Skip to main content

24.08.2019

Automatic Design of Deep Networks with Neural Blocks

verfasst von: Guoqiang Zhong, Wencong Jiao, Wei Gao, Kaizhu Huang

Erschienen in: Cognitive Computation

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In recent years, deep neural networks (DNNs) have achieved great successes in many areas, such as cognitive computation, pattern recognition, and computer vision. Although many hand-crafted deep networks have been proposed in the literature, designing a well-behaved neural network for a specific application requires high-level expertise yet. Hence, the automatic architecture design of DNNs has become a challenging and important problem. In this paper, we propose a new reinforcement learning method, whose action policy is to select neural blocks and construct deep networks. We define the action search space with three types of neural blocks, i.e., dense block, residual block, and inception-like block. Additionally, we have also designed several variants for the residual and inception-like blocks. The optimal network is automatically learned by a Q-learning agent, which is iteratively trained to generate well-performed deep networks. To evaluate the proposed method, we have conducted experiments on three datasets, MNIST, SVHN, and CIFAR-10, for image classification applications. Compared with existing hand-crafted and auto-generated neural networks, our auto-designed neural network delivers promising results. Moreover, the proposed reinforcement learning algorithm for deep networks design only runs on one GPU, demonstrating much higher efficiency than most of the previous deep network search approaches.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Baker B, Gupta O, Naik N, Raskar R. 2017. Designing neural network architectures using reinforcement learning. In: ICLR. Baker B, Gupta O, Naik N, Raskar R. 2017. Designing neural network architectures using reinforcement learning. In: ICLR.
2.
Zurück zum Zitat Bengio Y. Gradient-based optimization of hyperparameters. Neural Comput 2000;12(8):1889–1900.CrossRef Bengio Y. Gradient-based optimization of hyperparameters. Neural Comput 2000;12(8):1889–1900.CrossRef
3.
Zurück zum Zitat Bergstra J, Bengio Y. Random search for hyper-parameter optimization. J Mach Learn Res 2012;13:281–305. Bergstra J, Bengio Y. Random search for hyper-parameter optimization. J Mach Learn Res 2012;13:281–305.
4.
Zurück zum Zitat Bergstra J, Yamins D, Cox DD. 2013. Making a science of model search: hyperparameter optimization in hundreds of dimensions for vision architectures. In: ICML, pp 115–123. Bergstra J, Yamins D, Cox DD. 2013. Making a science of model search: hyperparameter optimization in hundreds of dimensions for vision architectures. In: ICML, pp 115–123.
5.
Zurück zum Zitat Botev A, Lever G, Barber D. 2017. Nesterov’s accelerated gradient and momentum as approximations to regularised update descent. In: IJCNN, pp 1899–1903. Botev A, Lever G, Barber D. 2017. Nesterov’s accelerated gradient and momentum as approximations to regularised update descent. In: IJCNN, pp 1899–1903.
6.
Zurück zum Zitat Cai H, Chen T, Zhang W, Yu Y, Wang J. 2018. Efficient architecture search by network transformation. In: AAAI. Cai H, Chen T, Zhang W, Yu Y, Wang J. 2018. Efficient architecture search by network transformation. In: AAAI.
7.
Zurück zum Zitat Gepperth A, Karaoguz C. A bio-inspired incremental learning architecture for applied perceptual problems. Cogn Comput 2016;8(5):924–934.CrossRef Gepperth A, Karaoguz C. A bio-inspired incremental learning architecture for applied perceptual problems. Cogn Comput 2016;8(5):924–934.CrossRef
8.
Zurück zum Zitat Glorot X, Bordes A, Bengio Y. 2011. Deep sparse rectifier neural networks. In: AISTATS, pp 315–323. Glorot X, Bordes A, Bengio Y. 2011. Deep sparse rectifier neural networks. In: AISTATS, pp 315–323.
9.
Zurück zum Zitat Goodfellow IJ, Warde-farley D, mirza M, courville AC, bengio Y. 2013. Maxout networks. In: ICML, pp 1319–1327. Goodfellow IJ, Warde-farley D, mirza M, courville AC, bengio Y. 2013. Maxout networks. In: ICML, pp 1319–1327.
10.
Zurück zum Zitat Guo T, Zhang L, Tan X. Neuron pruning-based discriminative extreme learning machine for pattern classification. Cogn Comput 2017;9(4):581–595.CrossRef Guo T, Zhang L, Tan X. Neuron pruning-based discriminative extreme learning machine for pattern classification. Cogn Comput 2017;9(4):581–595.CrossRef
11.
Zurück zum Zitat He K, Zhang X, Ren S, Sun J. 2015. Delving deep into rectifiers: surpassing human-level performance on ImageNet classification. In: ICCV, pp 1026–1034. He K, Zhang X, Ren S, Sun J. 2015. Delving deep into rectifiers: surpassing human-level performance on ImageNet classification. In: ICCV, pp 1026–1034.
12.
Zurück zum Zitat He K, Zhang X, Ren S, Sun J. 2016. Deep residual learning for image recognition. In: CVPR, pp 770–778. He K, Zhang X, Ren S, Sun J. 2016. Deep residual learning for image recognition. In: CVPR, pp 770–778.
13.
Zurück zum Zitat Huang G, Liu Z, van der Maaten L, Weinberger KQ. 2017. Densely connected convolutional networks. In: CVPR, pp 2261–2269. Huang G, Liu Z, van der Maaten L, Weinberger KQ. 2017. Densely connected convolutional networks. In: CVPR, pp 2261–2269.
14.
Zurück zum Zitat Huang G, Sun Y, Liu Z, Sedra D, Weinberger KQ. 2016. Deep networks with stochastic depth. In: ECCV, pp 646–661. Huang G, Sun Y, Liu Z, Sedra D, Weinberger KQ. 2016. Deep networks with stochastic depth. In: ECCV, pp 646–661.
15.
Zurück zum Zitat Ioffe S, Szegedy C. 2015. Batch normalization: accelerating deep network training by reducing internal covariate shift. In: ICML, pp 448–456. Ioffe S, Szegedy C. 2015. Batch normalization: accelerating deep network training by reducing internal covariate shift. In: ICML, pp 448–456.
16.
Zurück zum Zitat Jia Y, Shelhamer E, Donahue J, Karayev S, Long J, Girshick RB, Guadarrama S, Darrell T. 2014. Caffe: convolutional architecture for fast feature embedding. In: ACM MM, pp 675–678. Jia Y, Shelhamer E, Donahue J, Karayev S, Long J, Girshick RB, Guadarrama S, Darrell T. 2014. Caffe: convolutional architecture for fast feature embedding. In: ACM MM, pp 675–678.
18.
Zurück zum Zitat Krizhevsky A, Sutskever I, Hinton GE. 2012. Imagenet classification with deep convolutional neural networks. In: NeurIPS, pp 1106–1114. Krizhevsky A, Sutskever I, Hinton GE. 2012. Imagenet classification with deep convolutional neural networks. In: NeurIPS, pp 1106–1114.
19.
Zurück zum Zitat Lin LJ. 1993. Reinforcement learning for robots using neural networks. Technical report, DTIC Document. Lin LJ. 1993. Reinforcement learning for robots using neural networks. Technical report, DTIC Document.
20.
Zurück zum Zitat Lin M, Chen Q, Yan S. 2013. Network in network. In: ICLR. Lin M, Chen Q, Yan S. 2013. Network in network. In: ICLR.
21.
Zurück zum Zitat Liu C, Zoph B, Neumann M, Shlens J, Hua W, Li L, Fei-fei L, yuille AL, huang J, murphy K. 2018. Progressive neural architecture search. In: ECCV, pp 19–35. Liu C, Zoph B, Neumann M, Shlens J, Hua W, Li L, Fei-fei L, yuille AL, huang J, murphy K. 2018. Progressive neural architecture search. In: ECCV, pp 19–35.
22.
Zurück zum Zitat Liu H, Simonyan K, Vinyals O, Fernando C, Kavukcuoglu K. 2018. Hierarchical representations for efficient architecture search. In: ICLR. Liu H, Simonyan K, Vinyals O, Fernando C, Kavukcuoglu K. 2018. Hierarchical representations for efficient architecture search. In: ICLR.
23.
Zurück zum Zitat Luo B, Hussain A, Mahmud M, Tang J. Advances in brain-inspired cognitive systems. Cogn Comput 2016;8(5):795–796. Luo B, Hussain A, Mahmud M, Tang J. Advances in brain-inspired cognitive systems. Cogn Comput 2016;8(5):795–796.
24.
Zurück zum Zitat Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J, Bellemare MG, Graves A, Riedmiller MA, Fidjeland A, Ostrovski G, Petersen S, Beattie C, Sadik A, Antonoglou I, King H, Kumaran D, Wierstra D, Legg S, Hassabis D. Human-level control through deep reinforcement learning. Nature 2015;518(7540):529–533.CrossRef Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J, Bellemare MG, Graves A, Riedmiller MA, Fidjeland A, Ostrovski G, Petersen S, Beattie C, Sadik A, Antonoglou I, King H, Kumaran D, Wierstra D, Legg S, Hassabis D. Human-level control through deep reinforcement learning. Nature 2015;518(7540):529–533.CrossRef
25.
Zurück zum Zitat Pham H, Guan MY, Zoph B, Le QV, Dean J. 2018. Efficient neural architecture search via parameter sharing. In: ICML, pp 4092–4101. Pham H, Guan MY, Zoph B, Le QV, Dean J. 2018. Efficient neural architecture search via parameter sharing. In: ICML, pp 4092–4101.
27.
Zurück zum Zitat Saxena S, Verbeek J. 2016. Convolutional neural fabrics. In: NeurIPS, pp 4053–4061. Saxena S, Verbeek J. 2016. Convolutional neural fabrics. In: NeurIPS, pp 4053–4061.
30.
Zurück zum Zitat Snoek J, Larochelle H, Adams RP. 2012. Practical bayesian optimization of machine learning algorithms. In: NeurIPS, pp 2960–2968. Snoek J, Larochelle H, Adams RP. 2012. Practical bayesian optimization of machine learning algorithms. In: NeurIPS, pp 2960–2968.
31.
Zurück zum Zitat Snoek J, Rippel O, Swersky K, Kiros R, Satish N, Sundaram N, Patwary MMA, Prabhat Adams RP. 2015. Scalable bayesian optimization using deep neural networks. In: ICML, pp 2171–2180. Snoek J, Rippel O, Swersky K, Kiros R, Satish N, Sundaram N, Patwary MMA, Prabhat Adams RP. 2015. Scalable bayesian optimization using deep neural networks. In: ICML, pp 2171–2180.
33.
Zurück zum Zitat Stanley KO, D’Ambrosio DB, Gauci J. A hypercube-based encoding for evolving large-scale neural networks. Artif Life 2009;15(2):185–212.CrossRef Stanley KO, D’Ambrosio DB, Gauci J. A hypercube-based encoding for evolving large-scale neural networks. Artif Life 2009;15(2):185–212.CrossRef
34.
Zurück zum Zitat Stanley KO, Miikkulainen R. Evolving neural networks through augmenting topologies. Evol Comput. 2002:99–127.CrossRef Stanley KO, Miikkulainen R. Evolving neural networks through augmenting topologies. Evol Comput. 2002:99–127.CrossRef
35.
Zurück zum Zitat Suganuma M, Shirakawa S, Nagao T. 2017. A genetic programming approach to designing convolutional neural network architectures. In: GECCO, pp 497–504. Suganuma M, Shirakawa S, Nagao T. 2017. A genetic programming approach to designing convolutional neural network architectures. In: GECCO, pp 497–504.
36.
Zurück zum Zitat Szegedy C, Liu W, Jia Y, Sermanet P, Reed SE, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A. 2015. Going deeper with convolutions. In: CVPR, pp 1–9. Szegedy C, Liu W, Jia Y, Sermanet P, Reed SE, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A. 2015. Going deeper with convolutions. In: CVPR, pp 1–9.
37.
38.
Zurück zum Zitat Williams RJ. Simple statistical gradient-following algorithms for connectionist reinforcement learning. Mach Learn 1992;8:229–256. Williams RJ. Simple statistical gradient-following algorithms for connectionist reinforcement learning. Mach Learn 1992;8:229–256.
39.
Zurück zum Zitat Zhang S, Huang K, Zhang R, Hussain A. Learning from few samples with memory network. Cogn Comput 2018;10 (1):15–22.CrossRef Zhang S, Huang K, Zhang R, Hussain A. Learning from few samples with memory network. Cogn Comput 2018;10 (1):15–22.CrossRef
40.
Zurück zum Zitat Zhao F, Zeng Y, Wang G, Bai J, Xu B. A brain-inspired decision making model based on top-down biasing of prefrontal cortex to basal ganglia and its application in autonomous UAV explorations. Cogn Comput 2018;10(2):296–306.CrossRef Zhao F, Zeng Y, Wang G, Bai J, Xu B. A brain-inspired decision making model based on top-down biasing of prefrontal cortex to basal ganglia and its application in autonomous UAV explorations. Cogn Comput 2018;10(2):296–306.CrossRef
41.
Zurück zum Zitat Zhong G, Yan S, Huang K, Cai Y, Dong J. Reducing and stretching deep convolutional activation features for accurate image classification. Cogn Comput 2018;10(1):179–186.CrossRef Zhong G, Yan S, Huang K, Cai Y, Dong J. Reducing and stretching deep convolutional activation features for accurate image classification. Cogn Comput 2018;10(1):179–186.CrossRef
42.
Zurück zum Zitat Zhong Z, Yan J, Liu C. 2018. Practical block-wise neural network architecture generation. In: CVPR. Zhong Z, Yan J, Liu C. 2018. Practical block-wise neural network architecture generation. In: CVPR.
43.
Zurück zum Zitat Zoph B, Le QV. 2017. Neural architecture search with reinforcement learning. In: ICML. Zoph B, Le QV. 2017. Neural architecture search with reinforcement learning. In: ICML.
44.
Zurück zum Zitat Zoph B, Vasudevan V, Shlens J, Le QV. 2018. Learning transferable architectures for scalable image recognition. In: CVPR. Zoph B, Vasudevan V, Shlens J, Le QV. 2018. Learning transferable architectures for scalable image recognition. In: CVPR.
Metadaten
Titel
Automatic Design of Deep Networks with Neural Blocks
verfasst von
Guoqiang Zhong
Wencong Jiao
Wei Gao
Kaizhu Huang
Publikationsdatum
24.08.2019
Verlag
Springer US
Erschienen in
Cognitive Computation
Print ISSN: 1866-9956
Elektronische ISSN: 1866-9964
DOI
https://doi.org/10.1007/s12559-019-09677-5

Premium Partner