Skip to main content
Erschienen in: Cognitive Computation 2/2021

09.11.2020

State Primitive Learning to Overcome Catastrophic Forgetting in Robotics

verfasst von: Fangzhou Xiong, Zhiyong Liu, Kaizhu Huang, Xu Yang, Hong Qiao

Erschienen in: Cognitive Computation | Ausgabe 2/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

People can learn continuously a wide range of tasks without catastrophic forgetting. To mimic this functioning of continual learning, current methods mainly focus on studying a one-step supervised learning problem, e.g., image classification. They aim to retain the performance of previous image classification results when neural networks are sequentially trained on new images. In this paper, we concentrate on solving multi-step robotic tasks sequentially with the proposed architecture called state primitive learning. By projecting the original state space into a low-dimensional representation, meaningful state primitives can be generated to describe tasks. Under two kinds of different constraints on the generation of state primitives, control signals corresponding to different robotic tasks can be separately addressed only with an efficient linear regression. Experiments on several robotic manipulation tasks demonstrate the new method efficacy to learn control signals under the scenario of continual learning, delivering substantially improved performance over the other comparison methods.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
\(F_{pq}=E_{y\in D}[\frac{\partial \log f(y,\theta )}{\partial \theta _p} \frac{\partial \log f(y,\theta )}{\partial \theta _q}]\)
 
Literatur
2.
Zurück zum Zitat French RM. Catastrophic forgetting in connectionist networks. Trends Cogn Sci. 1999;3(4):128–35. CrossRef French RM. Catastrophic forgetting in connectionist networks. Trends Cogn Sci. 1999;3(4):128–35. CrossRef
3.
Zurück zum Zitat Girshick R, Donahue J, Darrell T, Malik J. Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, 2014. p. 580–587. Girshick R, Donahue J, Darrell T, Malik J. Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, 2014. p. 580–587.
4.
Zurück zum Zitat Gupta A, Devin C, Liu Y, Abbeel P, Levine, Learning invariant feature spaces to transfer skills with reinforcement learning. Proceedings of the International Conference on Learning Representations. (ICLR). 2017. Gupta A, Devin C, Liu Y, Abbeel P, Levine, Learning invariant feature spaces to transfer skills with reinforcement learning. Proceedings of the International Conference on Learning Representations. (ICLR). 2017.
5.
Zurück zum Zitat Kim E, Huang K, Jegelka S, Olivetti E. Virtual screening of inorganic materials synthesis parameters with deep learning. Npj Comput Mater. 2017;3(1):53. CrossRef Kim E, Huang K, Jegelka S, Olivetti E. Virtual screening of inorganic materials synthesis parameters with deep learning. Npj Comput Mater. 2017;3(1):53. CrossRef
6.
Zurück zum Zitat Kingma DP, Ba J. Adam. A method for stochastic optimization 2015. Kingma DP, Ba J. Adam. A method for stochastic optimization 2015.
7.
Zurück zum Zitat Kingma DP, Welling M. Auto-encoding variational bayes. In: Proceedings of the International Conference on Learning Representations (ICLR) 2014. Kingma DP, Welling M. Auto-encoding variational bayes. In: Proceedings of the International Conference on Learning Representations (ICLR) 2014.
8.
Zurück zum Zitat Kirkpatrick J, Pascanu R, Rabinowitz N, Veness J, Desjardins G, Rusu AA, Milan K, Quan, J, Ramalho T, Grabska-Barwinska A, et al. Overcoming catastrophic forgetting in neural networks. Proceedings of the National Academy of Sciences, 2017. p. 201611835. Kirkpatrick J, Pascanu R, Rabinowitz N, Veness J, Desjardins G, Rusu AA, Milan K, Quan, J, Ramalho T, Grabska-Barwinska A, et al. Overcoming catastrophic forgetting in neural networks. Proceedings of the National Academy of Sciences, 2017. p. 201611835.
9.
Zurück zum Zitat LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436. CrossRef LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436. CrossRef
10.
Zurück zum Zitat Lee JH. Dynmat, a network that can learn after learning. Neural Netw. 2019;116:88–100. CrossRef Lee JH. Dynmat, a network that can learn after learning. Neural Netw. 2019;116:88–100. CrossRef
11.
Zurück zum Zitat Lesort T, Díaz-Rodríguez N, Goudou JF, Filliat D. State representation learning for control: An overview. Neural Netw. 2018;108:379–92. CrossRef Lesort T, Díaz-Rodríguez N, Goudou JF, Filliat D. State representation learning for control: An overview. Neural Netw. 2018;108:379–92. CrossRef
12.
Zurück zum Zitat Li W, Todorov E. Iterative linear quadratic regulator design for nonlinear biological movement systems. ICINCO. 2004;1:222–9. Li W, Todorov E. Iterative linear quadratic regulator design for nonlinear biological movement systems. ICINCO. 2004;1:222–9.
13.
Zurück zum Zitat Li Z, Hoiem D. Learning without forgetting. IEEE Trans Pattern Anal Mach Intell. 2017;40(12):2935–47. CrossRef Li Z, Hoiem D. Learning without forgetting. IEEE Trans Pattern Anal Mach Intell. 2017;40(12):2935–47. CrossRef
14.
Zurück zum Zitat McCloskey M, Cohen NJ. Catastrophic interference in connectionist networks: The sequential learning problem. In: Psychology of learning and motivation. 1989;24:109–165. Elsevier. McCloskey M, Cohen NJ. Catastrophic interference in connectionist networks: The sequential learning problem. In: Psychology of learning and motivation. 1989;24:109–165. Elsevier.
15.
Zurück zum Zitat Michalski RS, Carbonell JG, Mitchell TM. Machine learning: An artificial intelligence approach. Springer Science & Business Media. 2013. Michalski RS, Carbonell JG, Mitchell TM. Machine learning: An artificial intelligence approach. Springer Science & Business Media. 2013.
16.
Zurück zum Zitat Montgomery WH, Levine S. Guided policy search via approximate mirror descent. In: Advances in Neural Information Processing Systems. 2016;4008–4016. Montgomery WH, Levine S. Guided policy search via approximate mirror descent. In: Advances in Neural Information Processing Systems. 2016;4008–4016.
17.
Zurück zum Zitat Pandarinath C, OShea DJ, Collins J, Jozefowicz R, Stavisky SD, Kao JC, Trautmann, EM, Kaufman MT, Ryu SI, Hochberg LR, et al. Inferring single-trial neural population dynamics using sequential auto-encoders. Nature methods. 2018. p. 1 Pandarinath C, OShea DJ, Collins J, Jozefowicz R, Stavisky SD, Kao JC, Trautmann, EM, Kaufman MT, Ryu SI, Hochberg LR, et al. Inferring single-trial neural population dynamics using sequential auto-encoders. Nature methods. 2018. p. 1
18.
Zurück zum Zitat Parisi GI, Kemker R, Part JL, Kanan C, Wermter S. Continual lifelong learning with neural networks: A review. Neural Netw. 2019. Parisi GI, Kemker R, Part JL, Kanan C, Wermter S. Continual lifelong learning with neural networks: A review. Neural Netw. 2019.
19.
Zurück zum Zitat Sadtler PT, Quick KM, Golub MD, Chase SM, Ryu SI, Tyler-Kabara EC, Byron MY, Batista AP. Neural constraints on learning. Nature. 2014;512(7515):423.CrossRef Sadtler PT, Quick KM, Golub MD, Chase SM, Ryu SI, Tyler-Kabara EC, Byron MY, Batista AP. Neural constraints on learning. Nature. 2014;512(7515):423.CrossRef
20.
Zurück zum Zitat Shenoy KV, Sahani M, Churchland MM. Cortical control of arm movements: a dynamical systems perspective. Annu Rev Neurosci. 2013;36:337–59. CrossRef Shenoy KV, Sahani M, Churchland MM. Cortical control of arm movements: a dynamical systems perspective. Annu Rev Neurosci. 2013;36:337–59. CrossRef
21.
Zurück zum Zitat Sutskever I, Martens J, Dahl G, Hinton G. On the importance of initialization and momentum in deep learning. In: International conference on machine learning. 2013. p. 1139–1147. Sutskever I, Martens J, Dahl G, Hinton G. On the importance of initialization and momentum in deep learning. In: International conference on machine learning. 2013. p. 1139–1147.
22.
Zurück zum Zitat Thrun S. Lifelong learning algorithms. Learning to learn. 1998;8:181–209. Thrun S. Lifelong learning algorithms. Learning to learn. 1998;8:181–209.
23.
Zurück zum Zitat Todorov E, Erez T, Tassa Y. Mujoco: A physics engine for model-based control. In: Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International Conference on, IEEE. 2012. p. 5026–5033. Todorov E, Erez T, Tassa Y. Mujoco: A physics engine for model-based control. In: Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International Conference on, IEEE. 2012. p. 5026–5033.
24.
Zurück zum Zitat Umiltà M, Intskirveli I, Grammont F, Rochat M, Caruana F, Jezzini A, Gallese V, Rizzolatti G, et al. When pliers become fingers in the monkey motor system. Proc Natl Acad Sc. 2008;105(6):2209–13. CrossRef Umiltà M, Intskirveli I, Grammont F, Rochat M, Caruana F, Jezzini A, Gallese V, Rizzolatti G, et al. When pliers become fingers in the monkey motor system. Proc Natl Acad Sc. 2008;105(6):2209–13. CrossRef
25.
Zurück zum Zitat Xiong F, Sun B, Yang X, Qiao H, Huang K, Hussain A, Liu Z. Guided policy search for sequential multitask learning. IEEE Trans Syst Man Cybern Syst. 2018;49(1):216–26. Xiong F, Sun B, Yang X, Qiao H, Huang K, Hussain A, Liu Z. Guided policy search for sequential multitask learning. IEEE Trans Syst Man Cybern Syst. 2018;49(1):216–26.
26.
Zurück zum Zitat Yang X, Huang K, Zhang R, Hussain A. Learning latent features with infinite nonnegative binary matrix trifactorization. IEEETrans Emerg Top Comput Intell. 2018;99:1–14. Yang X, Huang K, Zhang R, Hussain A. Learning latent features with infinite nonnegative binary matrix trifactorization. IEEETrans Emerg Top Comput Intell. 2018;99:1–14.
27.
Zurück zum Zitat Zeng G, Chen Y, Cui B, Yu S. Continuous learning of context-dependent processing in neural networks. arXiv preprint arXiv:1810.01256 2018. Zeng G, Chen Y, Cui B, Yu S. Continuous learning of context-dependent processing in neural networks. arXiv preprint arXiv:​1810.​01256 2018.
28.
Zurück zum Zitat Zeng G, Chen Y, Cui B, Yu S. Continual learning of context-dependent processing in neural networks. Nature Machine Intelligence. 2019. Zeng G, Chen Y, Cui B, Yu S. Continual learning of context-dependent processing in neural networks. Nature Machine Intelligence. 2019.
Metadaten
Titel
State Primitive Learning to Overcome Catastrophic Forgetting in Robotics
verfasst von
Fangzhou Xiong
Zhiyong Liu
Kaizhu Huang
Xu Yang
Hong Qiao
Publikationsdatum
09.11.2020
Verlag
Springer US
Erschienen in
Cognitive Computation / Ausgabe 2/2021
Print ISSN: 1866-9956
Elektronische ISSN: 1866-9964
DOI
https://doi.org/10.1007/s12559-020-09784-8

Weitere Artikel der Ausgabe 2/2021

Cognitive Computation 2/2021 Zur Ausgabe

Premium Partner