Skip to main content
Erschienen in: Cognitive Computation 1/2018

15.12.2017

Implicit Heterogeneous Features Embedding in Deep Knowledge Tracing

verfasst von: Haiqin Yang, Lap Pong Cheung

Erschienen in: Cognitive Computation | Ausgabe 1/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Deep recurrent neural networks have been successfully applied to knowledge tracing, namely, deep knowledge tracing (DKT), which aims to automatically trace students’ knowledge states by mining their exercise performance data. Two main issues exist in the current DKT models: First, the complexity of the DKT models increases the tension of psychological interpretation. Second, the input of existing DKT models is only the exercise tags representing via one-hot encoding. The correlation between the hidden knowledge components and students’ responses to the exercises heavily relies on training the DKT models. The existing rich and informative features are excluded in the training, which may yield sub-optimal performance. To utilize the information embedded in these features, researchers have proposed a manual method to pre-process the features, i.e., discretizing them based on the inner characteristics of individual features. However, the proposed method requires many feature engineering efforts and is infeasible when the selected features are huge. To tackle the above issues, we design an automatic system to embed the heterogeneous features implicitly and effectively into the original DKT model. More specifically, we apply tree-based classifiers to predict whether the student can correctly answer the exercise given the heterogeneous features, an effective way to capture how the student deviates from others in the exercise. The predicted response and the true response are then encoded into a 4-bit one-hot encoding and concatenated with the original one-hot encoding features on the exercise tags to train a long short-term memory (LSTM) model, which can output the probability that a student will answer the exercise correctly on the corresponding exercise. We conduct a thorough evaluation on two educational datasets and demonstrate the merits and observations of our proposal.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Agrawal R. Data-driven education: Some opportunities and challenges. EDM; 2016. p. 2. Agrawal R. Data-driven education: Some opportunities and challenges. EDM; 2016. p. 2.
2.
Zurück zum Zitat Ayers E, Nugent R, Dean N. A comparison of student skill knowledge estimates. EDM; 2009. p. 1–10. Ayers E, Nugent R, Dean N. A comparison of student skill knowledge estimates. EDM; 2009. p. 1–10.
3.
Zurück zum Zitat Baker RS , Corbett AT, Aleven V. More accurate student modeling through contextual estimation of slip and guess probabilities in Bayesian knowledge tracing. Proceedings of the 9th International Conference on Intelligent Tutoring Systems, ITS 2008, Montreal, Canada, June 23-27; 2008. p. 406–415. Baker RS , Corbett AT, Aleven V. More accurate student modeling through contextual estimation of slip and guess probabilities in Bayesian knowledge tracing. Proceedings of the 9th International Conference on Intelligent Tutoring Systems, ITS 2008, Montreal, Canada, June 23-27; 2008. p. 406–415.
5.
Zurück zum Zitat Cambria E, Hussain A. Sentic computing. Cogn Comput 2015 ;7(2):183–5.CrossRef Cambria E, Hussain A. Sentic computing. Cogn Comput 2015 ;7(2):183–5.CrossRef
6.
Zurück zum Zitat Chang H, Hsu H, Chen K. Modeling exercise relationships in e-learning: a unified approach. EDM; 2015. p. 532–535. Chang H, Hsu H, Chen K. Modeling exercise relationships in e-learning: a unified approach. EDM; 2015. p. 532–535.
7.
Zurück zum Zitat Cheung LP, Yang H. Heterogeneous features integration in deep knowledge tracing. ICONIP; 2017. Cheung LP, Yang H. Heterogeneous features integration in deep knowledge tracing. ICONIP; 2017.
8.
Zurück zum Zitat Chung J, Gulcehre C, Cho K, Bengio Y. Gated feedback recurrent neural networks. ICML; 2015. p. 2067–2075. Chung J, Gulcehre C, Cho K, Bengio Y. Gated feedback recurrent neural networks. ICML; 2015. p. 2067–2075.
9.
Zurück zum Zitat Corbett AT, Anderson JR. Knowledge tracing: modelling the acquisition of procedural knowledge. User Model User-adapt Interact 1995;4(4):253–78.CrossRef Corbett AT, Anderson JR. Knowledge tracing: modelling the acquisition of procedural knowledge. User Model User-adapt Interact 1995;4(4):253–78.CrossRef
10.
Zurück zum Zitat Corbett AT, Anderson JR. 1994. Knowledge tracing: modeling the acquisition of procedural knowledge. User Modeling and User-Adapted Interaction. Corbett AT, Anderson JR. 1994. Knowledge tracing: modeling the acquisition of procedural knowledge. User Modeling and User-Adapted Interaction.
11.
Zurück zum Zitat Czerniewicz L, Deacon A, Glover M, Walji S. MOOC—making and open educational practices. J Comput High Educ 2017;29(1):81–97.CrossRef Czerniewicz L, Deacon A, Glover M, Walji S. MOOC—making and open educational practices. J Comput High Educ 2017;29(1):81–97.CrossRef
12.
Zurück zum Zitat Desmarais MC, Villarreal A, Gagnon M. Adaptive test design with a naive bayes framework. EDM; 2008. p. 48–56. Desmarais MC, Villarreal A, Gagnon M. Adaptive test design with a naive bayes framework. EDM; 2008. p. 48–56.
13.
Zurück zum Zitat Gao F, Zhang Y, Wang J, Sun J, Yang E, Hussain A. Visual attention model based vehicle target detection in synthetic aperture radar images: a novel approach. Cogn Comput 2015;7(4):434–44.CrossRef Gao F, Zhang Y, Wang J, Sun J, Yang E, Hussain A. Visual attention model based vehicle target detection in synthetic aperture radar images: a novel approach. Cogn Comput 2015;7(4):434–44.CrossRef
14.
Zurück zum Zitat Garcia S, Luengo J, Saez JA, Lopez V, Herrera F. A survey of discretization techniques Taxonomy and empirical analysis in supervised learning. IEEE Trans Knowl Data Eng 2013;25 (4):734–50.CrossRef Garcia S, Luengo J, Saez JA, Lopez V, Herrera F. A survey of discretization techniques Taxonomy and empirical analysis in supervised learning. IEEE Trans Knowl Data Eng 2013;25 (4):734–50.CrossRef
15.
Zurück zum Zitat Gong Y, Beck JE, Heffernan NT. Comparing knowledge tracing and performance factor analysis by using multiple model fitting procedures. Proceedings of the 10th International Conference on Intelligent Tutoring Systems, ITS 2010, Part I, Pittsburgh, PA, USA, June 14-18; 2010. p. 35–44. Gong Y, Beck JE, Heffernan NT. Comparing knowledge tracing and performance factor analysis by using multiple model fitting procedures. Proceedings of the 10th International Conference on Intelligent Tutoring Systems, ITS 2010, Part I, Pittsburgh, PA, USA, June 14-18; 2010. p. 35–44.
16.
Zurück zum Zitat Goodfellow IJ, Bengio Y, Courville AC. 2016. Deep Learning. Adaptive computation and machine learning. MIT Press. Goodfellow IJ, Bengio Y, Courville AC. 2016. Deep Learning. Adaptive computation and machine learning. MIT Press.
17.
Zurück zum Zitat Graves A, Mohamed A, Hinton GE. Speech recognition with deep recurrent neural networks. IEEE ICASSP; 2013. p. 6645–6649. Graves A, Mohamed A, Hinton GE. Speech recognition with deep recurrent neural networks. IEEE ICASSP; 2013. p. 6645–6649.
18.
Zurück zum Zitat Hastie T, Tibshirani R, Friedman J. The elements of statistical learning: data mining, inference, and prediction, 2nd ed. Berlin: Springer; 2009.CrossRef Hastie T, Tibshirani R, Friedman J. The elements of statistical learning: data mining, inference, and prediction, 2nd ed. Berlin: Springer; 2009.CrossRef
19.
Zurück zum Zitat Hinton GE, Osindero S, Teh YW. A fast learning algorithm for deep belief nets. Neural Comput 2006; 18(7):1527–54.CrossRefPubMed Hinton GE, Osindero S, Teh YW. A fast learning algorithm for deep belief nets. Neural Comput 2006; 18(7):1527–54.CrossRefPubMed
20.
21.
Zurück zum Zitat Hu D. 2011. How Khan Academy is using machine learning to assess student mastery. Hu D. 2011. How Khan Academy is using machine learning to assess student mastery.
22.
Zurück zum Zitat Hu J, Yang H, Lyu MR, King I, So AM-C. 2017. Online nonlinear AUC maximization for imbalanced data sets. IEEE Trans Neural Netw Learning Syst. Hu J, Yang H, Lyu MR, King I, So AM-C. 2017. Online nonlinear AUC maximization for imbalanced data sets. IEEE Trans Neural Netw Learning Syst.
23.
Zurück zum Zitat Hu Z, Zhang Z, Yang H, Chen Q, Zuo D. A deep learning approach for predicting the quality of online health expert question-answering services. J Biomed Inform 2017;71:241–53.CrossRefPubMed Hu Z, Zhang Z, Yang H, Chen Q, Zuo D. A deep learning approach for predicting the quality of online health expert question-answering services. J Biomed Inform 2017;71:241–53.CrossRefPubMed
24.
Zurück zum Zitat Huang Y, González-brenes JP, Brusilovsky P. General features in knowledge tracing to model multiple subskills, temporal item response theory, and expert knowledge. EDM; 2014 . p. 84–91. Huang Y, González-brenes JP, Brusilovsky P. General features in knowledge tracing to model multiple subskills, temporal item response theory, and expert knowledge. EDM; 2014 . p. 84–91.
25.
Zurück zum Zitat Huang Y, Guerra J, Brusilovsky P. A data-driven framework of modeling skill combinations for deeper knowledge tracing. EDM; 2016. p. 593–594. Huang Y, Guerra J, Brusilovsky P. A data-driven framework of modeling skill combinations for deeper knowledge tracing. EDM; 2016. p. 593–594.
26.
Zurück zum Zitat Khajah M, Lindsey RV, Mozer M. How deep is knowledge tracing? EDM; 2016. Khajah M, Lindsey RV, Mozer M. How deep is knowledge tracing? EDM; 2016.
27.
Zurück zum Zitat Khajah M, Wing R, Lindsey RV, Mozer M. Integrating latent-factor and knowledge-tracing models to predict individual differences in learning. EDM; 2014. p. 99–106. Khajah M, Wing R, Lindsey RV, Mozer M. Integrating latent-factor and knowledge-tracing models to predict individual differences in learning. EDM; 2014. p. 99–106.
28.
Zurück zum Zitat Koedinger KR, Cunningham K, Skogsholm A, Leber B. An open repository and analysis tools for fine-grained, longitudinal learner data. EDM; 2008. p. 157–166. Koedinger KR, Cunningham K, Skogsholm A, Leber B. An open repository and analysis tools for fine-grained, longitudinal learner data. EDM; 2008. p. 157–166.
29.
Zurück zum Zitat Kotsiantis S, techniques D. Kanellopoulos. Discretization a recent survey. GESTS International Transactions on Computer Science and Engineering 2006;32(1):47–58. Kotsiantis S, techniques D. Kanellopoulos. Discretization a recent survey. GESTS International Transactions on Computer Science and Engineering 2006;32(1):47–58.
30.
Zurück zum Zitat Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. Commun ACM 2017;60(6):84–90.CrossRef Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. Commun ACM 2017;60(6):84–90.CrossRef
31.
Zurück zum Zitat Labutov I, Studer C. Calibrated self-assessment. EDM; 2016. Labutov I, Studer C. Calibrated self-assessment. EDM; 2016.
33.
Zurück zum Zitat Louppe G, Wehenkel L, Sutera A, Geurts P. Understanding variable importances in forests of randomized trees. NIPS; 2013. p. 431–439. Louppe G, Wehenkel L, Sutera A, Geurts P. Understanding variable importances in forests of randomized trees. NIPS; 2013. p. 431–439.
34.
Zurück zum Zitat Mikolov T, Karafiát M, Burget L, Cernocký J, Khudanpur S. Recurrent neural network based language model. INTERSPEECH; 2010. p. 1045–1048. Mikolov T, Karafiát M, Burget L, Cernocký J, Khudanpur S. Recurrent neural network based language model. INTERSPEECH; 2010. p. 1045–1048.
35.
Zurück zum Zitat Mingers J. An empirical comparison of pruning methods for decision tree induction. Mach Learn 1989;4(2): 227–43.CrossRef Mingers J. An empirical comparison of pruning methods for decision tree induction. Mach Learn 1989;4(2): 227–43.CrossRef
36.
Zurück zum Zitat Pardos ZA, Heffernan NT. Modeling individualization in a Bayesian networks implementation of knowledge tracing. Proceedings of the 18th International Conference on User Modeling, Adaptation, and Personalization, UMAP 2010, Big Island, HI, USA, June 20–24; 2010. p. 255–266. Pardos ZA, Heffernan NT. Modeling individualization in a Bayesian networks implementation of knowledge tracing. Proceedings of the 18th International Conference on User Modeling, Adaptation, and Personalization, UMAP 2010, Big Island, HI, USA, June 20–24; 2010. p. 255–266.
37.
Zurück zum Zitat Pavlik JrPI, Cen H, Koedinger KR. 2009. Performance factors analysis—a new alternative to knowledge tracing. Online Submission. Pavlik JrPI, Cen H, Koedinger KR. 2009. Performance factors analysis—a new alternative to knowledge tracing. Online Submission.
38.
Zurück zum Zitat Piech C, Bassen J, Huang J, Ganguli S, Sahami M, Guibas LJ, Sohl-Dickstein J. Deep knowledge tracing. NIPS; 2015. p. 505–513. Piech C, Bassen J, Huang J, Ganguli S, Sahami M, Guibas LJ, Sohl-Dickstein J. Deep knowledge tracing. NIPS; 2015. p. 505–513.
39.
Zurück zum Zitat Quinlan JR. C4.5: programs for machine learning. Amsterdam: Elsevier; 2014. Quinlan JR. C4.5: programs for machine learning. Amsterdam: Elsevier; 2014.
40.
41.
Zurück zum Zitat Silver D, Huang A, Maddison CJ, Guez A, Sifre L, van den Driessche G, Schrittwieser J, Antonoglou I, Panneershelvam V, Lanctot M, Dieleman S, Grewe D, Nham J, Kalchbrenner N, Sutskever I, Lillicrap TP, Leach M, Kavukcuoglu K, Graepel T, Hassabis D. Mastering the game of go with deep neural networks and tree search. Nature 2016;529(7587):484–9.CrossRefPubMed Silver D, Huang A, Maddison CJ, Guez A, Sifre L, van den Driessche G, Schrittwieser J, Antonoglou I, Panneershelvam V, Lanctot M, Dieleman S, Grewe D, Nham J, Kalchbrenner N, Sutskever I, Lillicrap TP, Leach M, Kavukcuoglu K, Graepel T, Hassabis D. Mastering the game of go with deep neural networks and tree search. Nature 2016;529(7587):484–9.CrossRefPubMed
42.
Zurück zum Zitat Spratling MW. A hierarchical predictive coding model of object recognition in natural images. Cogn Comput 2017;9(2):151–67.CrossRef Spratling MW. A hierarchical predictive coding model of object recognition in natural images. Cogn Comput 2017;9(2):151–67.CrossRef
43.
Zurück zum Zitat Sun R. Anatomy of the mind: a quick overview. Cogn Comput 2017;9(1):1–4.CrossRef Sun R. Anatomy of the mind: a quick overview. Cogn Comput 2017;9(1):1–4.CrossRef
44.
Zurück zum Zitat Sweeney M, Lester J, Rangwala H, Johri A. Next-term student performance prediction: a recommender systems approach. EDM; 2016. p. 7. Sweeney M, Lester J, Rangwala H, Johri A. Next-term student performance prediction: a recommender systems approach. EDM; 2016. p. 7.
45.
Zurück zum Zitat Tang J, Alelyani S, Liu H. Feature selection for classification A review. Data classification: algorithms and applications; 2014. p. 37. Tang J, Alelyani S, Liu H. Feature selection for classification A review. Data classification: algorithms and applications; 2014. p. 37.
46.
Zurück zum Zitat Timofeev R. Classification and regression trees (CART) theory and applications. Berlin: PhD thesis, Humboldt University ; 2004. Timofeev R. Classification and regression trees (CART) theory and applications. Berlin: PhD thesis, Humboldt University ; 2004.
47.
Zurück zum Zitat Vinyals O, Toshev A, Bengio S, Erhan D. Show and tell: lessons learned from the 2015 MSCOCO image captioning challenge. IEEE Trans Pattern Anal Mach Intell 2017;39(4):652– 63.CrossRefPubMed Vinyals O, Toshev A, Bengio S, Erhan D. Show and tell: lessons learned from the 2015 MSCOCO image captioning challenge. IEEE Trans Pattern Anal Mach Intell 2017;39(4):652– 63.CrossRefPubMed
48.
Zurück zum Zitat Wang L, Sy A, Liu L, Piech C. Deep knowledge tracing on programming exercises. L@S; 2017. p. 201–204. Wang L, Sy A, Liu L, Piech C. Deep knowledge tracing on programming exercises. L@S; 2017. p. 201–204.
49.
Zurück zum Zitat Xiong X, Zhao S, Inwegen EV, Beck J. Going deeper with deep knowledge tracing. EDM; 2016. p. 545–550. Xiong X, Zhao S, Inwegen EV, Beck J. Going deeper with deep knowledge tracing. EDM; 2016. p. 545–550.
50.
Zurück zum Zitat Xu C, Li P. Dynamics in four-neuron bidirectional associative memory networks with inertia and multiple delays. Cogn Comput 2016;8(1):78–104.CrossRef Xu C, Li P. Dynamics in four-neuron bidirectional associative memory networks with inertia and multiple delays. Cogn Comput 2016;8(1):78–104.CrossRef
51.
Zurück zum Zitat Yang H, Ling G, Su Y, Lyu MR, King I. Boosting response aware model-based collaborative filtering. IEEE Trans Knowl Data Eng 2015;27(8):2064–77.CrossRef Yang H, Ling G, Su Y, Lyu MR, King I. Boosting response aware model-based collaborative filtering. IEEE Trans Knowl Data Eng 2015;27(8):2064–77.CrossRef
52.
Zurück zum Zitat Zhang J, Shi X, King I, Yeung D. Dynamic key-value memory networks for knowledge tracing. WWW; 2017. p. 765–774. Zhang J, Shi X, King I, Yeung D. Dynamic key-value memory networks for knowledge tracing. WWW; 2017. p. 765–774.
53.
Zurück zum Zitat Zhang L, Xiong X, Zhao S, Botelho A, Heffernan NT. Incorporating rich features into deep knowledge tracing. L@S; 2017. p. 169–172. Zhang L, Xiong X, Zhao S, Botelho A, Heffernan NT. Incorporating rich features into deep knowledge tracing. L@S; 2017. p. 169–172.
Metadaten
Titel
Implicit Heterogeneous Features Embedding in Deep Knowledge Tracing
verfasst von
Haiqin Yang
Lap Pong Cheung
Publikationsdatum
15.12.2017
Verlag
Springer US
Erschienen in
Cognitive Computation / Ausgabe 1/2018
Print ISSN: 1866-9956
Elektronische ISSN: 1866-9964
DOI
https://doi.org/10.1007/s12559-017-9522-0

Weitere Artikel der Ausgabe 1/2018

Cognitive Computation 1/2018 Zur Ausgabe

Premium Partner