Skip to main content
Erschienen in: Sustainable Water Resources Management 6/2020

01.12.2020 | Original Article

Groundwater recharge and water table levels modelling using remotely sensed data and cloud-computing

verfasst von: Pedro Henrique Jandreice Magnoni, César de Oliveira Ferreira Silva, Rodrigo Lilla Manzione

Erschienen in: Sustainable Water Resources Management | Ausgabe 6/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Hydrological modeling is still a challenge for better management of water resources since most of the established models are based on point data. The advent, improvement and popularization of remote sensing has brought new perspectives to modelers, allowing access to reliable and representative data over vast areas. However, several tools are still under-explored and actually used in the water resources planning and decision-making process, especially groundwater, which is a hidden resource. The objective of this work was to contribute to groundwater dynamics comprehension assessing the suitability of using remote sensing data in the water-budget equation for estimating groundwater recharge (GWR) and its impact at water table depths (WTD) in a representative Guarani Aquifer System (GAS) outcrop area. The GAS is the largest transboundary groundwater reservoir in South America, yet recharge in the GAS outcrop zones is one of the least known hydrological variables. The remotely sensed WTD model was adapted from the Water Table Fluctuation (WTF) method. We used Google Earth Engine to extract time series of precipitation, evapotranspiration, and surface runoff from the Famine Early Warning Systems Network Land Data Assimilation System (FLDAS) dataset for the Angatuba Ecological Station (EEcA), São Paulo State, Brazil, over 2014–2017 period. GWR and WTD were modeled in eight groundwater monitoring wells. Bias analysis of precipitation data from FLDAS were perfomed using rain gauge data (2000–2018). Two GWR scenarios (S1 and S2) were assessed as well as the impact of the specific yield values (\({S}_{\mathrm{y}}\)) in the model outputs. In C1 GWR ranged from 10.8% to 19.69% of rain gauge, although in C2 GWR ranged from 0.9 to 13%. The WTD model showed RMSE values ranging from 0.36 to 1.12 m, showing better results in the shallow wells than the deeper ones. These results are useful for future studies on assessing groundwater recharge in the GAS outcrop zones. This remotely sensed approach can be reproduced in regions where data are scarce or nonexistent.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Anderson RG, Lo M-H, Famiglietti JS (2012) Assessing surface water consumption using remotely-sensed groundwater, evapotranspiration, and precipitation. Geophys Res Lett 39(16):1–6CrossRef Anderson RG, Lo M-H, Famiglietti JS (2012) Assessing surface water consumption using remotely-sensed groundwater, evapotranspiration, and precipitation. Geophys Res Lett 39(16):1–6CrossRef
Zurück zum Zitat Brito AP, Tomassela J, Wahnfried ID, Candido LA, Monteiro MT, Filgueiras SJF (2019) Relação entre precipitação e recarga de águas subterrâneas na Amazônia Central [Relationship between precipitation and groundwater recharge in the Central Amazon]. Ag Sub 34:39–49. https://doi.org/10.14295/ras.v34i1.29616(In Portuguese)CrossRef Brito AP, Tomassela J, Wahnfried ID, Candido LA, Monteiro MT, Filgueiras SJF (2019) Relação entre precipitação e recarga de águas subterrâneas na Amazônia Central [Relationship between precipitation and groundwater recharge in the Central Amazon]. Ag Sub 34:39–49. https://​doi.​org/​10.​14295/​ras.​v34i1.​29616(In Portuguese)CrossRef
Zurück zum Zitat Chatterjee RS, Pranjal P, Jally S, Kumar B, Dadhwal VK, Srivastav SK, Kumar D (2020) Potential groundwater recharge in north-western India vs spaceborne GRACE gravity anomaly based monsoonal groundwater storage change for evaluation of groundwater potential and sustainability. Groundw Sustain Dev 10:100307. https://doi.org/10.1016/j.gsd.2019.100307CrossRef Chatterjee RS, Pranjal P, Jally S, Kumar B, Dadhwal VK, Srivastav SK, Kumar D (2020) Potential groundwater recharge in north-western India vs spaceborne GRACE gravity anomaly based monsoonal groundwater storage change for evaluation of groundwater potential and sustainability. Groundw Sustain Dev 10:100307. https://​doi.​org/​10.​1016/​j.​gsd.​2019.​100307CrossRef
Zurück zum Zitat Fetter CW (1994) Applied hydrogeology, 3rd edn. Prentice-Hall, Upper Saddle River Fetter CW (1994) Applied hydrogeology, 3rd edn. Prentice-Hall, Upper Saddle River
Zurück zum Zitat Freeze RA, Cherry JA (1979) Groundwater. Prentice Hall, Englewood Cliffs, p 604 Freeze RA, Cherry JA (1979) Groundwater. Prentice Hall, Englewood Cliffs, p 604
Zurück zum Zitat Güntner A, Schmidt R, Döll P (2007) Supporting large-scale hydrogeological monitoring and modelling by time-variable gravity data. Hydrogeol J 15:167–170CrossRef Güntner A, Schmidt R, Döll P (2007) Supporting large-scale hydrogeological monitoring and modelling by time-variable gravity data. Hydrogeol J 15:167–170CrossRef
Zurück zum Zitat Healy RW (2010) Estimating groundwater recharge. Cambridge University Press, CambridgeCrossRef Healy RW (2010) Estimating groundwater recharge. Cambridge University Press, CambridgeCrossRef
Zurück zum Zitat Lucas MC, Guanabara RC, Wendland E (2012) Estimativa de recarga subterrânea em área de afloramento do Sistema Aquífero Guarani [Estimating groundwater recharge in the outcrop area of the Guarani Aquifer System. Boletín Geológico y Minero 123(3):311–323 (In Portuguese) Lucas MC, Guanabara RC, Wendland E (2012) Estimativa de recarga subterrânea em área de afloramento do Sistema Aquífero Guarani [Estimating groundwater recharge in the outcrop area of the Guarani Aquifer System. Boletín Geológico y Minero 123(3):311–323 (In Portuguese)
Zurück zum Zitat McNally NASA/GSFC/HSL (2018) FLDAS Noah Land Surface Model L4 Global Monthly 0.1 x 0.1 degree (MERRA-2 and CHIRPS), Greenbelt, MD, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC). Accessed 25 May 2020. DOI: https://doi.org/10.5067/5NHC22T9375G McNally NASA/GSFC/HSL (2018) FLDAS Noah Land Surface Model L4 Global Monthly 0.1 x 0.1 degree (MERRA-2 and CHIRPS), Greenbelt, MD, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC). Accessed 25 May 2020. DOI: https://​doi.​org/​10.​5067/​5NHC22T9375G
Zurück zum Zitat Mogk DW, Bruckner MZ (2020) Geoethics training in the Earth and environmental sciences. Nat Rev Earth Environ 1:81–83CrossRef Mogk DW, Bruckner MZ (2020) Geoethics training in the Earth and environmental sciences. Nat Rev Earth Environ 1:81–83CrossRef
Zurück zum Zitat Nava A, Manzione RL (2015) Resposta de níveis freáticos do Sistema Aquífero Bauru (Formação Adamantina) em função da precipitação e evapotranspiração sob diferentes usos da terra [Water table response at Bauru Aquifer System (Adamantina formation) according to precipitation and evapotranspiration under diferent land uses]. Ag Sub 29:191–201. https://doi.org/10.14295/ras.v29i2.28402(In Portuguese)CrossRef Nava A, Manzione RL (2015) Resposta de níveis freáticos do Sistema Aquífero Bauru (Formação Adamantina) em função da precipitação e evapotranspiração sob diferentes usos da terra [Water table response at Bauru Aquifer System (Adamantina formation) according to precipitation and evapotranspiration under diferent land uses]. Ag Sub 29:191–201. https://​doi.​org/​10.​14295/​ras.​v29i2.​28402(In Portuguese)CrossRef
Zurück zum Zitat Rodell M, Houser PR, Jambor U, Gottschalck J, Mitchell K, Meng C-J, Arsenault K, Cosgrove B, Radakovich J, Bosilovich M, Entin JK, Walker JP, Lohmann D, Toll D (2004) The global land data assimilation system. Bull Am Meteorol Soc 85(3):381–394. https://doi.org/10.1175/BAMS-85-3-381CrossRef Rodell M, Houser PR, Jambor U, Gottschalck J, Mitchell K, Meng C-J, Arsenault K, Cosgrove B, Radakovich J, Bosilovich M, Entin JK, Walker JP, Lohmann D, Toll D (2004) The global land data assimilation system. Bull Am Meteorol Soc 85(3):381–394. https://​doi.​org/​10.​1175/​BAMS-85-3-381CrossRef
Zurück zum Zitat Simon FW, Reginato PAR, Kirchheim RE, Troian GC (2017) Estimativa de recarga do Sistema Aquífero Guarani por meio da aplicação do método da variação da superfície livre na bacia do Rio Ibicuí-RS [Estimation of recharge of the Guarani Aquifer System based on the application of the water-table fluctuation method in the Ibicui River-RS]. Ag Sub 31:12–29. https://doi.org/10.14295/ras.v31i2.28631(In Portuguese)CrossRef Simon FW, Reginato PAR, Kirchheim RE, Troian GC (2017) Estimativa de recarga do Sistema Aquífero Guarani por meio da aplicação do método da variação da superfície livre na bacia do Rio Ibicuí-RS [Estimation of recharge of the Guarani Aquifer System based on the application of the water-table fluctuation method in the Ibicui River-RS]. Ag Sub 31:12–29. https://​doi.​org/​10.​14295/​ras.​v31i2.​28631(In Portuguese)CrossRef
Zurück zum Zitat Szilagyi J, Zlotnik VA, Gates JB, Jozsa J (2011) Mapping mean annual groundwater recharge in the Nebraska Sand Hills, USA. Hydrogeol J 19(8):1503–1513CrossRef Szilagyi J, Zlotnik VA, Gates JB, Jozsa J (2011) Mapping mean annual groundwater recharge in the Nebraska Sand Hills, USA. Hydrogeol J 19(8):1503–1513CrossRef
Zurück zum Zitat Taylor JR (2012) Introdução à análise de erros: o estudo de incertezas em medições físicas [An introduction to error analysis: the study of uncertainties in physical measurements], 2nd edn. Bookman, Porto Alegre Taylor JR (2012) Introdução à análise de erros: o estudo de incertezas em medições físicas [An introduction to error analysis: the study of uncertainties in physical measurements], 2nd edn. Bookman, Porto Alegre
Zurück zum Zitat Taylor R, Scanlon B, Doell P, Rodell M, van Beek R, Wada Y, Longuevergne L, Leblanc M, Famiglietti JS, Edmunds M, Konikow L, Green T, Chen J, Taniguchi M, Bierkens MFP, Macdonald A, Fan Y, Maxwell R, Yechieli Y, Treidel A (2013) Ground water and climate change. Nature Clim Change 3:322–329. https://doi.org/10.1038/nclimate1744CrossRef Taylor R, Scanlon B, Doell P, Rodell M, van Beek R, Wada Y, Longuevergne L, Leblanc M, Famiglietti JS, Edmunds M, Konikow L, Green T, Chen J, Taniguchi M, Bierkens MFP, Macdonald A, Fan Y, Maxwell R, Yechieli Y, Treidel A (2013) Ground water and climate change. Nature Clim Change 3:322–329. https://​doi.​org/​10.​1038/​nclimate1744CrossRef
Metadaten
Titel
Groundwater recharge and water table levels modelling using remotely sensed data and cloud-computing
verfasst von
Pedro Henrique Jandreice Magnoni
César de Oliveira Ferreira Silva
Rodrigo Lilla Manzione
Publikationsdatum
01.12.2020
Verlag
Springer International Publishing
Erschienen in
Sustainable Water Resources Management / Ausgabe 6/2020
Print ISSN: 2363-5037
Elektronische ISSN: 2363-5045
DOI
https://doi.org/10.1007/s40899-020-00469-6

Weitere Artikel der Ausgabe 6/2020

Sustainable Water Resources Management 6/2020 Zur Ausgabe