Skip to main content
Erschienen in: Granular Computing 1/2017

05.07.2016 | Original Paper

Robust decision making using intuitionistic fuzzy numbers

verfasst von: Sujit Das, Samarjit Kar, Tandra Pal

Erschienen in: Granular Computing | Ausgabe 1/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Robustness is defined as a system’s ability to withstand under disturbances. In real-life applications, where problem parameters are often uncertain, incorporating robustness in decision making is important. In this study, we propose a robust decision making (RDM) approach using intuitionistic trapezoidal fuzzy number (ITrFN). Fuzzy linguistic quantifier (FLQ) is used in the proposed approach to compute the uncertain optimism degree of the decision maker. Initially, decision maker expresses his/her opinion using linguistic terms, which are presented numerically using ITrFNs. The aggregated ITrFN for each of the alternatives is evaluated using intuitionistic trapezoidal fuzzy ordered weighted averaging operator (ITrFOWA). Then, we find out the expected value and variance of the aggregated ITrFN for each alternative, which are subsequently used for robust decision making. A collective measure of these two values of each alternative is considered to find an interval of the corresponding alternative, known as optimal interval. Alternative with maximum optimal interval is selected as the robust solution. Applicability of the proposed approach has been demonstrated on a site selection problem of nuclear power plant. Site selection for installing a nuclear power plant has become a crucial problem throughout the world, especially after the Fukushima (2011) and Chernobyl (1986) nuclear disasters.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
  1. Antonelli M, Ducange P, Lazzerini B, Marcelloni F (2016) Multi-objective evolutionary design of granular rule-based classifiers. Granul Comput 1:37–58View Article
  2. Apolloni B, Bassis S, Rota J, Galliani GL, Gioia M, Ferrari L (2016) A neurofuzzy algorithm for learning from complex granules. Granul Comput 1
  3. Atanassov KT (1986) Intuitionistic fuzzy sets. Fuzzy Sets Syst 20:87–96MathSciNetView ArticleMATH
  4. Atanassov KT (1999) Intuitionistic fuzzy sets. In: Intuitionistic Fuzzy sets, volume 35 of studies in fuzziness and soft computing. Physica-Verlag, Heidelberg, pp 1–137
  5. Bargiela A, Pedrycz W (2012) Granular computing: an introduction, vol 717. Springer Science and Business Media, BerlinMATH
  6. Bui LT, Abbass HA, Barlow M, Bender A (2012) Robustness against the decision-maker’s attitude to risk in problems with conflicting objectives. IEEE Trans Evolut Comput 6(1):1–19View Article
  7. Cabrerizo FJ, Herrera-Viedma E, Pedrycz W (2013) A method based on pso and granular computing of linguistic information to solve group decision making problems defined in heterogeneous contexts. Eur J Oper Res 230(3):624–633MathSciNetView ArticleMATH
  8. Chen C-T (2000) Extensions of the topsis for group decision-making under fuzzy environment. Fuzzy Sets Syst 114(1):1–9MathSciNetView ArticleMATH
  9. Chen S-M, Lee L-W (2010) Fuzzy multiple attributes group decision-making based on the interval type-2 topsis method. Expert Syst Appl 37(4):2790–2798View Article
  10. Ciucci D (2016) A triarchic theory of granular computing. Granul Comput 1:145–157View Article
  11. Deb K, Gupta H (2006) Introducing robustness in multi-objective optimization. Evolut Comput 14(4):463–494View Article
  12. Dey A, Pradhan R, Pal A, Pal T (2015) The fuzzy robust graph coloring problem. In: Proceedings of the 3rd international conference on frontiers of intelligent computing: theory and applications (FICTA) 2014, pp 805–813. Springer
  13. Dubois D, Prade H (2016) Bridging gaps between several forms of granular computing. Granul Comput 1:115–126View Article
  14. Ford CK, Keeney RL, Kirkwood CW (1979) Evaluating methodologies: a procedure and application to nuclear power plant siting methodologies. Manag Sci 25(1):1–10View Article
  15. Gaspar-Cunha A, Covas JA (2008) Robustness in multi-objective optimization using evolutionary algorithms. Comput Optim Appl 39(1):75–96MathSciNetView ArticleMATH
  16. Gupta SK, Rosenhead J (1968) Robustness in sequential investment decisions. Manag Sci 15(2):B-18View Article
  17. Hasuike T (2013) Robust shortest path problem based on a confidence interval in fuzzy bicriteria decision making. Inform Sci 221:520–533MathSciNetView ArticleMATH
  18. Kirkwood CW (1982) A case history of nuclear power plant site selection. J Oper Res Soc 33:353–363View Article
  19. Kreinovich V (2016) Solving equations (and systems of equations) under uncertainty: how different practical problems lead to different mathematical and computational formulations. Granul Comput 1
  20. Lempert RJ, Collins MT (2007) Managing the risk of uncertain threshold responses: comparison of robust, optimum, and precautionary approaches. Risk Anal 27(4):1009–1026View Article
  21. Lingras P, Haider F, Triff M (2016) Granular meta-clustering based on hierarchical, network, and temporal connections. Granul Comput 1:71–92View Article
  22. Liu H, Gegov A, Cocea M (2016) Rule-based systems: a granular computing perspective. Granul Comput 1
  23. Livi L, Sadeghian A (2016) Granular computing, computational intelligence, and the analysis of non-geometric input spaces. Granul Comput 1:13–20View Article
  24. Loia V, D’Aniello G, Gaeta A, Orciuoli F (2016) Enforcing situation awareness with granular computing: a systematic overview and new perspectives. Granul Comput 1:127–143View Article
  25. Maciel L, Ballini R, Gomide F (2016) Evolving granular analytics for interval time series forecasting. Granul Comput 1
  26. Malczewski J (2006) Ordered weighted averaging with fuzzy quantifiers: gis-based multicriteria evaluation for land-use suitability analysis. Int J Appl Earth Obs Geoinform 8(4):270–277View Article
  27. Mendel JM (2016) A comparison of three approaches for estimating (synthesizing) an interval type-2 fuzzy set model of a linguistic term for computing with words. Granul Comput 1:59–69View Article
  28. Mens MJP, Klijn F, de Bruijn KM, Beek EV (2011) The meaning of system robustness for flood risk management. Environ Sci Policy 14:1121–1131View Article
  29. Min F, Xu J (2016) Semi-greedy heuristics for feature selection with test cost constraints. Granul Comput 1
  30. Nag K, Pal T, Pal NR (2014) Robust consensus: A new measure for multicriteria robust group decision making problems using evolutionary approach. In: Artificial intelligence and soft computing. Springer, Berlin, pp 384–394
  31. Pedrycz W, Chen SM (2015) Granular computing and decision-making: interactive and iterative approaches. Springer, BerlinView Article
  32. Peters G, Weber R (2016) DCC: a framework for dynamic granular clustering. Granul Comput 1:1–11View Article
  33. Rosenhead J, Elton M, Gupta SK (1972) Robustness and optimality as criteria for strategic decisions. Oper Res Quarter 23:413–431View Article
  34. Simon HA (1959) Theories of decision making in economics and behavioral science. Am Econ Rev 49:253–283
  35. Skowron A, Jankowski A, Dutta A (2016) Interactive granular computing. Granul Comput 1:95–113View Article
  36. Song M, Wang Y (2016) A study of granular computing in the agenda of growth of artificial neural networks. Granul Comput 1
  37. Srinivasan T, Rethinaraj TG (2013) Fukushima and thereafter: reassessment of risks of nuclear power. Energy Policy 52:726–736View Article
  38. Wang J, Zhang Z (2009a) Aggregation operators on intuitionistic trapezoidal fuzzy number and its application to multi-criteria decision making problems. J Syst Eng Electron 20(2):321–326MathSciNet
  39. Wang J, Zhang Z (2009b) Multi-criteria decision making method with incomplete certain information based on intuitionistic fuzzy number. Control Decis 24(2):226–230MathSciNetMATH
  40. Wang Z, Tian F (2010) A note of the expected value and variance of fuzzy variables. Int J Nonlinear Sci 9(4):486–492MathSciNet
  41. Wei G (2010) Some arithmetic aggregation operators with intuitionistic trapezoidal fuzzy numbers and their application to group decision making. J Comput 5(3):345–351View Article
  42. Weinberg AM (1986) Nuclear power advocate reflects on chernobyl. Bull At Sci (United States) 43(1)
  43. Wilke G, Portmann E (2016) Granular computing as a basis of human–data interaction: a cognitive cities use case. Granul Comput 1
  44. Xu Z (2007) Intuitionistic fuzzy aggregation operators. IEEE Trans Fuzzy Syst 15(6):1179–1187View Article
  45. Xu Z, Hu H (2010) Projection models for intuitionistic fuzzy multiple attribute decision making. Int J Inform Technol Decis Mak 9(02):267–280View ArticleMATH
  46. Xu Z, Wang H (2016) Managing multi-granularity linguistic information in qualitative group decision making: an overview. Granul Comput 1:21–35View Article
  47. Xu Z, Yager RR (2006) Some geometric aggregation operators based on intuitionistic fuzzy sets. Int J Gen Syst 35(4):417–433MathSciNetView ArticleMATH
  48. Xue Y, Li D, Shan W, Wang C (2007) Multi-objective robust optimization using probabilistic indices. In: Third international conference on natural computation, 2007. ICNC 2007, vol 4, pp 466–470. IEEE
  49. Yager RR (1988) On ordered weighted averaging aggregation operators in multicriteria decisionmaking. IEEE Trans Syst Man Cybern 18(1):183–190MathSciNetView ArticleMATH
  50. Yager RR (1996) Quantifier guided aggregation using owa operators. Int J Intell Syst 11(1):49–73View Article
  51. Yager RR (2002) On the cardinality index and attitudinal character of fuzzy measures. Int J Gen Syst 31(3):303–329MathSciNetView ArticleMATH
  52. Yanez J, Ramirez J (2003) The robust coloring problem. Eur J Oper Res 148(3):546–558MathSciNetView ArticleMATH
  53. Yao Y (2016) A triarchic theory of granular computing. Granul Comput 1:145–157View Article
  54. Ye J (2012) Multicriteria group decision making method using the distances-based similarity measures between intuitionistic trapezoidal fuzzy numbers. Int J Gen Syst 41(7):729–739MathSciNetView ArticleMATH
  55. Zadeh LA (1975a) The concept of a linguistic variable and its application to approximate reasoning-III. Inform Sci 9(1):43–80MathSciNetView ArticleMATH
  56. Zadeh LA (1975b) The concept of a linguistic variable and its application to approximate reasoning-I. Inform Sci 8(3):199–249MathSciNetView ArticleMATH
  57. Zarghami M, Szidarovszky F (2009) Stochastic-fuzzy multi criteria decision making for robust water resources management. Stoch Environ Res Risk Assess 23(3):329–339MathSciNetView Article
  58. Zarghami M, Szidarovszky F, Ardakanian R (2008) A fuzzy-stochastic owa model for robust multi-criteria decision making. Fuzzy Optim Decis Mak 7(1):1–15View ArticleMATH
Metadaten
Titel
Robust decision making using intuitionistic fuzzy numbers
verfasst von
Sujit Das
Samarjit Kar
Tandra Pal
Publikationsdatum
05.07.2016
Verlag
Springer International Publishing
Erschienen in
Granular Computing / Ausgabe 1/2017
Print ISSN: 2364-4966
Elektronische ISSN: 2364-4974
DOI
https://doi.org/10.1007/s41066-016-0024-3

Weitere Artikel der Ausgabe 1/2017

Granular Computing 1/2017 Zur Ausgabe

Premium Partner