Skip to main content
Erschienen in: Shape Memory and Superelasticity 2/2021

02.06.2021 | Technical Article

Shape Memory Alloy-Enabled Expandable Space Habitat—Case Studies for Second CASMART Student Design Challenge

verfasst von: Peter E. Caltagirone, Robert W. Wheeler, Othmane Benafan, Glen Bigelow, Ibrahim Karaman, Frederick T. Calkins, Michael L. Kuntz, Pedro B. C. Leal, Douglas E. Nicholson, Hande Ozcan, Aaron P. Stebner, Travis Turner, Avery W. Young, Marcus L. Young, Nima Zamani

Erschienen in: Shape Memory and Superelasticity | Ausgabe 2/2021

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Design and development of innovative material compositions and mechanisms based on shape memory alloys (SMAs) were accomplished as part of the Consortium for the Advancement of Shape Memory Alloy Research and Technology (CASMART) 2nd student design challenge. The challenge consisted of developing an expandable space habitat where the retention and deployment of such structure employs the use of SMAs. Student groups were provided with an initial set of requirements and given an option to design the material or design with the material, within six months. This paper collectively documents the evaluation, alloy selection, fabrication, testing, and implementation processes of three teams, including the tools and information used to successfully design, develop, and implement SMA material systems and habitat technologies. For the mechanism design, students used a combination of superelastic rods and shape memory springs/wires to design collapsible rings to fold and deploy the habitat. Publicly available design tools were used to size the SMA components based on the provided loading scenarios. For the material system development, compositions based on CuAlMn, NiTiFe, NiTi and NiTiSn alloys were explored and designed to satisfy the given set of requirements. Details pertinent to these designs are described in this work, along with lessons learned.
Literatur
1.
Zurück zum Zitat Yamauchi K (2011) Shape memory and superelastic alloys: technologies and applications. Woodhead Publishing, Cambridge, UK, Philadelphia, PACrossRef Yamauchi K (2011) Shape memory and superelastic alloys: technologies and applications. Woodhead Publishing, Cambridge, UK, Philadelphia, PACrossRef
2.
Zurück zum Zitat Otsuka K, Ren X (2005) Physical metallurgy of Ti-Ni-based shape memory alloys. Prog Mater Sci 50(5):511–678CrossRef Otsuka K, Ren X (2005) Physical metallurgy of Ti-Ni-based shape memory alloys. Prog Mater Sci 50(5):511–678CrossRef
3.
Zurück zum Zitat Tseng L-W, Ma J, Wang S et al (2015) Superelastic response of a single crystalline FeMnAlNi shape memory alloy under tension and compression. Acta Mater 89:374–383CrossRef Tseng L-W, Ma J, Wang S et al (2015) Superelastic response of a single crystalline FeMnAlNi shape memory alloy under tension and compression. Acta Mater 89:374–383CrossRef
4.
Zurück zum Zitat Buehler W, Wang F (1968) A summary of recent research on the nitinol alloys and their potential application in ocean engineering. Ocean Eng 1:105–108CrossRef Buehler W, Wang F (1968) A summary of recent research on the nitinol alloys and their potential application in ocean engineering. Ocean Eng 1:105–108CrossRef
5.
Zurück zum Zitat Cross W, Kariotis A, Stimler F (1969) Nitinol characterization study. Langley Research Center, Springfield, VA Cross W, Kariotis A, Stimler F (1969) Nitinol characterization study. Langley Research Center, Springfield, VA
6.
Zurück zum Zitat Jackson C, Wagner H, Wasilewski R (1972) 55-Nitinol--the alloy with a memory: its physical metallurgy, properties, and applications. NASA SP, 5110 Jackson C, Wagner H, Wasilewski R (1972) 55-Nitinol--the alloy with a memory: its physical metallurgy, properties, and applications. NASA SP, 5110
7.
Zurück zum Zitat Duerig T, Melton K, Stockel D, Wayman CM (1990) Engineering aspects of shape memory alloys. Butterworth-Heinemann, London, Boston Duerig T, Melton K, Stockel D, Wayman CM (1990) Engineering aspects of shape memory alloys. Butterworth-Heinemann, London, Boston
8.
Zurück zum Zitat Benafan O, Moholt MR, Bass M et al (2019) Recent advancements in rotary shape memory alloy actuators for aeronautics. Shape Mem Superelasticity 5:415–428CrossRef Benafan O, Moholt MR, Bass M et al (2019) Recent advancements in rotary shape memory alloy actuators for aeronautics. Shape Mem Superelasticity 5:415–428CrossRef
9.
11.
Zurück zum Zitat Calhoun C, Wheeler R, Baxevanis T, Lagoudas DC (2015) Actuation fatigue life prediction of shape memory alloys under the constant-stress loading condition. Scr Mater 95:58–61CrossRef Calhoun C, Wheeler R, Baxevanis T, Lagoudas DC (2015) Actuation fatigue life prediction of shape memory alloys under the constant-stress loading condition. Scr Mater 95:58–61CrossRef
12.
Zurück zum Zitat Calkins FT, Mabe JH (2010) Shape memory alloy based morphing aerostructures. J Mech Des Trans ASME 132:132–139CrossRef Calkins FT, Mabe JH (2010) Shape memory alloy based morphing aerostructures. J Mech Des Trans ASME 132:132–139CrossRef
13.
Zurück zum Zitat Lagoudas DC, Miller DA, Rong L, Kumar PK (2009) Thermomechanical fatigue of shape memory alloys. Smart Mater Struct 18(8):085021CrossRef Lagoudas DC, Miller DA, Rong L, Kumar PK (2009) Thermomechanical fatigue of shape memory alloys. Smart Mater Struct 18(8):085021CrossRef
14.
Zurück zum Zitat Noebe R, Draper S, Gaydosh D, et al (2008) Effect of thermomechanical processing on the microstructure, properties, and work behavior of a Ti50.5 Ni29.5 Pt20 high-temperature shape memory alloy. In: SMST-2006 - Proceedings of the International Conference on Shape Memory and Superelastic Technologies (ASM International). Product code: ZCP2006SMST409 Noebe R, Draper S, Gaydosh D, et al (2008) Effect of thermomechanical processing on the microstructure, properties, and work behavior of a Ti50.5 Ni29.5 Pt20 high-temperature shape memory alloy. In: SMST-2006 - Proceedings of the International Conference on Shape Memory and Superelastic Technologies (ASM International). Product code: ZCP2006SMST409
15.
Zurück zum Zitat Padula S, Qiu S, Gaydosh D et al (2012) Effect of upper-cycle temperature on the load-biased, strain-temperature response of NiTi. Metall Mater Trans A Phys Metall Mater Sci 43:4610–4621CrossRef Padula S, Qiu S, Gaydosh D et al (2012) Effect of upper-cycle temperature on the load-biased, strain-temperature response of NiTi. Metall Mater Trans A Phys Metall Mater Sci 43:4610–4621CrossRef
16.
Zurück zum Zitat Turner TL, Cabell RH, Cano RJ, Silcox RJ (2008) Development of a preliminary model-scale adaptive jet engine chevron. AIAA J 46:2545CrossRef Turner TL, Cabell RH, Cano RJ, Silcox RJ (2008) Development of a preliminary model-scale adaptive jet engine chevron. AIAA J 46:2545CrossRef
17.
Zurück zum Zitat Wojcik C (2003) Shape memory properties of nickel rich NiTi alloys. Shape Memory and Superelasticity Society Inc., Pacific Grove, CA Menlo Park, CA, pp 409–426 Wojcik C (2003) Shape memory properties of nickel rich NiTi alloys. Shape Memory and Superelasticity Society Inc., Pacific Grove, CA Menlo Park, CA, pp 409–426
18.
Zurück zum Zitat Zhu P, Brinson LC, Peraza-Hernandez E, et al (2013) Comparison of three-dimensional shape memory alloy constitutive models: finite element analysis of actuation and superelastic responses of a shape memory alloy tube. In: ASME 2013 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. https://doi.org/10.1115/SMASIS2013-3093 Zhu P, Brinson LC, Peraza-Hernandez E, et al (2013) Comparison of three-dimensional shape memory alloy constitutive models: finite element analysis of actuation and superelastic responses of a shape memory alloy tube. In: ASME 2013 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. https://​doi.​org/​10.​1115/​SMASIS2013-3093
21.
Zurück zum Zitat Wheeler RW, Benafan O, Calkins FT et al (2019) Engineering design tools for shape memory alloy actuators: CASMART collaborative best practices and case studies. J Intell Mater Syst Struct 30:2808–2830CrossRef Wheeler RW, Benafan O, Calkins FT et al (2019) Engineering design tools for shape memory alloy actuators: CASMART collaborative best practices and case studies. J Intell Mater Syst Struct 30:2808–2830CrossRef
23.
Zurück zum Zitat Kumar PK, Lagoudas DC (2008) Introduction to shape memory alloys, 1st edn. Springer, US Kumar PK, Lagoudas DC (2008) Introduction to shape memory alloys, 1st edn. Springer, US
24.
Zurück zum Zitat Wheeler R, Santa-Cruz J, Hartl D, Lagoudas D (2013) Effect of processing and loading on equiatomic NiTi fatigue life and localized failure mechanisms. In: ASME 2013 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. https://doi.org/10.1115/SMASIS2013-3163 Wheeler R, Santa-Cruz J, Hartl D, Lagoudas D (2013) Effect of processing and loading on equiatomic NiTi fatigue life and localized failure mechanisms. In: ASME 2013 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. https://​doi.​org/​10.​1115/​SMASIS2013-3163
26.
Zurück zum Zitat Gilmore D (2002) Spacecraft thermal control handbook, volume I: fundamental technologies. American Institute of Aeronautics and Astronautics, Inc., Washington, DC. pp 162–193 Gilmore D (2002) Spacecraft thermal control handbook, volume I: fundamental technologies. American Institute of Aeronautics and Astronautics, Inc., Washington, DC. pp 162–193
27.
Zurück zum Zitat Hunt GW, Ario I (2005) Twist buckling and the foldable cylinder: an exercise in origami. Int J Non Linear Mech 40:833–843CrossRef Hunt GW, Ario I (2005) Twist buckling and the foldable cylinder: an exercise in origami. Int J Non Linear Mech 40:833–843CrossRef
28.
Zurück zum Zitat Frenzel J, George EP, Dlouhy A et al (2010) Influence of Ni on martensitic phase transformations in NiTi shape memory alloys. Acta Mater 58:3444–3458CrossRef Frenzel J, George EP, Dlouhy A et al (2010) Influence of Ni on martensitic phase transformations in NiTi shape memory alloys. Acta Mater 58:3444–3458CrossRef
29.
Zurück zum Zitat Panchenko EY, Chumlyakov YI, Kireeva IV et al (2008) Effect of disperse Ti3N4 particles on the martensitic transformations in titanium nickelide single crystals. Phys Met Metallogr 106:577–589CrossRef Panchenko EY, Chumlyakov YI, Kireeva IV et al (2008) Effect of disperse Ti3N4 particles on the martensitic transformations in titanium nickelide single crystals. Phys Met Metallogr 106:577–589CrossRef
30.
Zurück zum Zitat Funakubo H (1987) Shape memory alloys. Precision machinery and robotics. Gordon and Breach Science Publishers, New York, p 275 Funakubo H (1987) Shape memory alloys. Precision machinery and robotics. Gordon and Breach Science Publishers, New York, p 275
31.
Zurück zum Zitat Zhang Y, Jiang S, Zhu X et al (2017) Influence of Fe addition on phase transformation behavior of NiTi shape memory alloy. Trans Nonferrous Met Soc China 27:1580–1587CrossRef Zhang Y, Jiang S, Zhu X et al (2017) Influence of Fe addition on phase transformation behavior of NiTi shape memory alloy. Trans Nonferrous Met Soc China 27:1580–1587CrossRef
33.
Zurück zum Zitat Zhao YN, Jiang SY, Zhang YQ, Liang YL (2017) Influence of Fe addition on phase transformation, microstructure and mechanical property of equiatomic NiTi shape memory alloy. Acta Metall Sin 30:762–770CrossRef Zhao YN, Jiang SY, Zhang YQ, Liang YL (2017) Influence of Fe addition on phase transformation, microstructure and mechanical property of equiatomic NiTi shape memory alloy. Acta Metall Sin 30:762–770CrossRef
36.
Zurück zum Zitat Hwang CM, Wayman CM (1983) Compositional dependence of transformation temperatures in ternary TiNiAl and TiNiFe alloys. Scr Metall 17:381–384CrossRef Hwang CM, Wayman CM (1983) Compositional dependence of transformation temperatures in ternary TiNiAl and TiNiFe alloys. Scr Metall 17:381–384CrossRef
37.
Zurück zum Zitat Wang Q, Han F, Cui C et al (2007) Effect of ageing on the reverse martensitic phase transformation behaviors of a CuAlMn shape memory alloy. Mater Lett 61:5185–5187CrossRef Wang Q, Han F, Cui C et al (2007) Effect of ageing on the reverse martensitic phase transformation behaviors of a CuAlMn shape memory alloy. Mater Lett 61:5185–5187CrossRef
38.
Zurück zum Zitat Kainuma R, Takahashi S, Ishida K (1996) Thermoelastic martensite and shape memory effect in ductile Cu-Al-Mn alloys. Metall Mater Trans A Phys Metall Mater Sci 27:2187–2195CrossRef Kainuma R, Takahashi S, Ishida K (1996) Thermoelastic martensite and shape memory effect in ductile Cu-Al-Mn alloys. Metall Mater Trans A Phys Metall Mater Sci 27:2187–2195CrossRef
39.
Zurück zum Zitat Sutou Y, Omori T, Wang JJ et al (2004) Characteristics of Cu-Al-Mn-based shape memory alloys and their applications. Mater Sci Eng A 378:278–282CrossRef Sutou Y, Omori T, Wang JJ et al (2004) Characteristics of Cu-Al-Mn-based shape memory alloys and their applications. Mater Sci Eng A 378:278–282CrossRef
40.
Zurück zum Zitat Zak G, Kneissl AC, Zatulskij G (1996) Shape memory effect in cryogenic Cu-Al-Mn alloys. Scr Mater 34:363–367CrossRef Zak G, Kneissl AC, Zatulskij G (1996) Shape memory effect in cryogenic Cu-Al-Mn alloys. Scr Mater 34:363–367CrossRef
41.
Zurück zum Zitat Babacan N, Atli KC, Turkbas OS et al (2017) The effect of dynamic aging on the cyclic stability of Cu73Al16Mn11 shape memory alloy. Mater Sci Eng A 701:352–358CrossRef Babacan N, Atli KC, Turkbas OS et al (2017) The effect of dynamic aging on the cyclic stability of Cu73Al16Mn11 shape memory alloy. Mater Sci Eng A 701:352–358CrossRef
42.
Zurück zum Zitat Young AW, Torgerson T, Ley NA et al (2019) Effects of Sn addition on NiTi shape memory alloys. Shape Mem Superelasticity 5:125–135CrossRef Young AW, Torgerson T, Ley NA et al (2019) Effects of Sn addition on NiTi shape memory alloys. Shape Mem Superelasticity 5:125–135CrossRef
44.
Zurück zum Zitat Frenzel J, Wieczorek A, Opahle I et al (2015) On the effect of alloy composition on martensite start temperatures and latent heats in Ni-Ti-based shape memory alloys. Acta Mater 90:213–231CrossRef Frenzel J, Wieczorek A, Opahle I et al (2015) On the effect of alloy composition on martensite start temperatures and latent heats in Ni-Ti-based shape memory alloys. Acta Mater 90:213–231CrossRef
45.
Zurück zum Zitat Duerig TW, Pelton AR (1994) Ti-Ni shape memory alloys. Mater Prop Handb Titan Alloy 1:1035–1048 Duerig TW, Pelton AR (1994) Ti-Ni shape memory alloys. Mater Prop Handb Titan Alloy 1:1035–1048
Metadaten
Titel
Shape Memory Alloy-Enabled Expandable Space Habitat—Case Studies for Second CASMART Student Design Challenge
verfasst von
Peter E. Caltagirone
Robert W. Wheeler
Othmane Benafan
Glen Bigelow
Ibrahim Karaman
Frederick T. Calkins
Michael L. Kuntz
Pedro B. C. Leal
Douglas E. Nicholson
Hande Ozcan
Aaron P. Stebner
Travis Turner
Avery W. Young
Marcus L. Young
Nima Zamani
Publikationsdatum
02.06.2021
Verlag
Springer US
Erschienen in
Shape Memory and Superelasticity / Ausgabe 2/2021
Print ISSN: 2199-384X
Elektronische ISSN: 2199-3858
DOI
https://doi.org/10.1007/s40830-021-00329-y

Weitere Artikel der Ausgabe 2/2021

Shape Memory and Superelasticity 2/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.