Skip to main content

2008 | Buch

Next-Generation FTTH Passive Optical Networks

Research Towards Unlimited Bandwidth Access

herausgegeben von: Josep Prat

Verlag: Springer Netherlands

insite
SUCHEN

Über dieses Buch

Fibre-to-the-Home networks constitute a fundamental telecom segment with the required potential to match the huge capacity of transport networks with the new user communication demands. Huge investments in access network infrastructure are expected for the next decade, with many initiatives already launched around the globe recently, driven by the new broadband service demands and the necessity by operators to deploy a future-proof infrastructure in the field. Dense FTTH Passive Optical Networks (PONs) is a cost-efficient way to build fibre access, and international standards (G/E-PON) have been already launched, leading to new set of telecom products for mass deployment. However, these systems only make use of less than 1% of the optical bandwidth; thus, relevant research is taking place to maximize the capacity of these systems, with the latest opto-electronic technologies, demonstrating that the huge bandwidth available through the fibre access can be exploited in a cost-efficient and reliable manner.

Next-Generation FTTH Passive Optical Networks gathers and analyzes the most relevant techniques developed recently on technologies for the next generation FTTH networks, trying to answer the question: what’s after G/E-PONs?

Inhaltsverzeichnis

Frontmatter
1. Introduction
Optical fibre access to the user, the so-called Fibre-to-the-Home (FTTH), is becoming a mature concept and a reality in many regions of the globe, with more than 8 millions homes already connected, in an exponential growth. As it is widely accepted, FTTH is the only future-proof technology that will be able to support the upcoming interactive multimedia services, and nowadays operators are planning to substitute the existing telephone-line-based systems (Asymmetric Digital Subscriber Line ADSL, Plain Old Telephone Service POTS) or cable systems (Cable Television CATV) per optical fibre. First, point-to-point fibre links; recently, the more advanced point-to-multipoint Passive Optical Networks (PON) are being deployed to implement FTTH — currently in Asia and USA mainly. The first generation PONs (Broadband PON, Gigabit PON, Ethernet PON) have been recently standardized, offering symmetrical Gigabit/s bandwidth typically shared among few tens of users.
This document focuses onto discussion of the technical options for next generation PONs (ngPONs) and aims at proposing and analyzing new architectures as well as enabling technologies. True-broadband access (10/100 Mbps) may drive the telecommunications sector again towards relevant positions in terms of social and economic development. If -with the advanced techniques proposed- operators can implement a gradual upgrade-path to their infrastructure from a basic one that is probably already deployed to an all-optical network, the development can be effectively done.
The main focus of the report is on very high-density scalable broadband-for-all access networks, for scenarios where the scalability and the continuous growth of the fibre network is an essential requirement for the operator business plan. This may occur in fibre-limited or saturated areas and also where the long term cost effectiveness drives a green-field deployment. Thus, current approaches like current point-to-point fibre-rich plants or standardized Time Division Multiplexed (TDM) PONs (GPON, EPON) are not extensively dealt within this text, which mainly focuses on longer-term generations of PONs.
2. Architecture of Future Access Networks
A key issue to reach a highly scalable Passive Optical Network (PON) with very high splitting ratio is the high multiplexing level required to handle all individual signals (individual data flows) that travel along shared fibres. The available fibre bandwidth and current high-speed electronics allow high splitting ratios together with high bandwidth per user assignments. An objective in a next generation PON (ngPON) is to perform the multiplexing with limited complexity. The possible multiplexing techniques in the key architectures are discussed in this chapter.
Carlos Bock, Philippe Chanclou, Jorge M. Finochietto, Gerald Franzl, Marek Hajduczenia, Ton Koonen, Paulo P. Monteiro, Fabio Neri, Josep Prat, Henrique J. A. da Silva
3. Components for Future Access Networks
Due to the limited traffic generated by the Optical Network Unit (ONU), upstream Time Division Multiplexing (TDM) has been broadly accepted [Nakamura04] to optimize bandwidth allocation in Passive Optical Networks (PONs) as the ONUs are transmitting bursty at relative low bit rates. Multiplexing allows increasing the number of ONUs for each Optical Line Terminal (OLT) which is limited by the available number of wavelengths.
The advantages of VCSELs are well known: high efficiency, optical emission suited for many applications, high reliability and the ability of being powered with a battery. Single and multimode lasers are possible for telecommunications market. They are designed to address a wide variety of optical communication applications such as Gigabit Ethernet, Fibre Channel, SONET/SDH (Synchronous Optical Network/Synchronous Digital Hierarchy) and Coarse Wavelength Division Multiplexing (CWDM). The broadly acceptance of these lasers for the market would even produce, by mass production, a reduction in manufacturing cost in about 1 or 2 years.
The electronically tuneable VCSEL presents a 13 nm wide tuning range when using a 30 V tuning voltage, and a switching time of 200s [Yuen00] for C-band at 1,550 nm. Nowadays, the typical linewidth is about 30 MHz, and modulation bandwidths of up to 3 GHz at 2V operating voltages are possible.
Cristina Arellano, Carlos Bock, Karin Ennser, Jose A. Lazaro, Victor Polo, Bernhard Schrenk, Stefano Taccheo
4. Enhanced Transmission Techniques
Next generation Passive Optical Networks (ngPONs) that offer increased bandwidth and distance-reach to a higher number of customers may require some modifications in the network infrastructure and in the technology of its devices. Nevertheless, these changes should not require a significant increased cost nor upgrading complexity.
Optical Network Units (ONUs) at customer premises of currently deployed PONs include a fixed laser at a non-controlled wavelength, launching the light into the upstream fibre or into a single fibre via a coarse WDM multiplexer. In future PONs, Wavelength division multiplexing (WDM) can be effectively used to upgrade the overall PON capacity in several ways. Thus, new generation ONUs may be wavelength-controlled, wavelength-tuneable or wavelength-agnostic.
WDM allows superposing different TDMA PONs over the access fibre line. The number of wavelengths then corresponds to two times the number of TDMA PON systems. This solution offers desirable characteristics for an access infrastructure as the use of one single fibre for both upstream and downstream transmission reduces the network size and connection complexity.
Paulo André, Cristina Arellano, Carlos Bock, Francesc Bonada, Philippe Chanclou, Josep M. Fàbrega, Naveena Genay, Ton Koonen, Jose A. Lazaro, Jason Lepley, Eduardo T. López, Mireia Omella, Victor Polo, Josep Prat, Antonio Teixeira, Silvia Di Bartolo, Giorgio Tosi Beleffi, Stuart D. Walker
5. Network Protection
The significance of broadband and multimedia telecommunications is still increasing and the use of fibre-optic technology in the access network is growing very fast in order to meet customers demand. Along with the higher bandwidth demand, increasing number of subscribers, and advances in the Wavelength Division Multiplexing (WDM) device technology, the WDM Passive Optical Network (PON) and hybrid WDM/TDM (Time Division Multiplexed) PON has been considered as a next generation solution for the broadband access. Meanwhile, in order to meet Service Level Agreement (SLA) and guarantee the appropriate level of connection availability, fault management within any type of the PONs becomes more significant for the reliable service delivery and business continuance. Connection availability is an issue of deep concern to network operators since failure of any access network component, and thus interruption of their services, could result in significant losses of revenue.
This chapter reviews some protection schemes in PONs and provides reliability performance evaluation for the considered architectures. A customer typically expects the end-to-end service availability at least at the same level as that provided by the traditional copper based systems. Thus, before investing in a new technology network operators need to make sure that it will not degrade the service quality perceived by the customers.
To avoid misunderstanding we provide the set of definitions used in this chapter. Next, we review the protection schemes in PONs and follow with the reliability analysis and performance evaluation. Finally, we draw some conclusions.
Jiajia Chen, Miroslaw Kantor, Krzysztof Wajda, Lena Wosinska
6. Traffic Studies
This chapter discusses on the incorporation of the Medium Access Control and Quality of Service mechanisms to the optical access network. The high level of sharing of the optical infrastructure compels it and a relevant efficiency in terms of resource usage is expected with the advanced techniques proposed.
Carlos Bock, Jorge M. Finochietto, Gerald Franzl, Fabio Neri, Josep Prat
7. Metro-Access Convergence
Large optical networks are typically partitioned into core (inter-city) and metro (intra-city) sub-networks, and the last portion of the telecommunications network that runs the services to the home or business is the access network. The technologies for core, metro and access sub-networks will provide rapid provisioning of connections within each sub-network (Fig. 7.1). However, it is essential that the core, metro and access sub-networks are able to work interconnected to release the fast provisioning potential of these sub-networks, since a large part of the anticipated connections will need to traverse both core and metro sub-networks and finally reach the access. This requires signalling and routing information exchange between the different sub-networks. The inter-networking, and particularly the routing information exchange, is the focus of the core-metro-access interfacing.
While access and metro sub-networks handle local traffic and offer servicesensitive aggregation and service-specific features, the core network transports relatively homogeneous connections across long distances, thus the core network may be based on different technology than the access and metro sub-networks. Due to this fact, simpler optical nodes based on low cost or functionality may be used in access and metro transport whilst long-haul networks may involve high performance on the optical spectral characteristics of the devices. These differences may result in some specific requirements on the routing information that need to be distributed within the core, metro and access sub-networks. However, there are fundamental requirements on the routing information that needs to be exchanged between the sub-networks [Wang01].
Carlos Bock, Jose A. Lazaro, Victor Polo, Josep Prat, Josep Segarra
8. Economic Models
A techno-economical study is performed first for an extended Passive Optical Network (PON) with static Wavelength Division Multiplexing (WDM) upgrade, and second for a more futuristic PON with reflective Optical Network Units (ONUs) and dynamic WDM capability.
Russell Davey, Jose A. Lazaro, Reynaldo Martínez, Josep Prat, Raul Sananes
Backmatter
Metadaten
Titel
Next-Generation FTTH Passive Optical Networks
herausgegeben von
Josep Prat
Copyright-Jahr
2008
Verlag
Springer Netherlands
Electronic ISBN
978-1-4020-8470-6
Print ISBN
978-1-4020-8469-0
DOI
https://doi.org/10.1007/978-1-4020-8470-6

Neuer Inhalt