Skip to main content

2015 | OriginalPaper | Buchkapitel

Sustainable Polyurethanes: Chemical Recycling to Get It

verfasst von : D. Simón, A. M. Borreguero, A. de Lucas, C. Gutiérrez, J. F. Rodríguez

Erschienen in: Environment, Energy and Climate Change I

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Nowadays polyurethanes are one of the most important classes of polymers in the chemical market due to the huge diversity of their applications. Polyurethane is placed the sixth of the most used plastics in the world ranking. As a consequence of their commercial success, a great quantity of wastes are generated, not only post-consumer products but also scrap from slabstock manufacturing. In the past, landfilling was the solution to the problem, but, nowadays, the new environmental laws do essential to develop environmental sustainable recycling processes. On the one hand, there are physical methods that do not modify the internal structure of the polyurethane and only convert mechanically the wastes in flakes, granules or powder to be used as fillers for new PUs or to be rebounded. However, these physical processes can be only applied with thermoplastic polyurethane, while the majority of polyurethane specialties are thermostable polymers. Therefore, chemical processes are mainly used to recycle polyurethane wastes. These chemical recycling processes allow to obtain basic hydrocarboned units known as monomers that are able to be used as synthesis materials in chemical and petrochemical industry. This way, it is possible to achieve high value-added products that can be used in the synthesis of new polyurethane products. Thus, the main aim of this chapter is to describe the presently known technologies for the chemical recycling of polyurethane wastes.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Behrendt G, Naber BW (2009) The recycling of polyurethanes (review). J Univ Chem Technol Metallurg 44(1):3–23 Behrendt G, Naber BW (2009) The recycling of polyurethanes (review). J Univ Chem Technol Metallurg 44(1):3–23
2.
Zurück zum Zitat Herlinger H (1970) Struktur und Reaktivit der Isocyante (Structure and reactivity of isocyanate). Stuttgart Herlinger H (1970) Struktur und Reaktivit der Isocyante (Structure and reactivity of isocyanate). Stuttgart
3.
Zurück zum Zitat Woods G (1982) Flexible polyurethane foams: chemistry and technology. Applied Science Publishers, Barking, Essex Woods G (1982) Flexible polyurethane foams: chemistry and technology. Applied Science Publishers, Barking, Essex
4.
Zurück zum Zitat Wu J, Wang Y, Wan Y, Lei H, Yu F, Liu Y, Chen P, Yang L, Ruan R (2009) Processing and properties of rigid polyurethane foams based on bio-oils from microwave-assisted pyrolysis of corn stover. Int J Agric Biol Eng 2(1):40–50 Wu J, Wang Y, Wan Y, Lei H, Yu F, Liu Y, Chen P, Yang L, Ruan R (2009) Processing and properties of rigid polyurethane foams based on bio-oils from microwave-assisted pyrolysis of corn stover. Int J Agric Biol Eng 2(1):40–50
5.
Zurück zum Zitat Ullmann’s Encyclopedia (2005) Polyurethanes. Wiley, Weinheim. doi:10.1002/14356007. a21_665.pub2 Ullmann’s Encyclopedia (2005) Polyurethanes. Wiley, Weinheim. doi:10.1002/14356007. a21_665.pub2
6.
Zurück zum Zitat Singh SN (2001) Blowing agents for polyurethane foams, vol 12, Number 10. Rapra Review Reports. Report 142 Singh SN (2001) Blowing agents for polyurethane foams, vol 12, Number 10. Rapra Review Reports. Report 142
7.
Zurück zum Zitat Zevenhoven R (2004) Treatment and disposal of polyurethane wastes: options for recovery and recycling. Energy Engineering and Environmental Protection Publications Espoo 2004. Report TKK-ENY-19 Zevenhoven R (2004) Treatment and disposal of polyurethane wastes: options for recovery and recycling. Energy Engineering and Environmental Protection Publications Espoo 2004. Report TKK-ENY-19
8.
Zurück zum Zitat Oertel G (1985) Polyurethane handbook. Hanser Publishers, Munich Oertel G (1985) Polyurethane handbook. Hanser Publishers, Munich
9.
Zurück zum Zitat Tan S, Abraham T, Ference D, Macosko CW (2011) Rigid polyurethane foams from a soybean oil-based polyol. Polymer 52:2840–2846CrossRef Tan S, Abraham T, Ference D, Macosko CW (2011) Rigid polyurethane foams from a soybean oil-based polyol. Polymer 52:2840–2846CrossRef
10.
Zurück zum Zitat O’Connor JM (2012) Polyurethane coatings and elastomers. American Chemistry Council. Center for the Polyurethanes Industry. September 24–26, 2012. Atlanta, Georgia O’Connor JM (2012) Polyurethane coatings and elastomers. American Chemistry Council. Center for the Polyurethanes Industry. September 24–26, 2012. Atlanta, Georgia
11.
Zurück zum Zitat De SK, White JR (eds) (2001) Rubber technologist’s handbook. Rapra Technology, Shawbury De SK, White JR (eds) (2001) Rubber technologist’s handbook. Rapra Technology, Shawbury
12.
Zurück zum Zitat O’Connor JM (2012) Polyurethane sealants, adhesives and binders. American Chemistry Council. Center for the Polyurethanes Industry. September 24–26, 2012. Atlanta, Georgia O’Connor JM (2012) Polyurethane sealants, adhesives and binders. American Chemistry Council. Center for the Polyurethanes Industry. September 24–26, 2012. Atlanta, Georgia
13.
Zurück zum Zitat DIN 16920 (1981) standard published by Deutsches Institut Fur Normung E.V. (German National Standard) DIN 16920 (1981) standard published by Deutsches Institut Fur Normung E.V. (German National Standard)
14.
Zurück zum Zitat Bastian C (1994) A European strategy for recycling. Paper 50 presented at UTECH 94 Conf. The Hague Bastian C (1994) A European strategy for recycling. Paper 50 presented at UTECH 94 Conf. The Hague
15.
Zurück zum Zitat ASTM D5033-00 Standard Guide for Development of ASTM Standards Relating to Recycling and Use of Recycled Plastics (Withdrawn 2007) ASTM D5033-00 Standard Guide for Development of ASTM Standards Relating to Recycling and Use of Recycled Plastics (Withdrawn 2007)
16.
Zurück zum Zitat ISOPA (2001) Recycling and recovering polyurethanes: rebonded flexible foam. Brussels ISOPA (2001) Recycling and recovering polyurethanes: rebonded flexible foam. Brussels
17.
Zurück zum Zitat ISOPA (2001) Recycling and recovering polyurethanes: regrinding/powdering. Brussels ISOPA (2001) Recycling and recovering polyurethanes: regrinding/powdering. Brussels
18.
Zurück zum Zitat ISOPA (2001) Recycling and recovering polyurethanes: compression moulding. Brussels ISOPA (2001) Recycling and recovering polyurethanes: compression moulding. Brussels
19.
Zurück zum Zitat Hicks DA, Krommenhoek M, Soderberg DJ, Hooper JFG (1994) Polyurethanes recycling and waste management. Paper 51 presented at UTECH 94 Conf. The Hague Hicks DA, Krommenhoek M, Soderberg DJ, Hooper JFG (1994) Polyurethanes recycling and waste management. Paper 51 presented at UTECH 94 Conf. The Hague
20.
Zurück zum Zitat Campbell GA, Meluch WC (1976) Polyurethane foam recycling – superheated steam hydrolysis. Environ Sci Tech 10(2):182–185CrossRef Campbell GA, Meluch WC (1976) Polyurethane foam recycling – superheated steam hydrolysis. Environ Sci Tech 10(2):182–185CrossRef
21.
Zurück zum Zitat Dai Z, Hatano B, Kadokawa J, Tagaya H (2002) Effect of diaminotoluene on the decomposition of polyurethane foam waste in superheated water. Polym Degrad Stabil 76(2):179–184CrossRef Dai Z, Hatano B, Kadokawa J, Tagaya H (2002) Effect of diaminotoluene on the decomposition of polyurethane foam waste in superheated water. Polym Degrad Stabil 76(2):179–184CrossRef
22.
Zurück zum Zitat Gerlock JL, Braslaw J, Mahoney LR, Ferris FC (1980) Reaction of polyurethane foam with dry steam: kinetics and mechanism of reactions. J Polym Sci Pol Chem 18(2):541–557CrossRef Gerlock JL, Braslaw J, Mahoney LR, Ferris FC (1980) Reaction of polyurethane foam with dry steam: kinetics and mechanism of reactions. J Polym Sci Pol Chem 18(2):541–557CrossRef
23.
Zurück zum Zitat Matuszak ML, Frisch KC, Reegen SL (1973) Hydrolysis of linear polyurethanes and model monocarbamates. J Polym Sci Pol Chem 11(7):1683–1690CrossRef Matuszak ML, Frisch KC, Reegen SL (1973) Hydrolysis of linear polyurethanes and model monocarbamates. J Polym Sci Pol Chem 11(7):1683–1690CrossRef
24.
Zurück zum Zitat Anon (1976) Recovery of expanded polyurethanes by steam hydrolysis. Mater Plast Elastomeri 3:202–205 Anon (1976) Recovery of expanded polyurethanes by steam hydrolysis. Mater Plast Elastomeri 3:202–205
25.
Zurück zum Zitat Grigat E (1978) Hydrolysis of plastics wastes. Kunstst Ger Plast 68(5):12–13 Grigat E (1978) Hydrolysis of plastics wastes. Kunstst Ger Plast 68(5):12–13
26.
Zurück zum Zitat Shi Y, Zhan X, Zhang Q, Chen F (2009) Interfacial hydrolysis of isocyanate in monomer miniemulsion. Chem React Eng Technol 25:88 Shi Y, Zhan X, Zhang Q, Chen F (2009) Interfacial hydrolysis of isocyanate in monomer miniemulsion. Chem React Eng Technol 25:88
27.
Zurück zum Zitat Gerlock J, Braslaw J, Zimbo M (1984) Polyurethane waste recycling 1. Glycolysis and hydroglycolysis of water-blown foams. Ind Eng Chem Proc Des Dev 23(3):545–552CrossRef Gerlock J, Braslaw J, Zimbo M (1984) Polyurethane waste recycling 1. Glycolysis and hydroglycolysis of water-blown foams. Ind Eng Chem Proc Des Dev 23(3):545–552CrossRef
28.
Zurück zum Zitat Nikje MMA, Nikrah M, Mohammadi FHA (2008) Microwave-assisted polyurethane bond cleavage via hydroglycolysis process at atmospheric pressure. J Cell Plast 44(5):367–380CrossRef Nikje MMA, Nikrah M, Mohammadi FHA (2008) Microwave-assisted polyurethane bond cleavage via hydroglycolysis process at atmospheric pressure. J Cell Plast 44(5):367–380CrossRef
29.
Zurück zum Zitat Nikje MMA, Mohammadi FHA (2009) Sorbitol/glycerin/water ternary system as a novel glycolysis agent for flexible polyurethane foam in the chemical recycling using microwave radiation. Polim Polym 54(7–8):541–545 Nikje MMA, Mohammadi FHA (2009) Sorbitol/glycerin/water ternary system as a novel glycolysis agent for flexible polyurethane foam in the chemical recycling using microwave radiation. Polim Polym 54(7–8):541–545
30.
Zurück zum Zitat Braslaw J, Gerlock JL (1984) Polyurethane waste recycling 2. Polyol recovery and purification. Ind Eng Chem Proc Des Dev 23(3):552–557CrossRef Braslaw J, Gerlock JL (1984) Polyurethane waste recycling 2. Polyol recovery and purification. Ind Eng Chem Proc Des Dev 23(3):552–557CrossRef
31.
Zurück zum Zitat Weigand E, Raβhofer W (1999) Present state of polyurethane recycling in Europe. In: Advances in Plastic Recycling, vol 1: recycling of polyurethanes. Technomic Publishing CO, Lancaster Weigand E, Raβhofer W (1999) Present state of polyurethane recycling in Europe. In: Advances in Plastic Recycling, vol 1: recycling of polyurethanes. Technomic Publishing CO, Lancaster
32.
Zurück zum Zitat Wu CH, Chang CY, Cheng CH, Huang HC (2003) Glycolysis of waste flexible polyurethane foam. Polym Degrad Stabil 80(1):103–111CrossRef Wu CH, Chang CY, Cheng CH, Huang HC (2003) Glycolysis of waste flexible polyurethane foam. Polym Degrad Stabil 80(1):103–111CrossRef
33.
Zurück zum Zitat Bauer G (1996) Recycling of polyurethanes. In: Weigand E (ed) Recycling and recovery of plastics. Hanser Publishers, München, pp 518–537 Bauer G (1996) Recycling of polyurethanes. In: Weigand E (ed) Recycling and recovery of plastics. Hanser Publishers, München, pp 518–537
34.
Zurück zum Zitat Borda J, Päsztor G, Zsuga M (2000) Glycolysis of polyurethane foams and elastomers. Polym Degrad Stabil 68(3):419–422CrossRef Borda J, Päsztor G, Zsuga M (2000) Glycolysis of polyurethane foams and elastomers. Polym Degrad Stabil 68(3):419–422CrossRef
35.
Zurück zum Zitat Simioni F, Modesti M, Rienzi SA (1987) Polyol recovery from elastomer polyurethane waste. Cell Polym 6(6):27–41 Simioni F, Modesti M, Rienzi SA (1987) Polyol recovery from elastomer polyurethane waste. Cell Polym 6(6):27–41
36.
Zurück zum Zitat Simioni F, Modesti M (1991) Controlled degradation of polyurethane for recycling. Mater Sci Eng 2:127–144 Simioni F, Modesti M (1991) Controlled degradation of polyurethane for recycling. Mater Sci Eng 2:127–144
37.
Zurück zum Zitat Molero C, de Lucas A, Rodríguez JF (2006) Recovery of polyols from flexible polyurethane foam by “split-phase” glycolysis with new catalysts. Polym Degrad Stabil 91:894–901CrossRef Molero C, de Lucas A, Rodríguez JF (2006) Recovery of polyols from flexible polyurethane foam by “split-phase” glycolysis with new catalysts. Polym Degrad Stabil 91:894–901CrossRef
38.
Zurück zum Zitat Molero C, de Lucas A, Rodríguez JF (2009) Activities of octoate salts as novel catalysts for the transesterification of flexible polyurethane foams with diethylene glycol. Polym Degrad Stabil 94(4):533–539CrossRef Molero C, de Lucas A, Rodríguez JF (2009) Activities of octoate salts as novel catalysts for the transesterification of flexible polyurethane foams with diethylene glycol. Polym Degrad Stabil 94(4):533–539CrossRef
39.
Zurück zum Zitat Molero C, de Lucas A, Romero F, Rodríguez JF (2009) Glycolysis of flexible polyurethane wastes using stannous octoate as the catalyst. J Mater Cycles Waste Manage 11(2):130–132CrossRef Molero C, de Lucas A, Romero F, Rodríguez JF (2009) Glycolysis of flexible polyurethane wastes using stannous octoate as the catalyst. J Mater Cycles Waste Manage 11(2):130–132CrossRef
40.
Zurück zum Zitat Simón D, García MT, de Lucas A, Borreguero AM, Rodríguez JF (2013) Glycolysis of flexible polyurethane wastes using stannous octoate as the catalyst: study on the influence of reaction parameters. Polym Degrad Stabil 98(1):144–149CrossRef Simón D, García MT, de Lucas A, Borreguero AM, Rodríguez JF (2013) Glycolysis of flexible polyurethane wastes using stannous octoate as the catalyst: study on the influence of reaction parameters. Polym Degrad Stabil 98(1):144–149CrossRef
41.
Zurück zum Zitat Modesti M (1996) Recycling of polyurethane polymers. Advances in urethane science and technology, vol 13. Technomic Publishing CO., Lancaster Modesti M (1996) Recycling of polyurethane polymers. Advances in urethane science and technology, vol 13. Technomic Publishing CO., Lancaster
42.
Zurück zum Zitat Ullmann’s Encyclopedia of Industrial Chemistry (2003). 6th edition. Wiley-VCH, Weinheim Ullmann’s Encyclopedia of Industrial Chemistry (2003). 6th edition. Wiley-VCH, Weinheim
43.
Zurück zum Zitat Borda J, Rácz A, Zsuga M (2002) Recycled polyurethane elastomers: a universal adhesive. J Adhes Sci and Technol 16(9):1225–1234CrossRef Borda J, Rácz A, Zsuga M (2002) Recycled polyurethane elastomers: a universal adhesive. J Adhes Sci and Technol 16(9):1225–1234CrossRef
44.
Zurück zum Zitat Wang X, Chen H, Chen C, Li H (2011) Chemical degradation of thermoplastic polyurethane for recycling polyether polyol. Fiber Polym 12(7):857–863CrossRef Wang X, Chen H, Chen C, Li H (2011) Chemical degradation of thermoplastic polyurethane for recycling polyether polyol. Fiber Polym 12(7):857–863CrossRef
45.
Zurück zum Zitat Datta J, Haponiuk JT (2008) Advanced coating of interior of tanks for rising environmental safety - novel applications of polyurethanes. Pol Marit Res Special Issue 2008:8–13 Datta J, Haponiuk JT (2008) Advanced coating of interior of tanks for rising environmental safety - novel applications of polyurethanes. Pol Marit Res Special Issue 2008:8–13
46.
Zurück zum Zitat Simioni F, Bisello S, Tavan M (1983) Polyol recovery from rigid polyurethane waste. Cell Polym 2(4):281–293 Simioni F, Bisello S, Tavan M (1983) Polyol recovery from rigid polyurethane waste. Cell Polym 2(4):281–293
47.
Zurück zum Zitat Xue S, He F, Omoto M, Hidai T, Imai Y (1993) General purpose adhesives prepared from chemically decomposed waste rigid polyurethane foams. Kobunshi Ronbunshu 50(11):847–853CrossRef Xue S, He F, Omoto M, Hidai T, Imai Y (1993) General purpose adhesives prepared from chemically decomposed waste rigid polyurethane foams. Kobunshi Ronbunshu 50(11):847–853CrossRef
48.
Zurück zum Zitat Morooka H, Nakakawaji T, Okamoto S, Araki K, Yamada E (2005) Chemical recycling of rigid polyurethane foam for refrigerators. Polym Prepr 54(1):1951 Morooka H, Nakakawaji T, Okamoto S, Araki K, Yamada E (2005) Chemical recycling of rigid polyurethane foam for refrigerators. Polym Prepr 54(1):1951
49.
Zurück zum Zitat Murai M, Sanou M, Fujimoto T, Baba F (2003) Glycolysis of rigid polyurethane foam under various reaction conditions. J Cell Plast 39(1):15–27CrossRef Murai M, Sanou M, Fujimoto T, Baba F (2003) Glycolysis of rigid polyurethane foam under various reaction conditions. J Cell Plast 39(1):15–27CrossRef
50.
Zurück zum Zitat Nikje MMA, Nikrah M (2007) Chemical recycling and liquefaction of rigid polyurethane foam wastes through microwave assisted glycolysis process. J Macromol Sci Pure 44(6):613–617CrossRef Nikje MMA, Nikrah M (2007) Chemical recycling and liquefaction of rigid polyurethane foam wastes through microwave assisted glycolysis process. J Macromol Sci Pure 44(6):613–617CrossRef
51.
Zurück zum Zitat Modesti M, Simioni F, Munari R, Baldoin N (1995) Recycling of flexible polyurethane foams with a low aromatic amine content. React Funct Polym 26:157–165CrossRef Modesti M, Simioni F, Munari R, Baldoin N (1995) Recycling of flexible polyurethane foams with a low aromatic amine content. React Funct Polym 26:157–165CrossRef
52.
Zurück zum Zitat Nikje MMA, Nikrah M, Haghshenas M (2007) Microwave assisted “split-phase” glycolysis of polyurethane flexible foam wastes. Polym Bull 59:91–104CrossRef Nikje MMA, Nikrah M, Haghshenas M (2007) Microwave assisted “split-phase” glycolysis of polyurethane flexible foam wastes. Polym Bull 59:91–104CrossRef
53.
Zurück zum Zitat Scheirs J (ed) (1998) Polymer recycling. Wiley, UK, pp 339–377 Scheirs J (ed) (1998) Polymer recycling. Wiley, UK, pp 339–377
54.
Zurück zum Zitat Nikje MMA, Garmarudi AB (2010) Regeneration of polyol by pentaerythritol-assisted glycolysis of flexible polyurethane foam wastes. Iran Polym J 19(4):287–295 Nikje MMA, Garmarudi AB (2010) Regeneration of polyol by pentaerythritol-assisted glycolysis of flexible polyurethane foam wastes. Iran Polym J 19(4):287–295
55.
Zurück zum Zitat Nikje MMA, Mohammadi FHA (2010) Polyurethane foam wastes recycling under microwave irradiation. Polym-Plast Technol 49:818–821CrossRef Nikje MMA, Mohammadi FHA (2010) Polyurethane foam wastes recycling under microwave irradiation. Polym-Plast Technol 49:818–821CrossRef
56.
Zurück zum Zitat Datta J, Rohn M (2007) Thermal properties of polyurethanes synthesized using waste polyurethane foam glycolysates. J Therm Anal Calorim 88(2):437–440CrossRef Datta J, Rohn M (2007) Thermal properties of polyurethanes synthesized using waste polyurethane foam glycolysates. J Therm Anal Calorim 88(2):437–440CrossRef
57.
Zurück zum Zitat Datta J (2012) Effect of glycols used as glycolysis agents on chemical structure and thermal stability of the produced glycolysates. J Therm Anal Calorim 109:517–520CrossRef Datta J (2012) Effect of glycols used as glycolysis agents on chemical structure and thermal stability of the produced glycolysates. J Therm Anal Calorim 109:517–520CrossRef
58.
Zurück zum Zitat Molero C, de Lucas A, Rodríguez JF (2006) Recovery of polyols from flexible polyurethane foam by “split-phase” glycolysis: glycol influence. Polym Degrad Stabil 91(2):221–228CrossRef Molero C, de Lucas A, Rodríguez JF (2006) Recovery of polyols from flexible polyurethane foam by “split-phase” glycolysis: glycol influence. Polym Degrad Stabil 91(2):221–228CrossRef
59.
Zurück zum Zitat Molero C, de Lucas A, Rodríguez JF (2008) Recovery of polyols from flexible polyurethane foam by “split-phase” glycolysis: study on the influence of reaction parameters. Polym Degrad Stabil 93(2):353–361CrossRef Molero C, de Lucas A, Rodríguez JF (2008) Recovery of polyols from flexible polyurethane foam by “split-phase” glycolysis: study on the influence of reaction parameters. Polym Degrad Stabil 93(2):353–361CrossRef
60.
Zurück zum Zitat Molero C, de Lucas A, Rodríguez JF (2006) Purification by liquid extraction of recovered polyols. Solv Extr Ion Exch 24(5):719–730CrossRef Molero C, de Lucas A, Rodríguez JF (2006) Purification by liquid extraction of recovered polyols. Solv Extr Ion Exch 24(5):719–730CrossRef
61.
Zurück zum Zitat Molero C, de Lucas A, Romero F, Rodríguez JF (2008) Influence of the use of recycled polyols obtained by glycolysis on the preparation and physical properties of flexible polyurethane. J Appl Polym Sci 109(1):617–626CrossRef Molero C, de Lucas A, Romero F, Rodríguez JF (2008) Influence of the use of recycled polyols obtained by glycolysis on the preparation and physical properties of flexible polyurethane. J Appl Polym Sci 109(1):617–626CrossRef
62.
Zurück zum Zitat Simón D, Borreguero AM, de Lucas A, Molero C, Rodríguez JF (2013) Novel polyol initiator from polyurethane recycling residue. J Mater Cycles Waste Manage. doi:10.1007/s10163-013-0205-y Simón D, Borreguero AM, de Lucas A, Molero C, Rodríguez JF (2013) Novel polyol initiator from polyurethane recycling residue. J Mater Cycles Waste Manage. doi:10.​1007/​s10163-013-0205-y
63.
Zurück zum Zitat Sheratte MB (1978) Process for converting the decomposition products of polyurethane and novel compositions thereby obtained. US Pat 4,110,266 Sheratte MB (1978) Process for converting the decomposition products of polyurethane and novel compositions thereby obtained. US Pat 4,110,266
64.
Zurück zum Zitat Higashi F, Taguchi Y, Kokubo N, Ohta H (1981) Effect of initiation condition on the direct polycondensation reaction using triphenyl phosphite and pyridine. J Polym Sci Pol Chem 19(11):2745–2750CrossRef Higashi F, Taguchi Y, Kokubo N, Ohta H (1981) Effect of initiation condition on the direct polycondensation reaction using triphenyl phosphite and pyridine. J Polym Sci Pol Chem 19(11):2745–2750CrossRef
65.
Zurück zum Zitat Xue S, Omoto M, Hidai T, Imai Y (1995) Preparation of epoxy hardeners from waste rigid polyurethane foam and their applications. J Appl Polym Sci 56(2):127–134CrossRef Xue S, Omoto M, Hidai T, Imai Y (1995) Preparation of epoxy hardeners from waste rigid polyurethane foam and their applications. J Appl Polym Sci 56(2):127–134CrossRef
66.
Zurück zum Zitat Kanaya K, Takahashi S (1994) Decomposition of polyurethane foams by alkanolamines. J Appl Polym Sci 51(4):675–682CrossRef Kanaya K, Takahashi S (1994) Decomposition of polyurethane foams by alkanolamines. J Appl Polym Sci 51(4):675–682CrossRef
67.
Zurück zum Zitat Chuayjuljit S, Norakankorn C, Pimpan V (2002) Chemical recycling of rigid polyurethane foam scrap via base catalyzed aminolysis. JOM 12(1):19–22 Chuayjuljit S, Norakankorn C, Pimpan V (2002) Chemical recycling of rigid polyurethane foam scrap via base catalyzed aminolysis. JOM 12(1):19–22
68.
Zurück zum Zitat Van Der Wal HR (1994) New chemical recycling process for polyurethane. J Reinf Plast Compos 51:87–96 Van Der Wal HR (1994) New chemical recycling process for polyurethane. J Reinf Plast Compos 51:87–96
69.
Zurück zum Zitat Troev K, Tsekova A, Tsevi R (2000) Chemical degradation of polyurethanes: degradation of flexible polyester polyurethane foam by phosphonic acid dialkyl esters. J Appl Polym Sci 78(14):2565–2573CrossRef Troev K, Tsekova A, Tsevi R (2000) Chemical degradation of polyurethanes: degradation of flexible polyester polyurethane foam by phosphonic acid dialkyl esters. J Appl Polym Sci 78(14):2565–2573CrossRef
70.
Zurück zum Zitat Troev K, Tsekova A, Tsevi R (2000) Chemical degradation of polyurethanes II. Degradation of flexible polyether foam by dimethyl phosphonate. Polym Degrad Stabil 67:397–405CrossRef Troev K, Tsekova A, Tsevi R (2000) Chemical degradation of polyurethanes II. Degradation of flexible polyether foam by dimethyl phosphonate. Polym Degrad Stabil 67:397–405CrossRef
71.
Zurück zum Zitat Troev K, Atanasov VI, Tsevi R, Grancharov G, Tsekova A (2000) Chemical degradation of polyurethanes. Degradation of microporous polyurethane elastomer by dimethyl phosphonate. Polym Degrad Stabil 67:159–165CrossRef Troev K, Atanasov VI, Tsevi R, Grancharov G, Tsekova A (2000) Chemical degradation of polyurethanes. Degradation of microporous polyurethane elastomer by dimethyl phosphonate. Polym Degrad Stabil 67:159–165CrossRef
72.
Zurück zum Zitat Troev K, Atanasov VI, Tsevi R (2000) Chemical degradation of polyurethanes II. Degradation of microporous polyurethane elastomer by phosphoric acid esters. J Appl Polym Sci 76:886–893CrossRef Troev K, Atanasov VI, Tsevi R (2000) Chemical degradation of polyurethanes II. Degradation of microporous polyurethane elastomer by phosphoric acid esters. J Appl Polym Sci 76:886–893CrossRef
73.
Zurück zum Zitat Troev K, Grancharov G, Tsevi R (2000) Chemical degradation of polyurethanes III. Degradation of microporous polyurethane elastomer by diethyl phosphonate and tris(1-methyl-2-chloroethyl) phosphate. Polym Degrad Stabil 70:43–48CrossRef Troev K, Grancharov G, Tsevi R (2000) Chemical degradation of polyurethanes III. Degradation of microporous polyurethane elastomer by diethyl phosphonate and tris(1-methyl-2-chloroethyl) phosphate. Polym Degrad Stabil 70:43–48CrossRef
Metadaten
Titel
Sustainable Polyurethanes: Chemical Recycling to Get It
verfasst von
D. Simón
A. M. Borreguero
A. de Lucas
C. Gutiérrez
J. F. Rodríguez
Copyright-Jahr
2015
DOI
https://doi.org/10.1007/698_2014_275