Skip to main content
Erschienen in: Cognitive Computation 2/2022

24.01.2022

A Calibration-free Approach to Implementing P300-based Brain–computer Interface

verfasst von: Zhihua Huang, Jiannan Guo, Wenming Zheng, Yingjie Wu, Zhixiong Lin, Huiru Zheng

Erschienen in: Cognitive Computation | Ausgabe 2/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Introduction: As a direct bridge between the brain and the outer world, brain–computer interface (BCI) is expected to replace, restore, enhance, supplement, or improve the natural output of brain. The prospect of BCI serving humans is very broad. However, the extensive applications of BCI have not been fully achieved. One of reasons is that the cost of calibration reduces the convenience and usability of BCI. Methods: In this study, we proposed a calibration-free approach, which is based on the ideas of reinforcement learning and transfer learning, for P300-based BCI. This approach, composed of two algorithms: P300 linear upper confidence bound (PLUCB) and transferred PLUCB (TPLUCB), is able to learn during the usage by exploration and exploitation and allows P300-based BCI to start working without any calibration. Results: We tested the performances of PLUCB and TPLUCB using stepwise linear discriminant analysis (SWLDA), a commonly used method that needs calibration, as a baseline in simulated online experiments. The results showed the merits of PLUCB and TPLUCB. PLUCB can quickly increase the accuracies to the level of SWLDA. TPLUCB has surpassed SWLDA in the sample accuracy since it starts running. Both PLUCB and TPLUCB have the ability to keep improving the classification performance during the process. The overall sample accuracies (\(73.6\pm 4.8\%\), \(73.1\pm 4.9\%\)), overall symbol accuracies (\(80.4\pm 12.8\%\), \(79.6\pm 14.0\%\)), F-measures (\(0.45\pm 0.06\), \(0.44\pm 0.06\)) and information transfer ratios (ITR) (\(36.4\pm 9.1\), \(35.5\pm 9.8\)) of PLUCB and TPLUCB are significantly better than those of SWLDA (overall sample accuracy: \(58.8\pm 3.8\%\), overall symbol accuracy: \(69.0\pm 18.3\%\), F-measure: \(0.38\pm 0.04\), ITR: \(28.7\pm 10.7\)). Conclusions: The proposed approach, which does not need calibration but outperform SWLDA, is a very good option for the implementation of P300-based BCI.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Wolpaw JR, Wolpaw EW, editors. Brain-Computer Interfaces: Principles and Practice. New York, USA: Oxford University Press; 2012. Wolpaw JR, Wolpaw EW, editors. Brain-Computer Interfaces: Principles and Practice. New York, USA: Oxford University Press; 2012.
2.
Zurück zum Zitat Edelman BJ, Meng J, Suma D, Zurn C, Nagarajan E, Baxter BS, Cline CC, He B. Noninvasive neuroimaging enhances continuous neural tracking for device control. Sci Robot. 2019;4(31):eaaw6844. Edelman BJ, Meng J, Suma D, Zurn C, Nagarajan E, Baxter BS, Cline CC, He B. Noninvasive neuroimaging enhances continuous neural tracking for device control. Sci Robot. 2019;4(31):eaaw6844.
3.
Zurück zum Zitat Shukla PK, Chaurasiya RK, Verma S. Performance improvement of P300-based home appliances control classification using convolution neural network. Biomed Signal Process Control. 2021;63:102220. Shukla PK, Chaurasiya RK, Verma S. Performance improvement of P300-based home appliances control classification using convolution neural network. Biomed Signal Process Control. 2021;63:102220.
4.
Zurück zum Zitat Bauer R, Gharabaghi A. Reinforcement learning for adaptive threshold control of restorative brain-computer interfaces: a Bayesian simulation. Front Neurosci. 2015;9: Article 36. Bauer R, Gharabaghi A. Reinforcement learning for adaptive threshold control of restorative brain-computer interfaces: a Bayesian simulation. Front Neurosci. 2015;9: Article 36.
5.
Zurück zum Zitat Abiri R, Borhani S, Sellers EW, Jiang Y, Zhao X. A comprehensive review of EEG-based brain-computer interface paradigms. J Neural Eng. 2019;16(1):011001. Abiri R, Borhani S, Sellers EW, Jiang Y, Zhao X. A comprehensive review of EEG-based brain-computer interface paradigms. J Neural Eng. 2019;16(1):011001.
6.
Zurück zum Zitat Ben-David S, Blitzer J, Crammer K, Kulesza A, Pereira F, Vaughan JW. A theory of learning from different domains. Mach Learn. 2010;79(1–2):151–75.MathSciNetCrossRef Ben-David S, Blitzer J, Crammer K, Kulesza A, Pereira F, Vaughan JW. A theory of learning from different domains. Mach Learn. 2010;79(1–2):151–75.MathSciNetCrossRef
7.
Zurück zum Zitat Pan SJ, Yang Q. A survey on transfer learning. IEEE Trans Knowl Data Eng. 2010;22(10):1345–59.CrossRef Pan SJ, Yang Q. A survey on transfer learning. IEEE Trans Knowl Data Eng. 2010;22(10):1345–59.CrossRef
8.
Zurück zum Zitat Jayaram V, Alamgir M, Altun Y, Scholkopf B, Grosse-Wentrup M. Transfer learning in brain-computer interfaces. IEEE Comput Intell Mag. 2016;11(1):20–31.CrossRef Jayaram V, Alamgir M, Altun Y, Scholkopf B, Grosse-Wentrup M. Transfer learning in brain-computer interfaces. IEEE Comput Intell Mag. 2016;11(1):20–31.CrossRef
9.
Zurück zum Zitat Wan Z, Yang R, Huang M, Zeng N, Liu X. A review on transfer learning in EEG signal analysis. Neurocomputing. 2021;421:1–14.CrossRef Wan Z, Yang R, Huang M, Zeng N, Liu X. A review on transfer learning in EEG signal analysis. Neurocomputing. 2021;421:1–14.CrossRef
10.
Zurück zum Zitat Kaelbling LP, Littman ML, Moore AW. Reinforcement learning: A survey. J Artif Intell Res. 1996;4:237–85.CrossRef Kaelbling LP, Littman ML, Moore AW. Reinforcement learning: A survey. J Artif Intell Res. 1996;4:237–85.CrossRef
11.
Zurück zum Zitat Crammer K, Dekel O, Shalev-Shwartz S, Singer Y. Online passive-aggressive algorithms. J Mach Learn Res. 2006;7(3):551–85.MathSciNetMATH Crammer K, Dekel O, Shalev-Shwartz S, Singer Y. Online passive-aggressive algorithms. J Mach Learn Res. 2006;7(3):551–85.MathSciNetMATH
12.
Zurück zum Zitat Hazan E. Introduction to online convex optimization. Foundations and Trends in Optimization. 2015;2(3–4):157–325. Hazan E. Introduction to online convex optimization. Foundations and Trends in Optimization. 2015;2(3–4):157–325.
13.
Zurück zum Zitat Fazli S, Popescu F, Danóczy M, Blankertz B, Müller K-R, Grozea C. Subject-independent mental state classification in single trials. Neural Netw. 2009;22(9):1305–12.CrossRef Fazli S, Popescu F, Danóczy M, Blankertz B, Müller K-R, Grozea C. Subject-independent mental state classification in single trials. Neural Netw. 2009;22(9):1305–12.CrossRef
14.
Zurück zum Zitat Kindermans P-J, Tangermann M, Müller K-R, Schrauwen B. Integrating dynamic stopping, transfer learning and language models in an adaptive zero-training ERP speller. J Neural Eng. 2014;11(3):035005. Kindermans P-J, Tangermann M, Müller K-R, Schrauwen B. Integrating dynamic stopping, transfer learning and language models in an adaptive zero-training ERP speller. J Neural Eng. 2014;11(3):035005.
15.
Zurück zum Zitat Gayraud NT, Rakotomamonjy A, Clerc M. Optimal transport applied to transfer learning for p300 detection. In: BCI 2017-7th Graz Brain-Computer Interface Conference. 2017. p. 6. Gayraud NT, Rakotomamonjy A, Clerc M. Optimal transport applied to transfer learning for p300 detection. In: BCI 2017-7th Graz Brain-Computer Interface Conference. 2017. p. 6.
16.
Zurück zum Zitat Qi H, Xue Y, Xu L, Cao Y, Jiao X. A speedy calibration method using riemannian geometry measurement and other-subject samples on a P300 speller. IEEE Trans Neural Syst Rehabil Eng. 2018;26(3):602–8.CrossRef Qi H, Xue Y, Xu L, Cao Y, Jiao X. A speedy calibration method using riemannian geometry measurement and other-subject samples on a P300 speller. IEEE Trans Neural Syst Rehabil Eng. 2018;26(3):602–8.CrossRef
17.
Zurück zum Zitat Hübner D, Kindermans P-J, Verhoeven T, Müller K-R, Tangermann M. Rethinking BCI paradigm and machine learning algorithm as a symbiosis: Zero calibration, guaranteed convergence and high decoding performance. In: Brain-Computer Interface Research. Springer. 2019. p. 63–73. Hübner D, Kindermans P-J, Verhoeven T, Müller K-R, Tangermann M. Rethinking BCI paradigm and machine learning algorithm as a symbiosis: Zero calibration, guaranteed convergence and high decoding performance. In: Brain-Computer Interface Research. Springer. 2019. p. 63–73.
18.
Zurück zum Zitat Lee J, Won K, Kwon M, Jun SC, Ahn M. CNN with large data achieves true zero-training in online P300 brain-computer interface. IEEE Access. 2020;8:74385–400.CrossRef Lee J, Won K, Kwon M, Jun SC, Ahn M. CNN with large data achieves true zero-training in online P300 brain-computer interface. IEEE Access. 2020;8:74385–400.CrossRef
19.
Zurück zum Zitat Li F, Xia Y, Wang F, Zhang D, Li X, He F. Transfer learning algorithm of P300-EEG signal based on xdawn spatial filter and riemannian geometry classifier. Appl Sci. 2020;10(5):1804.CrossRef Li F, Xia Y, Wang F, Zhang D, Li X, He F. Transfer learning algorithm of P300-EEG signal based on xdawn spatial filter and riemannian geometry classifier. Appl Sci. 2020;10(5):1804.CrossRef
20.
Zurück zum Zitat Buttfield A, Ferrez PW, Millan JR. Towards a robust BCI: error potentials and online learning. IEEE Trans Neural Syst Rehabil Eng. 2006;14(2):164–8.CrossRef Buttfield A, Ferrez PW, Millan JR. Towards a robust BCI: error potentials and online learning. IEEE Trans Neural Syst Rehabil Eng. 2006;14(2):164–8.CrossRef
21.
Zurück zum Zitat Kindermans P-J, Schreuder M, Schrauwen B, Müller K-R, Tangermann M. True zero-training brain-computer interfacing-an online study. PloS One. 2014;9(7):e102504. Kindermans P-J, Schreuder M, Schrauwen B, Müller K-R, Tangermann M. True zero-training brain-computer interfacing-an online study. PloS One. 2014;9(7):e102504.
22.
Zurück zum Zitat Grizou J, Iturrate I, Montesano L, Oudeyer P-Y, Lopes M. Calibration-Free BCI Based Control. In: Twenty-Eighth AAAI Conference on Artificial Intelligence. Quebec, Canada; 2014. p. 1–8. Grizou J, Iturrate I, Montesano L, Oudeyer P-Y, Lopes M. Calibration-Free BCI Based Control. In: Twenty-Eighth AAAI Conference on Artificial Intelligence. Quebec, Canada; 2014. p. 1–8.
23.
Zurück zum Zitat Liu W, Zhang L, Tao D, Cheng J. Reinforcement online learning for emotion prediction by using physiological signals. Pattern Recogn Lett. 2018;107:123–30.CrossRef Liu W, Zhang L, Tao D, Cheng J. Reinforcement online learning for emotion prediction by using physiological signals. Pattern Recogn Lett. 2018;107:123–30.CrossRef
24.
Zurück zum Zitat Ma Z, Cheng J, Tao D. Online learning using projections onto shrinkage closed balls for adaptive brain-computer interface. Pattern Recogn. 2020;97:107017. Ma Z, Cheng J, Tao D. Online learning using projections onto shrinkage closed balls for adaptive brain-computer interface. Pattern Recogn. 2020;97:107017.
25.
Zurück zum Zitat Farwell LA, Donchin E. Talking off the top of your head : toward a mental prosthesis utilizing event-related brain potentials. Electroencephalogr Clin Neurophysiol. 1988;70(6):510–23.CrossRef Farwell LA, Donchin E. Talking off the top of your head : toward a mental prosthesis utilizing event-related brain potentials. Electroencephalogr Clin Neurophysiol. 1988;70(6):510–23.CrossRef
26.
Zurück zum Zitat Li L, Chu W, Langford J, Schapire RE. A contextual-bandit approach to personalized news article recommendation. In: Proceedings of the 19th international conference on World wide web. 2010. p. 661–670. Li L, Chu W, Langford J, Schapire RE. A contextual-bandit approach to personalized news article recommendation. In: Proceedings of the 19th international conference on World wide web. 2010. p. 661–670.
27.
Zurück zum Zitat Kim SK, Kirchner EA, Stefes A, Kirchner F. Intrinsic interactive reinforcement learning-using error-related potentials for real world human-robot interaction. Sci Rep. 2017;7:17562.CrossRef Kim SK, Kirchner EA, Stefes A, Kirchner F. Intrinsic interactive reinforcement learning-using error-related potentials for real world human-robot interaction. Sci Rep. 2017;7:17562.CrossRef
28.
Zurück zum Zitat Schalk G, McFarland DJ, Hinterberger T, Birbaumer N, Wolpaw JR. BCI2000: a general-purpose brain-computer interface (BCI) system. IEEE Trans Biomed Eng. 2004;51(6):1034–43.CrossRef Schalk G, McFarland DJ, Hinterberger T, Birbaumer N, Wolpaw JR. BCI2000: a general-purpose brain-computer interface (BCI) system. IEEE Trans Biomed Eng. 2004;51(6):1034–43.CrossRef
29.
Zurück zum Zitat Lotte F, Bougrain L, Cichocki A, Clerc M, Congedo M, Rakotomamonjy A, Yger F. A review of classification algorithms for EEG-based brain-computer interfaces: a 10 year update. J Neural Eng. 2018;15(3):031005. Lotte F, Bougrain L, Cichocki A, Clerc M, Congedo M, Rakotomamonjy A, Yger F. A review of classification algorithms for EEG-based brain-computer interfaces: a 10 year update. J Neural Eng. 2018;15(3):031005.
30.
Zurück zum Zitat Arvaneh M, Robertson IH, Ward TE. A P300-based brain-computer interface for improving attention. Front Hum Neurosci. 2019;12:524.CrossRef Arvaneh M, Robertson IH, Ward TE. A P300-based brain-computer interface for improving attention. Front Hum Neurosci. 2019;12:524.CrossRef
31.
Zurück zum Zitat Allison BZ, Kübler A, Jin J. 30+ years of P300 brain-computer interfaces. Psychophysiology. 2020;57(7):e13569. Allison BZ, Kübler A, Jin J. 30+ years of P300 brain-computer interfaces. Psychophysiology. 2020;57(7):e13569.
32.
Zurück zum Zitat Collins AGE. Reinforcement learning: bringing together computation and cognition. Curr Opin Behav Sci. 2019;29:63–8.CrossRef Collins AGE. Reinforcement learning: bringing together computation and cognition. Curr Opin Behav Sci. 2019;29:63–8.CrossRef
33.
Zurück zum Zitat Lawrence EJ, Su L, Barker GJ, Medford N, Dalton J, Williams S, Birbaumer N, Veit R, Ranganatha S, Bodurka J. Self-regulation of the anterior insula: Reinforcement learning using real-time fMRI neurofeedback. Neuroimage. 2014;88:113–24.CrossRef Lawrence EJ, Su L, Barker GJ, Medford N, Dalton J, Williams S, Birbaumer N, Veit R, Ranganatha S, Bodurka J. Self-regulation of the anterior insula: Reinforcement learning using real-time fMRI neurofeedback. Neuroimage. 2014;88:113–24.CrossRef
34.
Zurück zum Zitat Cortese A, Lau H, Kawato M. Unconscious reinforcement learning of hidden brain states supported by confidence. Nat Commun. 2020;11:4429.CrossRef Cortese A, Lau H, Kawato M. Unconscious reinforcement learning of hidden brain states supported by confidence. Nat Commun. 2020;11:4429.CrossRef
35.
Zurück zum Zitat Hoerl AE, Kennard RW. Ridge regression: Biased estimation for nonorthogonal problems. Technometrics. 2000;42(1):80–6.CrossRef Hoerl AE, Kennard RW. Ridge regression: Biased estimation for nonorthogonal problems. Technometrics. 2000;42(1):80–6.CrossRef
36.
Zurück zum Zitat Walsh TJ, Szita I, Diuk C, Littman ML. Exploring compact reinforcement-learning representations with linear regression. arXiv preprint arXiv:1205.2606. 2012. Walsh TJ, Szita I, Diuk C, Littman ML. Exploring compact reinforcement-learning representations with linear regression. arXiv preprint arXiv:​1205.​2606. 2012.
37.
Zurück zum Zitat Huang Z, Zheng W, Wu Y, Wang Y. Ensemble or pool: A comprehensive study on transfer learning for c-VEP BCI during interpersonal interaction. J Neurosci Methods. 2020;343(4)108855. Huang Z, Zheng W, Wu Y, Wang Y. Ensemble or pool: A comprehensive study on transfer learning for c-VEP BCI during interpersonal interaction. J Neurosci Methods. 2020;343(4)108855.
38.
Zurück zum Zitat Townsend G, LaPallo B, Boulay C, Krusienski D, Frye G, Hauser C, Schwartz N, Vaughan T, Wolpaw J, Sellers E. A novel P300-based brain-computer interface stimulus presentation paradigm: Moving beyond rows and columns. Clin Neurophysiol. 2010;121(7):1109–20.CrossRef Townsend G, LaPallo B, Boulay C, Krusienski D, Frye G, Hauser C, Schwartz N, Vaughan T, Wolpaw J, Sellers E. A novel P300-based brain-computer interface stimulus presentation paradigm: Moving beyond rows and columns. Clin Neurophysiol. 2010;121(7):1109–20.CrossRef
40.
Zurück zum Zitat Yuan P, Gao X, Allison B, Wang Y, Bin G, Gao S. A study of the existing problems of estimating the information transfer rate in online brain-computer interfaces. J Neural Eng. 2013;10(2):026014. Yuan P, Gao X, Allison B, Wang Y, Bin G, Gao S. A study of the existing problems of estimating the information transfer rate in online brain-computer interfaces. J Neural Eng. 2013;10(2):026014.
41.
Zurück zum Zitat Mladenovic J, Frey J, Joffily M, Maby E, Lotte F, Mattout J. Active inference as a unifying, generic and adaptive framework for a P300-based BCI. J Neural Eng. 2020;17(1):016054. Mladenovic J, Frey J, Joffily M, Maby E, Lotte F, Mattout J. Active inference as a unifying, generic and adaptive framework for a P300-based BCI. J Neural Eng. 2020;17(1):016054.
Metadaten
Titel
A Calibration-free Approach to Implementing P300-based Brain–computer Interface
verfasst von
Zhihua Huang
Jiannan Guo
Wenming Zheng
Yingjie Wu
Zhixiong Lin
Huiru Zheng
Publikationsdatum
24.01.2022
Verlag
Springer US
Erschienen in
Cognitive Computation / Ausgabe 2/2022
Print ISSN: 1866-9956
Elektronische ISSN: 1866-9964
DOI
https://doi.org/10.1007/s12559-021-09971-1

Weitere Artikel der Ausgabe 2/2022

Cognitive Computation 2/2022 Zur Ausgabe

Premium Partner