Skip to main content
Erschienen in: Innovative Infrastructure Solutions 3/2022

01.06.2022 | Review

Use of fly ash in the production of geopolymers: a literature review

verfasst von: Muñoz Pérez Sócrates Pedro, Charca Mamani Samuel, Dávila Gamonal Clara Mercedes, Díaz Román Irina, Reyes Gutiérrez Carlos Guillermo

Erschienen in: Innovative Infrastructure Solutions | Ausgabe 3/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Currently, the high pollution derived from the production of Portland cement is a major problem, therefore the development of alternative cements obtained by processes with lower gas emissions and low energy consumption is a new line of research of worldwide interest. It is proved that geopolymers can replace Portland cement in some application in the construction industry; however there are lack of critical reviews about finding of it during the last years. The main objective is to perform a critical analysis of the existing literature on material sources, physical and chemical characteristics of fly ash, combination, geopolymer manufacture and its properties; to complete that 91 indexed manuscripts from different data sources were analyzed. This review reveals that the optimal burning of the materials improves their characteristics and generates a higher compressive strength of the geopolymers, and it is also concluded that the most practical way to mix the inputs is by combining at the same time the alkaline solutions and the fly ashes. In the case of mortars and concretes, similar and higher values in compressive strength have been reported, but lower values in flexural strength with respect to conventional Portland cement. While alternative activators such as CCA, it is proven that their inclusion does not affect the strength of the mixture, finally it is found that fly ashes can contain heavy metals, and these are encapsulated and immobilized in the geopolymerization process, complying with environmental standards.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Faiz Uddin AS (2016) Mechanical and durability properties of fly ash geopolymer. Int J Sustain Built Environ 5(2):277–287CrossRef Faiz Uddin AS (2016) Mechanical and durability properties of fly ash geopolymer. Int J Sustain Built Environ 5(2):277–287CrossRef
2.
Zurück zum Zitat Zidi Z, Ltifi M, Zafar I (2021) Synthesis and attributes of nano-SiO2 local metakaolin based-geopolymer. J Build Eng 33:101586CrossRef Zidi Z, Ltifi M, Zafar I (2021) Synthesis and attributes of nano-SiO2 local metakaolin based-geopolymer. J Build Eng 33:101586CrossRef
3.
Zurück zum Zitat Chowdhury S, Mohapatra S, Gaur A, Dwivedi G, Soni A (2020) Study of various properties of geopolymer concrete—a review. Mater Today Proc 46:5987–5695 Chowdhury S, Mohapatra S, Gaur A, Dwivedi G, Soni A (2020) Study of various properties of geopolymer concrete—a review. Mater Today Proc 46:5987–5695
4.
Zurück zum Zitat Ramakrishnan S, Pasupathy K, Sanjayan J (2021) Synthesis and properties of thermally enhanced aerated geopolymer concrete using form-stable phase change composite. J Build Eng 40:102756CrossRef Ramakrishnan S, Pasupathy K, Sanjayan J (2021) Synthesis and properties of thermally enhanced aerated geopolymer concrete using form-stable phase change composite. J Build Eng 40:102756CrossRef
5.
Zurück zum Zitat Suwan T (2018) Categories and types of raw materials using in geopolymer cement production: an overview. Solid State Phenom 280:481–486CrossRef Suwan T (2018) Categories and types of raw materials using in geopolymer cement production: an overview. Solid State Phenom 280:481–486CrossRef
6.
Zurück zum Zitat Domingos LFT, Azevedo AGS, Lombardi CT, Strecker K (2020) Corrosion resistance of fly ash-based geopolymer in hydrochloric and sulfuric acid solutions. Cerâmica 66:394–403CrossRef Domingos LFT, Azevedo AGS, Lombardi CT, Strecker K (2020) Corrosion resistance of fly ash-based geopolymer in hydrochloric and sulfuric acid solutions. Cerâmica 66:394–403CrossRef
7.
Zurück zum Zitat FahimHuseien G, Mirza J, Ismail M, Abdulameer Hussein A, Ghoshal S (2017) Geopolymer mortars as sustainable repair material: a comprehensive review. Renew Sustain Energy Rev 80:57–74 FahimHuseien G, Mirza J, Ismail M, Abdulameer Hussein A, Ghoshal S (2017) Geopolymer mortars as sustainable repair material: a comprehensive review. Renew Sustain Energy Rev 80:57–74
8.
Zurück zum Zitat Vargas M, Hermoza Gutierrez M, TupayachyQuispe DP, Almirón J, Huanca ZPK, Velasco López FJ (2020) Manufacture of geopolymeric mortars from ash coming from the ubinas volcano, assessment of this mechanical, physical and microstructural properties. Boliv Quím 37(3):148–159 Vargas M, Hermoza Gutierrez M, TupayachyQuispe DP, Almirón J, Huanca ZPK, Velasco López FJ (2020) Manufacture of geopolymeric mortars from ash coming from the ubinas volcano, assessment of this mechanical, physical and microstructural properties. Boliv Quím 37(3):148–159
9.
Zurück zum Zitat Nawaz M, Heitor A, Sivakumar M (2020) Geopolymers in construction - recent developments. Constr Build Mater 260:120472CrossRef Nawaz M, Heitor A, Sivakumar M (2020) Geopolymers in construction - recent developments. Constr Build Mater 260:120472CrossRef
10.
Zurück zum Zitat Chen L, Komarneni S, Wang H, Zhuang XY, Zhou CH, Tong DS, Yang HM, Yu WH (2016) Fly ash-based geopolymer: clean production, properties and applications. J Clean Prod 125:253–267CrossRef Chen L, Komarneni S, Wang H, Zhuang XY, Zhou CH, Tong DS, Yang HM, Yu WH (2016) Fly ash-based geopolymer: clean production, properties and applications. J Clean Prod 125:253–267CrossRef
11.
Zurück zum Zitat Saxena S, Kumar M, Singh N (2017) Fire resistant properties of alumino silicate geopolymer cement mortars. Mater Today Proc 4(4):5605–5612CrossRef Saxena S, Kumar M, Singh N (2017) Fire resistant properties of alumino silicate geopolymer cement mortars. Mater Today Proc 4(4):5605–5612CrossRef
12.
Zurück zum Zitat Saxena SK, Kumar M, Rai S, Singh NB (2019) Geopolymer cement: synthesis, characterization, properties and applications. Mater Today Proc 15(3):364–370 Saxena SK, Kumar M, Rai S, Singh NB (2019) Geopolymer cement: synthesis, characterization, properties and applications. Mater Today Proc 15(3):364–370
13.
Zurück zum Zitat Kalombe RM, Ojumu VT, Eze CP, Nyale SM, Kevern J, Petrik LF (2020) Fly ash-based geopolymer building materials for green and sustainable development. Materials 13(24):1–17CrossRef Kalombe RM, Ojumu VT, Eze CP, Nyale SM, Kevern J, Petrik LF (2020) Fly ash-based geopolymer building materials for green and sustainable development. Materials 13(24):1–17CrossRef
14.
Zurück zum Zitat Ostad-Ali-Askari K, Shayannejad M, Eslamian S, Zamani F, Shojaei N, Navabpour B, Majidifar Z, Sadri A, Ghasemi-Siani Z, Nourozi H, Vafaei O, Homayouni S-M-A (2017) Chapter no. 18: deficit irrigation: optimization models. In: de Management of drought and water scarcity. Handbook of drought and water scarcity, vol 3. Taylor & Francis Group, pp 373–389 Ostad-Ali-Askari K, Shayannejad M, Eslamian S, Zamani F, Shojaei N, Navabpour B, Majidifar Z, Sadri A, Ghasemi-Siani Z, Nourozi H, Vafaei O, Homayouni S-M-A (2017) Chapter no. 18: deficit irrigation: optimization models. In: de Management of drought and water scarcity. Handbook of drought and water scarcity, vol 3. Taylor & Francis Group, pp 373–389
15.
Zurück zum Zitat Mishra J, Mustakim SM, Patel A, Behera U, Kumar Das S, Kumar Singh S, Kumar Das S (2020) Characterization and utilization of rice husk ash (RHA) in fly ash—blast furnace slag based geopolymer concrete for sustainable future. Mater Today Proc 33(8):5162–5167 Mishra J, Mustakim SM, Patel A, Behera U, Kumar Das S, Kumar Singh S, Kumar Das S (2020) Characterization and utilization of rice husk ash (RHA) in fly ash—blast furnace slag based geopolymer concrete for sustainable future. Mater Today Proc 33(8):5162–5167
16.
Zurück zum Zitat Ostad-Ali-Askar K, Su R, Liu L (2018) Water resources and climate change. J Water Clim Change 9(2):239CrossRef Ostad-Ali-Askar K, Su R, Liu L (2018) Water resources and climate change. J Water Clim Change 9(2):239CrossRef
17.
Zurück zum Zitat Li Z, Fei M-E, Huyan C, Shi X (2020) Nano-engineered, fly ash-based geopolymer composites: an overview. Resour Conserv Recycl 168:105334CrossRef Li Z, Fei M-E, Huyan C, Shi X (2020) Nano-engineered, fly ash-based geopolymer composites: an overview. Resour Conserv Recycl 168:105334CrossRef
18.
Zurück zum Zitat Mayhoub OA, Mohsen A, Alharbi YR, Abadel AA, Habib A, Kohail M (2021) Effect of curing regimes on chloride binding capacity of geopolymer. Ain Shams Eng J 12(2):3659–3668CrossRef Mayhoub OA, Mohsen A, Alharbi YR, Abadel AA, Habib A, Kohail M (2021) Effect of curing regimes on chloride binding capacity of geopolymer. Ain Shams Eng J 12(2):3659–3668CrossRef
19.
Zurück zum Zitat Karatas M, Dener M, Mohabbi M, Benli A (2019) A study on the compressive strength and microstructure characteristic of alkali-activated metakaolin cement. Rev Materia. 24(4):e-12507 Karatas M, Dener M, Mohabbi M, Benli A (2019) A study on the compressive strength and microstructure characteristic of alkali-activated metakaolin cement. Rev Materia. 24(4):e-12507
20.
Zurück zum Zitat Selmani S, Sdiri A, Rossignol S, Joussein E (2017) Effects of metakaolin addition on geopolymer prepared from natural. Appl Clay Sc 146:457–467CrossRef Selmani S, Sdiri A, Rossignol S, Joussein E (2017) Effects of metakaolin addition on geopolymer prepared from natural. Appl Clay Sc 146:457–467CrossRef
21.
Zurück zum Zitat Hoy M, Horpibulsuk S, Rachan R, Chinkulkijniwat A, Arulrajah A (2016) Recycled asphalt pavement—fly ash geopolymers as a sustainable pavement base material: strength and toxic leaching investigations. Sci Total Environ 573:19–26CrossRef Hoy M, Horpibulsuk S, Rachan R, Chinkulkijniwat A, Arulrajah A (2016) Recycled asphalt pavement—fly ash geopolymers as a sustainable pavement base material: strength and toxic leaching investigations. Sci Total Environ 573:19–26CrossRef
22.
Zurück zum Zitat Siriwan C (2017) Effect of fly ash on compressive strength of metakaolin based geopolymer. Appl Mech Mater 873:170–175CrossRef Siriwan C (2017) Effect of fly ash on compressive strength of metakaolin based geopolymer. Appl Mech Mater 873:170–175CrossRef
23.
Zurück zum Zitat Mabroum S, Moukannaa S, El Machi A, Taha Y, Benzaazoua M, Hakkou R (2020) Mine wastes based geopolymers: a critical review. Clean Eng Technol 1:100014CrossRef Mabroum S, Moukannaa S, El Machi A, Taha Y, Benzaazoua M, Hakkou R (2020) Mine wastes based geopolymers: a critical review. Clean Eng Technol 1:100014CrossRef
24.
Zurück zum Zitat Wattimena OK, Antoni A, Hardjito D (2017) A review on the effect of fly ash characteristics and their variations on the synthesis of fly ash based geopolymer. AIP Conf Proc 1887(1):020041CrossRef Wattimena OK, Antoni A, Hardjito D (2017) A review on the effect of fly ash characteristics and their variations on the synthesis of fly ash based geopolymer. AIP Conf Proc 1887(1):020041CrossRef
25.
Zurück zum Zitat Leite Vasconcelos DC, Vasconcelos WL (2019) Synthetic aluminosilicates for geopolymer production. Mater Res 22(2):e20180508CrossRef Leite Vasconcelos DC, Vasconcelos WL (2019) Synthetic aluminosilicates for geopolymer production. Mater Res 22(2):e20180508CrossRef
26.
Zurück zum Zitat Cárdenas Pulido J, Aperador Chaparro JW, Aperador Chaparro W, Pinzón Cárdenas MJ, Pinzón Cárdenas MJ, Ospina Guzman MÁ (2019) Cenizas de cascarilla de arroz para la activación alcalina de cementantes binarios (ceniza volante/escoria de alto horno). Matéria Cárdenas Pulido J, Aperador Chaparro JW, Aperador Chaparro W, Pinzón Cárdenas MJ, Pinzón Cárdenas MJ, Ospina Guzman MÁ (2019) Cenizas de cascarilla de arroz para la activación alcalina de cementantes binarios (ceniza volante/escoria de alto horno). Matéria
27.
Zurück zum Zitat Burduhos Nergis D, Abdullah AB, Vizureanu P, Tahir M (2018) Geopolymers and their uses: review. IOP Conf Ser Mater Sci Eng 374:012019CrossRef Burduhos Nergis D, Abdullah AB, Vizureanu P, Tahir M (2018) Geopolymers and their uses: review. IOP Conf Ser Mater Sci Eng 374:012019CrossRef
28.
Zurück zum Zitat Khater HM (2019) Development and characterization of sustainable. Cerâmica 65:153CrossRef Khater HM (2019) Development and characterization of sustainable. Cerâmica 65:153CrossRef
29.
Zurück zum Zitat Arruda Pereiraa M, Leite Vasconcelos DC, Vasconcelos (2019) Synthetic aluminosilicates for geopolymer production. Mater Res 22(2 Arruda Pereiraa M, Leite Vasconcelos DC, Vasconcelos (2019) Synthetic aluminosilicates for geopolymer production. Mater Res 22(2
30.
Zurück zum Zitat Mohamed G, Djamila B (2018) Physical and mechanical properties of cement mortar made with brick waste. MATEC Web Conf 149:1–5CrossRef Mohamed G, Djamila B (2018) Physical and mechanical properties of cement mortar made with brick waste. MATEC Web Conf 149:1–5CrossRef
31.
Zurück zum Zitat Guendouz M, Boukhelkhal D, Bourdot A, Babachikh O, Hamadouche A (2020) The effect of ceramic wastes on physical and mechanical properties of eco-friendly flowable sand concrete. In: (ed), Advanced Ceramic Materials. IntechOpen Guendouz M, Boukhelkhal D, Bourdot A, Babachikh O, Hamadouche A (2020) The effect of ceramic wastes on physical and mechanical properties of eco-friendly flowable sand concrete. In: (ed), Advanced Ceramic Materials. IntechOpen
32.
Zurück zum Zitat Kastiukas G, Ruan S, Liang S, Zhou X (2020) Development of precast geopolymer concrete via oven and microwave radiation curing with an environmental assessment. J Clean Prod 255:120290CrossRef Kastiukas G, Ruan S, Liang S, Zhou X (2020) Development of precast geopolymer concrete via oven and microwave radiation curing with an environmental assessment. J Clean Prod 255:120290CrossRef
33.
Zurück zum Zitat Fadhil Nurruddin M, Haruna S, Mohammed BS, GalalSha’aban I (2018) Methods of curing geopolymer concrete: a review. Int J Adv Appl Sci 5:31–36CrossRef Fadhil Nurruddin M, Haruna S, Mohammed BS, GalalSha’aban I (2018) Methods of curing geopolymer concrete: a review. Int J Adv Appl Sci 5:31–36CrossRef
34.
Zurück zum Zitat Mehta A, Siddique R (2016) An overview of geopolymers derived from industrial by-products. Constr Build Mater 127:183–198CrossRef Mehta A, Siddique R (2016) An overview of geopolymers derived from industrial by-products. Constr Build Mater 127:183–198CrossRef
35.
Zurück zum Zitat Garces JIT, Dollente IJ, Beltran AB, Tan RR, Promentilla MAB (2021) Life cycle assessment of self-healing geopolymer concrete. Clean Eng Technol 4:100147CrossRef Garces JIT, Dollente IJ, Beltran AB, Tan RR, Promentilla MAB (2021) Life cycle assessment of self-healing geopolymer concrete. Clean Eng Technol 4:100147CrossRef
36.
Zurück zum Zitat Toniolo N, Boccaccini AR (2017) Fly ash-based geopolymers containing added silicate waste. A review. Ceram Int 43:14545CrossRef Toniolo N, Boccaccini AR (2017) Fly ash-based geopolymers containing added silicate waste. A review. Ceram Int 43:14545CrossRef
37.
Zurück zum Zitat Haozhe G, Peng Y, Baifa Z, Qiang W, Liangliang D, Dong L (2020) Realization of high-percentage addition of fly ash in the materials for the preparation of geopolymer derived from acid-activated metakaolin. J Clean Prod 285:125430 Haozhe G, Peng Y, Baifa Z, Qiang W, Liangliang D, Dong L (2020) Realization of high-percentage addition of fly ash in the materials for the preparation of geopolymer derived from acid-activated metakaolin. J Clean Prod 285:125430
38.
Zurück zum Zitat Majhi RK, Padhy A, Nayak AN (2021) Performance of structural lightweight concrete produced by utilizing high volume of fly ash cenosphere and sintered fly ash aggregate with silica fume. Clean Eng Technol 3:100121CrossRef Majhi RK, Padhy A, Nayak AN (2021) Performance of structural lightweight concrete produced by utilizing high volume of fly ash cenosphere and sintered fly ash aggregate with silica fume. Clean Eng Technol 3:100121CrossRef
39.
Zurück zum Zitat Amran M, Debbarma S, Ozbakkaloglu T (2021) Fly ash-based eco-friendly geopolymer concrete: a critical review of the long-term durability properties. Constr Build Mater 270:1–23CrossRef Amran M, Debbarma S, Ozbakkaloglu T (2021) Fly ash-based eco-friendly geopolymer concrete: a critical review of the long-term durability properties. Constr Build Mater 270:1–23CrossRef
40.
Zurück zum Zitat Alyousef R, Alabduljabbar H, El-Zeadani M, Amran YM (2020) Clean production and properties of geopolymer concrete; a review. J Clean Prod 251:119679CrossRef Alyousef R, Alabduljabbar H, El-Zeadani M, Amran YM (2020) Clean production and properties of geopolymer concrete; a review. J Clean Prod 251:119679CrossRef
41.
Zurück zum Zitat Gökhan K, Gökhan G (2019) Investigation of usability of quarry dust waste in fly ash-based geopolymer adhesive mortar production. Constr Build Mater 217:498–506CrossRef Gökhan K, Gökhan G (2019) Investigation of usability of quarry dust waste in fly ash-based geopolymer adhesive mortar production. Constr Build Mater 217:498–506CrossRef
42.
Zurück zum Zitat Guendouz M, Boukhelkhal D (2018) Properties of dune sand concrete containing coffee waste. EDP sciences 149:01039 Guendouz M, Boukhelkhal D (2018) Properties of dune sand concrete containing coffee waste. EDP sciences 149:01039
43.
Zurück zum Zitat Singh N, Middendorf B (2020) Geopolymers as an alternative to Portland cement: an overview. Constr Build Mater 237:1155CrossRef Singh N, Middendorf B (2020) Geopolymers as an alternative to Portland cement: an overview. Constr Build Mater 237:1155CrossRef
44.
45.
Zurück zum Zitat Shehata N, Sayed ET, Abdelkareem MA (2021) Recent progress in environmentally friendly geopolymers: a review. Sci Total Environ 762:143166CrossRef Shehata N, Sayed ET, Abdelkareem MA (2021) Recent progress in environmentally friendly geopolymers: a review. Sci Total Environ 762:143166CrossRef
46.
Zurück zum Zitat KumerSaha A (2018) Effect of class F fly ash on the durability properties of concrete. Sustain Environ Res 28(1):25–31CrossRef KumerSaha A (2018) Effect of class F fly ash on the durability properties of concrete. Sustain Environ Res 28(1):25–31CrossRef
47.
Zurück zum Zitat Shang M, Zhao M, Zhang G, Mann D, Lumsden K, Tao M (2016) Durability of red mud-fly ash based geopolymer and leaching behavior of heavy metals in sulfuric acid solutions and deionized water. Constr Build Mater 124:373–382CrossRef Shang M, Zhao M, Zhang G, Mann D, Lumsden K, Tao M (2016) Durability of red mud-fly ash based geopolymer and leaching behavior of heavy metals in sulfuric acid solutions and deionized water. Constr Build Mater 124:373–382CrossRef
48.
Zurück zum Zitat Bobirică C, Shim J-H, Park J-Y (2017) Leaching behavior of fly ash-waste glass and fly ash-slag-waste glass-based geopolymers. Ceram Int 44:5886–5893CrossRef Bobirică C, Shim J-H, Park J-Y (2017) Leaching behavior of fly ash-waste glass and fly ash-slag-waste glass-based geopolymers. Ceram Int 44:5886–5893CrossRef
49.
Zurück zum Zitat Nurtanto D, Junaidi I, Wahyuningtyas W, Yunarni W (2020) Comparison addition of rice husk ash and roof tile ash on fly ash-based geopolymer cement with Portland cement. Revista Ingeniería de Construcción 35:287–294CrossRef Nurtanto D, Junaidi I, Wahyuningtyas W, Yunarni W (2020) Comparison addition of rice husk ash and roof tile ash on fly ash-based geopolymer cement with Portland cement. Revista Ingeniería de Construcción 35:287–294CrossRef
50.
Zurück zum Zitat Valencia-Saavedra W, Mejía de Gutiérrez R, Gordillo M (2018) Geopolymeric concretes based on fly ash with high unburned content. Constr Build Mater 165:697–706CrossRef Valencia-Saavedra W, Mejía de Gutiérrez R, Gordillo M (2018) Geopolymeric concretes based on fly ash with high unburned content. Constr Build Mater 165:697–706CrossRef
51.
Zurück zum Zitat Cong P, Cheng Y (2021) Advances in geopolymer materials: a comprehensive review. J Traffic Transp Eng 351:283–314 Cong P, Cheng Y (2021) Advances in geopolymer materials: a comprehensive review. J Traffic Transp Eng 351:283–314
52.
Zurück zum Zitat Hassan A, Arif M, Shariq M (2019) Use of geopolymer concrete for a cleaner and sustainable environment. J Clean Prod 223:704–728CrossRef Hassan A, Arif M, Shariq M (2019) Use of geopolymer concrete for a cleaner and sustainable environment. J Clean Prod 223:704–728CrossRef
53.
Zurück zum Zitat VillaquiránCaicedo MA, Rodríguez ED, Mejía De Gutiérrez R (2015) Microstructure assessment of metakaolin based-geopolymers produced with alternative silica sources exposed to high temperatures. Ingeniería Investigación, Tecnología 16(1):113–122 VillaquiránCaicedo MA, Rodríguez ED, Mejía De Gutiérrez R (2015) Microstructure assessment of metakaolin based-geopolymers produced with alternative silica sources exposed to high temperatures. Ingeniería Investigación, Tecnología 16(1):113–122
54.
Zurück zum Zitat Carter K, Deaver E, Ziehl P, Assi LN (2020) Review of availability of source materials for geopolymer/sustainable concrete. J Clean Prod 263:121477CrossRef Carter K, Deaver E, Ziehl P, Assi LN (2020) Review of availability of source materials for geopolymer/sustainable concrete. J Clean Prod 263:121477CrossRef
55.
Zurück zum Zitat Apolonio PH, Lima JS, Marinho EP, Nobrega AC, Freitas JC, Martinelli AE (2020) Produção de geopolímeros utilizando cinza da casca de arroz como fonte complementar de sílica. Cerâmica 66:172–178CrossRef Apolonio PH, Lima JS, Marinho EP, Nobrega AC, Freitas JC, Martinelli AE (2020) Produção de geopolímeros utilizando cinza da casca de arroz como fonte complementar de sílica. Cerâmica 66:172–178CrossRef
56.
Zurück zum Zitat Nuaklong P, Janprasit K, Jongvivatsakul P (2021) Enhancement of strengths of high-calcium fly ash geopolymer containing borax with rice husk ash. J Build Eng 40:102762CrossRef Nuaklong P, Janprasit K, Jongvivatsakul P (2021) Enhancement of strengths of high-calcium fly ash geopolymer containing borax with rice husk ash. J Build Eng 40:102762CrossRef
57.
Zurück zum Zitat Torres-Carrasco M, Puertas F (2017) Alkaline activation of different aluminosilicates as an alternative to Portland cement: alkali activated cements or geopolymers. Revista Ingeniería de Construcción Torres-Carrasco M, Puertas F (2017) Alkaline activation of different aluminosilicates as an alternative to Portland cement: alkali activated cements or geopolymers. Revista Ingeniería de Construcción
58.
Zurück zum Zitat Villaquirán-Caicedo MA, Mejía-de Gutiérrez R (2015) Synthesis of ternary geopolymers based on metakaolin, boiler slag and rice husk ash. DYNA Villaquirán-Caicedo MA, Mejía-de Gutiérrez R (2015) Synthesis of ternary geopolymers based on metakaolin, boiler slag and rice husk ash. DYNA
59.
Zurück zum Zitat Mohajerani A, Suter D, Bailey TJ, Song T, Arulrajah A, Horpibulsuk S, Law D (2019) Recycling waste materials in geopolymer concrete. Clean Technol Environ Policy 21:493–515CrossRef Mohajerani A, Suter D, Bailey TJ, Song T, Arulrajah A, Horpibulsuk S, Law D (2019) Recycling waste materials in geopolymer concrete. Clean Technol Environ Policy 21:493–515CrossRef
60.
Zurück zum Zitat Singh K (2020) Experimental study on metakolin and baggashe ash based geopolymer concrete. Mater Today Proc 37:3289–3295CrossRef Singh K (2020) Experimental study on metakolin and baggashe ash based geopolymer concrete. Mater Today Proc 37:3289–3295CrossRef
61.
Zurück zum Zitat Laxman Yadav A, Sairam V, Muruganandam L, Srinivasan K (2020) Synthesis and characterization of geopolymer from metakaolin and sugarcane bagasse ash. Constr Build Mater 258:119231CrossRef Laxman Yadav A, Sairam V, Muruganandam L, Srinivasan K (2020) Synthesis and characterization of geopolymer from metakaolin and sugarcane bagasse ash. Constr Build Mater 258:119231CrossRef
62.
Zurück zum Zitat Liang G, Zhu H, Zhang Z, Wu Q (2019) Effect of rice husk ash addition on the compressive strength and thermal stability of metakaolin based geopolymer. Constr Build Mater 222:872–881CrossRef Liang G, Zhu H, Zhang Z, Wu Q (2019) Effect of rice husk ash addition on the compressive strength and thermal stability of metakaolin based geopolymer. Constr Build Mater 222:872–881CrossRef
63.
Zurück zum Zitat Ionescu BA, Lӑzӑrescu A (2020) A review regarding the use of natural and industrial by-products in the production of geopolymer binders. Mater Sci Eng 877:012033 Ionescu BA, Lӑzӑrescu A (2020) A review regarding the use of natural and industrial by-products in the production of geopolymer binders. Mater Sci Eng 877:012033
64.
Zurück zum Zitat Hosan A, Haque S, Shaikh F (2016) Compressive behaviour of sodium and potassium activators synthetized fly ash geopolymer at elevated temperatures: a comparative study. J Build Eng 8:123–130CrossRef Hosan A, Haque S, Shaikh F (2016) Compressive behaviour of sodium and potassium activators synthetized fly ash geopolymer at elevated temperatures: a comparative study. J Build Eng 8:123–130CrossRef
65.
Zurück zum Zitat Gallego H, Toro E, Rojas R (2020) State of the art: process of Pozzolan formation from ash and its applications. Constr Eng J 35(2):119–125 Gallego H, Toro E, Rojas R (2020) State of the art: process of Pozzolan formation from ash and its applications. Constr Eng J 35(2):119–125
66.
Zurück zum Zitat Hu L, He Z, Zhang S (2020) Sustainable use of rice husk ash in cement-based materials: environmental evaluation and performance improvement. J Clean Prod 264:121744CrossRef Hu L, He Z, Zhang S (2020) Sustainable use of rice husk ash in cement-based materials: environmental evaluation and performance improvement. J Clean Prod 264:121744CrossRef
67.
Zurück zum Zitat VillaquiránCaicedo MA, Gutiérrez RM, Gallego N (2017) A novel MK-based geopolymer composite activated with rice husk ash and KOH: performance at high temperature. Mater Constr 67(326):117CrossRef VillaquiránCaicedo MA, Gutiérrez RM, Gallego N (2017) A novel MK-based geopolymer composite activated with rice husk ash and KOH: performance at high temperature. Mater Constr 67(326):117CrossRef
68.
Zurück zum Zitat Khankhaje E, WaridHussin M, Mirza J, Rafieizonooz M, Razman Salim M, Chin Siong H, MohdWarida MN (2016) On blended cement and geopolymer concretes containing palm oil fuel ash. Mater Des 89:385–398CrossRef Khankhaje E, WaridHussin M, Mirza J, Rafieizonooz M, Razman Salim M, Chin Siong H, MohdWarida MN (2016) On blended cement and geopolymer concretes containing palm oil fuel ash. Mater Des 89:385–398CrossRef
69.
Zurück zum Zitat Zhanga Z, Zhu H, Zhou C, Wang H (2016) Geopolymer from kaolin in China: an overview. Appl Clay Sci 119:31–41CrossRef Zhanga Z, Zhu H, Zhou C, Wang H (2016) Geopolymer from kaolin in China: an overview. Appl Clay Sci 119:31–41CrossRef
70.
Zurück zum Zitat García-Lodeiro I, Fernández-Jiménez A, Palomo A (2015) Cementos híbridos de bajo impacto ambiental: Reducción del factor clinker. Revista ALCONPAT 5:1–17CrossRef García-Lodeiro I, Fernández-Jiménez A, Palomo A (2015) Cementos híbridos de bajo impacto ambiental: Reducción del factor clinker. Revista ALCONPAT 5:1–17CrossRef
71.
Zurück zum Zitat Zada Farhan K, Megat Johari MA, Demirboğa R (2020) Assessment of important parameters involved in the synthesis of geopolymer composites: a review. Constr Build Mater 264:120276CrossRef Zada Farhan K, Megat Johari MA, Demirboğa R (2020) Assessment of important parameters involved in the synthesis of geopolymer composites: a review. Constr Build Mater 264:120276CrossRef
72.
Zurück zum Zitat Asim N, Alghoul M, Mohammad M, Hassan Amin M, Akhtaruzzaman M, Amin N, Sopian K (2019) Emerging sustainable solutions for depollution: Geopolymers. Constr Build Mater 199:540–548CrossRef Asim N, Alghoul M, Mohammad M, Hassan Amin M, Akhtaruzzaman M, Amin N, Sopian K (2019) Emerging sustainable solutions for depollution: Geopolymers. Constr Build Mater 199:540–548CrossRef
73.
Zurück zum Zitat Teewara S, Mizi F (2016) Effect of manufacturing process on the mechanisms and mechanical properties of fly ash based geopolymer in ambient curing temperature. Mater Manuf Process 32(5):461–467 Teewara S, Mizi F (2016) Effect of manufacturing process on the mechanisms and mechanical properties of fly ash based geopolymer in ambient curing temperature. Mater Manuf Process 32(5):461–467
74.
Zurück zum Zitat Naghizadeh A, Ekolu S, Musonda I (2020) High temperature heat-treatment (HTHT) for partial mitigation of alkali attack in hardened fly ash geopolymer binders. Case Stud Constr Mater 12:1–11 Naghizadeh A, Ekolu S, Musonda I (2020) High temperature heat-treatment (HTHT) for partial mitigation of alkali attack in hardened fly ash geopolymer binders. Case Stud Constr Mater 12:1–11
75.
Zurück zum Zitat Oviedo Sánchez K, Mejía de Gutiérrez R (2019) Mortero geopolimérico para uso potencial como recubrimiento en concreto. Revista EIA 16(31):159–170CrossRef Oviedo Sánchez K, Mejía de Gutiérrez R (2019) Mortero geopolimérico para uso potencial como recubrimiento en concreto. Revista EIA 16(31):159–170CrossRef
76.
Zurück zum Zitat de Sazevedo AG, Strecker K, de Araújo Jr AG, da Silva CA (2017) Produção de geopolímeros à base de cinza volante usando soluções ativadoras com diferentes composições de Na2O e Na2SiO3. Cerâmica 63:143–151CrossRef de Sazevedo AG, Strecker K, de Araújo Jr AG, da Silva CA (2017) Produção de geopolímeros à base de cinza volante usando soluções ativadoras com diferentes composições de Na2O e Na2SiO3. Cerâmica 63:143–151CrossRef
77.
Zurück zum Zitat Khan MI, Azizli K, Sufian S, Man Z (2015) Sodium silicate-free geopolymers as coating materials: effects of Na/Al and water/solid ratios on adhesion strength. Ceram Int 41(2):2794–2805CrossRef Khan MI, Azizli K, Sufian S, Man Z (2015) Sodium silicate-free geopolymers as coating materials: effects of Na/Al and water/solid ratios on adhesion strength. Ceram Int 41(2):2794–2805CrossRef
78.
Zurück zum Zitat Geraldo RH, Ouellet-Plamondon CM, Muianga EAD, Camarini G (2017) Alkali-activated binder containing wastes: a study with rice husk ash and red ceramic. Cerâmica 63:44–51CrossRef Geraldo RH, Ouellet-Plamondon CM, Muianga EAD, Camarini G (2017) Alkali-activated binder containing wastes: a study with rice husk ash and red ceramic. Cerâmica 63:44–51CrossRef
79.
Zurück zum Zitat MagdalenoLópez C, Pérez Bueno J, Mendoza López M, ReyesAraiza J, Manzano-Ramírez A (2019) Fly ash lightweight material of the cellular concrete type using sol-gel and thermal treatment. Constr Build Mater 206:512–518CrossRef MagdalenoLópez C, Pérez Bueno J, Mendoza López M, ReyesAraiza J, Manzano-Ramírez A (2019) Fly ash lightweight material of the cellular concrete type using sol-gel and thermal treatment. Constr Build Mater 206:512–518CrossRef
80.
Zurück zum Zitat Singh B, Ishwarya G, Gupta M, Bhattacharyya S (2015) Geopolymer concrete: a review of some recent developments. Constr Build Mater 85:81–82CrossRef Singh B, Ishwarya G, Gupta M, Bhattacharyya S (2015) Geopolymer concrete: a review of some recent developments. Constr Build Mater 85:81–82CrossRef
81.
Zurück zum Zitat Shehab HK, Eisa AS, Wahba AM (2016) Mechanical properties of fly ash based geopolymer concrete with full and partial cement replacement. Constr Build Mater 126:560–565CrossRef Shehab HK, Eisa AS, Wahba AM (2016) Mechanical properties of fly ash based geopolymer concrete with full and partial cement replacement. Constr Build Mater 126:560–565CrossRef
82.
Zurück zum Zitat Nindyawati A, Umniati BS, Risdanareni P (2017) Flexural test of fly ash based geopolimer concrete beams. MATEC Web Conf 97:1–8CrossRef Nindyawati A, Umniati BS, Risdanareni P (2017) Flexural test of fly ash based geopolimer concrete beams. MATEC Web Conf 97:1–8CrossRef
83.
Zurück zum Zitat Noda Livi C, LonguiniRepette W (2015) Ligante geopolimérico produzido com cinza. Ambiente Construído 15:7–18CrossRef Noda Livi C, LonguiniRepette W (2015) Ligante geopolimérico produzido com cinza. Ambiente Construído 15:7–18CrossRef
84.
Zurück zum Zitat Luan C, Shi X, Zhang K, Ufashev N, Yang F, Dai J, Wang Q (2020) A mix design method of fly ash geopolymer concrete based on factors analysis. Constr Build Mater 272:54 Luan C, Shi X, Zhang K, Ufashev N, Yang F, Dai J, Wang Q (2020) A mix design method of fly ash geopolymer concrete based on factors analysis. Constr Build Mater 272:54
85.
Zurück zum Zitat Billong N, Kinuthia J, Oti J, ChinjeMelo U (2018) Performance of sodium silicate free geopolymers from metakaolin (MK) and Rice Husk Ash (RHA): effect on tensile strength and microstructure. Constr Build Mater 189:307–313CrossRef Billong N, Kinuthia J, Oti J, ChinjeMelo U (2018) Performance of sodium silicate free geopolymers from metakaolin (MK) and Rice Husk Ash (RHA): effect on tensile strength and microstructure. Constr Build Mater 189:307–313CrossRef
86.
Zurück zum Zitat Fu Q, Xu W, Zhao X, Bu M, Yuan Q, Niu D (2021) The microstructure and durability of fly ash-based geopolymer concrete: a review. Ceram Int 47(21):29550–29566CrossRef Fu Q, Xu W, Zhao X, Bu M, Yuan Q, Niu D (2021) The microstructure and durability of fly ash-based geopolymer concrete: a review. Ceram Int 47(21):29550–29566CrossRef
87.
Zurück zum Zitat Lingyu T, Dongpo H, Jianing Z, Hongguang W (2021) Durability of geopolymers and geopolymer concretes: a review. Rev Adv Mater Sci 60(1):1–14CrossRef Lingyu T, Dongpo H, Jianing Z, Hongguang W (2021) Durability of geopolymers and geopolymer concretes: a review. Rev Adv Mater Sci 60(1):1–14CrossRef
88.
Zurück zum Zitat Chen Y, Zhou X, Wan S, Zheng R, Tong J, Hou H, Wang T (2019) Synthesis and characterization of geopolymer composites based on gasification coal fly ash and steel slag. Gasif Coal Fly Ash Steel Slag 211:646–658 Chen Y, Zhou X, Wan S, Zheng R, Tong J, Hou H, Wang T (2019) Synthesis and characterization of geopolymer composites based on gasification coal fly ash and steel slag. Gasif Coal Fly Ash Steel Slag 211:646–658
89.
Zurück zum Zitat Martínez López C, Mejía Arcila JM, Torres Agredo J, Mejía de Gutiérrez R (2015) Evaluación de las características de toxicidad de dos residuos industriales valorizados mediante procesos de geopolimerización. DYNA Martínez López C, Mejía Arcila JM, Torres Agredo J, Mejía de Gutiérrez R (2015) Evaluación de las características de toxicidad de dos residuos industriales valorizados mediante procesos de geopolimerización. DYNA
90.
Zurück zum Zitat Jin M, Zheng Z, Sun Y, Chen L, Jin Z (2016) Resistance of metakaolin-MSWI fly ash based geopolymer to acid and alkaline environments. J Non-Cryst Solids 450:116–122CrossRef Jin M, Zheng Z, Sun Y, Chen L, Jin Z (2016) Resistance of metakaolin-MSWI fly ash based geopolymer to acid and alkaline environments. J Non-Cryst Solids 450:116–122CrossRef
91.
Zurück zum Zitat Bobirică C, Ho Shim J, Yang Park J (2017) Leaching behavior of fly ash-waste glass and fly ash-slag-waste glass-based geopolymers. Ceram Int 44:1–28 Bobirică C, Ho Shim J, Yang Park J (2017) Leaching behavior of fly ash-waste glass and fly ash-slag-waste glass-based geopolymers. Ceram Int 44:1–28
Metadaten
Titel
Use of fly ash in the production of geopolymers: a literature review
verfasst von
Muñoz Pérez Sócrates Pedro
Charca Mamani Samuel
Dávila Gamonal Clara Mercedes
Díaz Román Irina
Reyes Gutiérrez Carlos Guillermo
Publikationsdatum
01.06.2022
Verlag
Springer International Publishing
Erschienen in
Innovative Infrastructure Solutions / Ausgabe 3/2022
Print ISSN: 2364-4176
Elektronische ISSN: 2364-4184
DOI
https://doi.org/10.1007/s41062-022-00835-7

Weitere Artikel der Ausgabe 3/2022

Innovative Infrastructure Solutions 3/2022 Zur Ausgabe