M. Best, 6—Surface modification of biomaterials by calcium phosphate deposition, in Woodhead Publishing Series in Biomaterials, ed. by B. Williams (Woodhead Publishing, Cambridge, 2011), pp. 143–169
84.
Zurück zum Zitat H. Kim et al., Mechanical and electrical properties of NbMoTaW refractory high-entropy alloy thin films. Int. J. Refract. Met. Hard Mater. 80, 286–291 (2018) H. Kim et al., Mechanical and electrical properties of NbMoTaW refractory high-entropy alloy thin films. Int. J. Refract. Met. Hard Mater. 80, 286–291 (2018)
85.
Zurück zum Zitat J. Pou, F. Lusquiños, R. Comesaña, M. Boutinguiza, 14—Production of biomaterial coatings by laser-assisted processes, in Woodhead Publishing Series in Welding and Other Joining Technologies, ed. by J. Lawrence, J. Pou, D.K.Y. Low, L.M.P. Toyserkani (Woodhead Publishing, Cambridge, 2010), pp. 394–425 J. Pou, F. Lusquiños, R. Comesaña, M. Boutinguiza, 14—Production of biomaterial coatings by laser-assisted processes, in Woodhead Publishing Series in Welding and Other Joining Technologies, ed. by J. Lawrence, J. Pou, D.K.Y. Low, L.M.P. Toyserkani (Woodhead Publishing, Cambridge, 2010), pp. 394–425
86.
Zurück zum Zitat A. Michelmore, Thin film growth on biomaterial surfaces, in Thin Film Coatings for Biomaterials and Biomedical Applications, ed. by B.A. Griesser (Woodhead Publishing, Cambridge, 2016), pp. 29–47 A. Michelmore, Thin film growth on biomaterial surfaces, in Thin Film Coatings for Biomaterials and Biomedical Applications, ed. by B.A. Griesser (Woodhead Publishing, Cambridge, 2016), pp. 29–47
87.
Zurück zum Zitat T.-W. Lu et al., Microstructures and mechanical properties of CoCrFeNiAl0.3 high-entropy alloy thin films by pulsed laser deposition. Appl. Surf. Sci. 494(May), 72–79 (2019) T.-W. Lu et al., Microstructures and mechanical properties of CoCrFeNiAl0.3 high-entropy alloy thin films by pulsed laser deposition. Appl. Surf. Sci. 494(May), 72–79 (2019)
88.
Zurück zum Zitat K.C. Cheng, J.H. Chen, S. Stadler, S.H. Chen, Properties of atomized AlCoCrFeNi high-entropy alloy powders and their phase-adjustable coatings prepared via plasma spray process. Appl. Surf. Sci. 478, 478–486 (2019) K.C. Cheng, J.H. Chen, S. Stadler, S.H. Chen, Properties of atomized AlCoCrFeNi high-entropy alloy powders and their phase-adjustable coatings prepared via plasma spray process. Appl. Surf. Sci. 478, 478–486 (2019)
89.
Zurück zum Zitat V. Ocelik, N. Janssen, S.N. Smith, J.T.M. De Hosson, Additive manufacturing of high-entropy alloys by laser processing. JOM 68(7), 1810–1818 (2016) V. Ocelik, N. Janssen, S.N. Smith, J.T.M. De Hosson, Additive manufacturing of high-entropy alloys by laser processing. JOM 68(7), 1810–1818 (2016)
90.
Zurück zum Zitat X. Li, Additive manufacturing of advanced multi-component alloys: bulk metallic glasses and high entropy alloys. Adv. Eng. Mater. 20(5), 1700874 (2018) X. Li, Additive manufacturing of advanced multi-component alloys: bulk metallic glasses and high entropy alloys. Adv. Eng. Mater. 20(5), 1700874 (2018)
91.
Zurück zum Zitat R. Li, P. Niu, T. Yuan, P. Cao, C. Chen, K. Zhou, Selective laser melting of an equiatomic CoCrFeMnNi high-entropy alloy: processability, non-equilibrium microstructure and mechanical property. J. Alloys Compd. 746, 125–134 (2018) R. Li, P. Niu, T. Yuan, P. Cao, C. Chen, K. Zhou, Selective laser melting of an equiatomic CoCrFeMnNi high-entropy alloy: processability, non-equilibrium microstructure and mechanical property. J. Alloys Compd. 746, 125–134 (2018)
92.
Zurück zum Zitat J. Joseph, P. Hodgson, T. Jarvis, X. Wu, N. Stanford, D. Mark, Effect of hot isostatic pressing on the microstructure and mechanical properties of additive manufactured Al x CoCrFeNi high entropy alloys. Mater. Sci. Eng. A 733(May), 59–70 (2018) J. Joseph, P. Hodgson, T. Jarvis, X. Wu, N. Stanford, D. Mark, Effect of hot isostatic pressing on the microstructure and mechanical properties of additive manufactured Al x CoCrFeNi high entropy alloys. Mater. Sci. Eng. A 733(May), 59–70 (2018)
93.
Zurück zum Zitat R. Wang, K. Zhang, C. Davies, X. Wu, Evolution of microstructure, mechanical and corrosion properties of AlCoCrFeNi high-entropy alloy prepared by direct laser fabrication. J. Alloys Compd. 694, 971–981 (2017) R. Wang, K. Zhang, C. Davies, X. Wu, Evolution of microstructure, mechanical and corrosion properties of AlCoCrFeNi high-entropy alloy prepared by direct laser fabrication. J. Alloys Compd. 694, 971–981 (2017)
94.
Zurück zum Zitat Z.Y. Rao et al., Affordable FeCrNiMnCu high entropy alloys with excellent comprehensive tensile properties. Intermetallics 77, 23–33 (2016) Z.Y. Rao et al., Affordable FeCrNiMnCu high entropy alloys with excellent comprehensive tensile properties. Intermetallics 77, 23–33 (2016)
95.
Zurück zum Zitat C. Ni, Y. Shi, J. Liu, G. Huang, Characterization of Al0.5FeCu0.7NiCoCr high-entropy alloy coating on aluminum alloy by laser cladding. Opt. Laser Technol. J. 105, 257–263 (2018) C. Ni, Y. Shi, J. Liu, G. Huang, Characterization of Al0.5FeCu0.7NiCoCr high-entropy alloy coating on aluminum alloy by laser cladding. Opt. Laser Technol. J. 105, 257–263 (2018)
96.
Zurück zum Zitat J.B. Fogagnolo, F. Velasco, M.H. Robert, J.M. Torralba, Effect of mechanical alloying on the morphology, microstructure and properties of aluminium matrix composite powders. Mater. Sci. Eng. A 342(1–2), 131–143 (2003) J.B. Fogagnolo, F. Velasco, M.H. Robert, J.M. Torralba, Effect of mechanical alloying on the morphology, microstructure and properties of aluminium matrix composite powders. Mater. Sci. Eng. A 342(1–2), 131–143 (2003)
97.
Zurück zum Zitat R. M. Vilar, “Laser cladding,” in ALT’02 International Conference on Advanced Laser Technologies, 2003, vol. 5147, pp. 385–392 R. M. Vilar, “Laser cladding,” in ALT’02 International Conference on Advanced Laser Technologies, 2003, vol. 5147, pp. 385–392
98.
Zurück zum Zitat E. Toyserkani, A. Khajepour, S.F. Corbin, Laser cladding (CRC Press, Boca Raton, 2004) E. Toyserkani, A. Khajepour, S.F. Corbin, Laser cladding (CRC Press, Boca Raton, 2004)
99.
Zurück zum Zitat S.-K. Wong, T.-T. Shun, C.-H. Chang, C.-F. Lee, Microstructures and properties of Al0. 3CoCrFeNiMnx high-entropy alloys. Mater. Chem. Phys. 210, 146–151 (2018) S.-K. Wong, T.-T. Shun, C.-H. Chang, C.-F. Lee, Microstructures and properties of Al0. 3CoCrFeNiMnx high-entropy alloys. Mater. Chem. Phys. 210, 146–151 (2018)
100.
Zurück zum Zitat B.D. Ratner, A.S. Hoffman, F.J. Schoen, J.E. Lemons, Biomaterials science: an introduction to materials in medicine (Elsevier, Amsterdam, 2004) B.D. Ratner, A.S. Hoffman, F.J. Schoen, J.E. Lemons, Biomaterials science: an introduction to materials in medicine (Elsevier, Amsterdam, 2004)
101.
Zurück zum Zitat X. An, Q. Liu, B. Zheng, Microstructure and properties of laser cladding high entropy alloy MoFeCrTiWAlxSiy coating. Infra. Laser Eng 43, 1140–1144 (2014) X. An, Q. Liu, B. Zheng, Microstructure and properties of laser cladding high entropy alloy MoFeCrTiWAlxSiy coating. Infra. Laser Eng 43, 1140–1144 (2014)
102.
Zurück zum Zitat T. Huang, L. Jiang, C. Zhang, H. Jiang, Y. Lu, T. Li, Effect of carbon addition on the microstructure and mechanical properties of CoCrFeNi high entropy alloy. Sci. China Technol. Sci. 61(1), 117–123 (2018) T. Huang, L. Jiang, C. Zhang, H. Jiang, Y. Lu, T. Li, Effect of carbon addition on the microstructure and mechanical properties of CoCrFeNi high entropy alloy. Sci. China Technol. Sci. 61(1), 117–123 (2018)
103.
Zurück zum Zitat R.B. Nair, H.S. Arora, S. Mukherjee, S. Singh, H. Singh, H.S. Grewal, Exceptionally high cavitation erosion and corrosion resistance of a high entropy alloy. Ultrason. Sonochem. 41, 252–260 (2018) R.B. Nair, H.S. Arora, S. Mukherjee, S. Singh, H. Singh, H.S. Grewal, Exceptionally high cavitation erosion and corrosion resistance of a high entropy alloy. Ultrason. Sonochem. 41, 252–260 (2018)
104.
Zurück zum Zitat Z.D. Han et al., Microstructures and mechanical properties of TixNbMoTaW refractory high-entropy alloys. Mater. Sci. Eng. A 712, 380–385 (2018) Z.D. Han et al., Microstructures and mechanical properties of TixNbMoTaW refractory high-entropy alloys. Mater. Sci. Eng. A 712, 380–385 (2018)
105.
Zurück zum Zitat N.N. Guo et al., Microstructure and mechanical properties of in situ MC-carbide particulates-reinforced refractory high-entropy Mo0. 5NbHf0. 5ZrTi matrix alloy composite. Intermetallics 69, 74–77 (2016) N.N. Guo et al., Microstructure and mechanical properties of in situ MC-carbide particulates-reinforced refractory high-entropy Mo0. 5NbHf0. 5ZrTi matrix alloy composite. Intermetallics 69, 74–77 (2016)
106.
Zurück zum Zitat Z.D. Han et al., Effect of Ti additions on mechanical properties of NbMoTaW and VNbMoTaW refractory high entropy alloys. Intermetallics 84, 153–157 (2017) Z.D. Han et al., Effect of Ti additions on mechanical properties of NbMoTaW and VNbMoTaW refractory high entropy alloys. Intermetallics 84, 153–157 (2017)
107.
Zurück zum Zitat O.N. Senkov, S.V. Senkova, C. Woodward, Effect of aluminum on the microstructure and properties of two refractory high-entropy alloys. Acta Mater. 68, 214–228 (2014) O.N. Senkov, S.V. Senkova, C. Woodward, Effect of aluminum on the microstructure and properties of two refractory high-entropy alloys. Acta Mater. 68, 214–228 (2014)
108.
Zurück zum Zitat O.N. Senkov, C. Woodward, D.B. Miracle, Microstructure and properties of aluminum-containing refractory high-entropy alloys. JOM 66(10), 2030–2042 (2014) O.N. Senkov, C. Woodward, D.B. Miracle, Microstructure and properties of aluminum-containing refractory high-entropy alloys. JOM 66(10), 2030–2042 (2014)
109.
Zurück zum Zitat X. Liu et al., Microstructure and mechanical properties of FeCoCrNiMnTi0.1C0.1 high-entropy alloy produced by mechanical alloying and vacuum hot pressing sintering. Vacuum 165(7), 297–304 (2019) X. Liu et al., Microstructure and mechanical properties of FeCoCrNiMnTi0.1C0.1 high-entropy alloy produced by mechanical alloying and vacuum hot pressing sintering. Vacuum 165(7), 297–304 (2019)
110.
Zurück zum Zitat W. Ji et al., Alloying behavior and novel properties of CoCrFeNiMn high-entropy alloy fabricated by mechanical alloying and spark plasma sintering. Intermetallics 56, 24–27 (2015) W. Ji et al., Alloying behavior and novel properties of CoCrFeNiMn high-entropy alloy fabricated by mechanical alloying and spark plasma sintering. Intermetallics 56, 24–27 (2015)
111.
Zurück zum Zitat O.N. Senkov, J.M. Scott, S.V. Senkova, D.B. Miracle, C.F. Woodward, Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy. J. Alloys Compd. 509(20), 6043–6048 (2011) O.N. Senkov, J.M. Scott, S.V. Senkova, D.B. Miracle, C.F. Woodward, Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy. J. Alloys Compd. 509(20), 6043–6048 (2011)
112.
Zurück zum Zitat S. Jiang, Z. Lin, H. Xu, Y. Sun, Studies on the microstructure and properties of AlxCoCrFeNiTi1-xhigh entropy alloys. J. Alloys Compd. 741, 826–833 (2018) S. Jiang, Z. Lin, H. Xu, Y. Sun, Studies on the microstructure and properties of AlxCoCrFeNiTi1-xhigh entropy alloys. J. Alloys Compd. 741, 826–833 (2018)
113.
Zurück zum Zitat P. Cui et al., Microstructure and mechanical behaviors of CoFeNiMnTixAl1-x high entropy alloys. Mater. Sci. Eng. A 731, 124–130 (2018) P. Cui et al., Microstructure and mechanical behaviors of CoFeNiMnTixAl1-x high entropy alloys. Mater. Sci. Eng. A 731, 124–130 (2018)
114.
Zurück zum Zitat M. Zhang, L. Zhang, J. Fan, G. Li, P.K. Liaw, R. Liu, Microstructure and enhanced mechanical behavior of the Al7Co24Cr21Fe24Ni24 high-entropy alloy system by tuning the Cr content Mengdi. Mater Sci Eng A 733, 299–306 (2018) M. Zhang, L. Zhang, J. Fan, G. Li, P.K. Liaw, R. Liu, Microstructure and enhanced mechanical behavior of the Al7Co24Cr21Fe24Ni24 high-entropy alloy system by tuning the Cr content Mengdi. Mater Sci Eng A 733, 299–306 (2018)
115.
Zurück zum Zitat W. Wang, Z. Zhang, J. Niu, H. Wu, S. Zhai, Y. Wang, E ff ect of Al addition on structural evolution and mechanical properties of the Al x HfNbTiZr high-entropy alloys. Mater. Sci. Eng. A 16, 242–249 (2018) W. Wang, Z. Zhang, J. Niu, H. Wu, S. Zhai, Y. Wang, E ff ect of Al addition on structural evolution and mechanical properties of the Al x HfNbTiZr high-entropy alloys. Mater. Sci. Eng. A 16, 242–249 (2018)
116.
Zurück zum Zitat N.N. Guo et al., Microstructure and mechanical properties of refractory MoNbHfZrTi high-entropy alloy. Mater. Des. 81, 87–94 (2015) N.N. Guo et al., Microstructure and mechanical properties of refractory MoNbHfZrTi high-entropy alloy. Mater. Des. 81, 87–94 (2015)
117.
Zurück zum Zitat C. Zhang, C. Zhu, S. Shin, K. Vecchio, Enhancement of <001> recrystallization texture in non-equiatomic Fe–Ni–Co–Al-based high entropy alloys by combination of annealing and Cr addition. J. Alloys Compd. 768, 277–286 (2018) C. Zhang, C. Zhu, S. Shin, K. Vecchio, Enhancement of <001> recrystallization texture in non-equiatomic Fe–Ni–Co–Al-based high entropy alloys by combination of annealing and Cr addition. J. Alloys Compd. 768, 277–286 (2018)
118.
Zurück zum Zitat N.Y. Yurchenko, N.D. Stepanov, A.O. Gridneva, M.V. Mishunin, G.A. Salishchev, S.V. Zherebtsov, Effect of Cr and Zr on phase stability of refractory Al–Cr–Nb–Ti–V–Zr high-entropy alloys. J. Alloys Compd. 757, 403–414 (2018) N.Y. Yurchenko, N.D. Stepanov, A.O. Gridneva, M.V. Mishunin, G.A. Salishchev, S.V. Zherebtsov, Effect of Cr and Zr on phase stability of refractory Al–Cr–Nb–Ti–V–Zr high-entropy alloys. J. Alloys Compd. 757, 403–414 (2018)
119.
Zurück zum Zitat S. Z. Z. Niu, H. C. C. Kou, J. Wang, and J. S. S. Li, Improved tensile properties of Al0.5CoCrFeNi high-entropy alloy by tailoring microstructures, Rare Met. 1–6 (2017) S. Z. Z. Niu, H. C. C. Kou, J. Wang, and J. S. S. Li, Improved tensile properties of Al0.5CoCrFeNi high-entropy alloy by tailoring microstructures, Rare Met. 1–6 (2017)
120.
Zurück zum Zitat É. Fazakas, J.Q. Wang, V. Zadorozhnyy, D.V. Louzguine-Luzgin, L.K. Varga, Microstructural evolution and corrosion behavior of Al25Ti25Ga25Be25 equi-molar composition alloy. Mater. Corros. 65(7), 691–695 (2014) É. Fazakas, J.Q. Wang, V. Zadorozhnyy, D.V. Louzguine-Luzgin, L.K. Varga, Microstructural evolution and corrosion behavior of Al25Ti25Ga25Be25 equi-molar composition alloy. Mater. Corros. 65(7), 691–695 (2014)
121.
Zurück zum Zitat X. Liu et al., Microstructure and mechanical properties of FeCoCrNiMnTi0. 1C0. 1 high-entropy alloy produced by mechanical alloying and vacuum hot pressing sintering. Vacuum 165, 297–304 (2019) X. Liu et al., Microstructure and mechanical properties of FeCoCrNiMnTi0. 1C0. 1 high-entropy alloy produced by mechanical alloying and vacuum hot pressing sintering. Vacuum 165, 297–304 (2019)
122.
Zurück zum Zitat O. Maulik, D. Kumar, S. Kumar, D.M. Fabijanic, V. Kumar, Structural evolution of spark plasma sintered AlFeCuCrMgx (x = 0, 0.5, 1, 1.7) high entropy alloys. Intermetallics 77, 46–56 (2016) O. Maulik, D. Kumar, S. Kumar, D.M. Fabijanic, V. Kumar, Structural evolution of spark plasma sintered AlFeCuCrMgx (x = 0, 0.5, 1, 1.7) high entropy alloys. Intermetallics 77, 46–56 (2016)
123.
Zurück zum Zitat X. Qiu, Microstructure, hardness and corrosion resistance of Al 2 CoCrCuFeNiTi x high-entropy alloy coatings prepared by rapid solidi fi cation. J. Alloys Compd. 735, 359–364 (2018) X. Qiu, Microstructure, hardness and corrosion resistance of Al 2 CoCrCuFeNiTi x high-entropy alloy coatings prepared by rapid solidi fi cation. J. Alloys Compd. 735, 359–364 (2018)
124.
Zurück zum Zitat Y. Brif, M. Thomas, I. Todd, The use of high-entropy alloys in additive manufacturing. Scr. Mater. 99, 93–96 (2015) Y. Brif, M. Thomas, I. Todd, The use of high-entropy alloys in additive manufacturing. Scr. Mater. 99, 93–96 (2015)
Metadaten
Titel
Manufacturing Methods, Microstructural and Mechanical Properties Evolutions of High-Entropy Alloys: A Review
verfasst von
Yaser A. Alshataif
S. Sivasankaran
Fahad A. Al-Mufadi
Abdulaziz S. Alaboodi
Hany R. Ammar
Publikationsdatum
06.12.2019
Verlag
The Korean Institute of Metals and Materials
Erschienen in
Metals and Materials International / Ausgabe 8/2020
Print ISSN: 1598-9623
Elektronische ISSN: 2005-4149
DOI
https://doi.org/10.1007/s12540-019-00565-z

Weitere Artikel der Ausgabe 8/2020

Metals and Materials International 8/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.