Skip to main content

2013 | OriginalPaper | Buchkapitel

Holomorphic Realization of Unitary Representations of Banach–Lie Groups

verfasst von : Karl-Hermann Neeb

Erschienen in: Lie Groups: Structure, Actions, and Representations

Verlag: Springer New York

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper we explore the method of holomorphic induction for unitary representations of Banach–Lie groups. First we show that the classification of complex bundle structures on homogeneous Banach bundles over complex homogeneous spaces of real Banach–Lie groups formally looks as in the finite-dimensional case. We then turn to a suitable concept of holomorphic unitary induction and show that this process preserves commutants. In particular, holomorphic induction from irreducible representations leads to irreducible ones. Finally we develop criteria to identify representations as holomorphically induced and apply these to the class of so-called positive energy representations. All this is based on extensions of Arveson’s concept of spectral subspaces to representations on Fréchet spaces, in particular on spaces of smooth vectors.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
[Ar74]
Zurück zum Zitat Arveson, W., On groups of automorphisms of operator algebras, J. Funct. Anal. 15 (1974), 217–243. Arveson, W., On groups of automorphisms of operator algebras, J. Funct. Anal. 15 (1974), 217–243.
[Bel03]
Zurück zum Zitat Beltiţă, D., Complex homogeneous spaces of pseudo-restricted groups, Math. Res. Lett. 10:4 (2003), 459–467. Beltiţă, D., Complex homogeneous spaces of pseudo-restricted groups, Math. Res. Lett. 10:4 (2003), 459–467.
[Bel04]
Zurück zum Zitat Beltiţă, D., On Banach–Lie algebras, spectral decompositions and complex polarizations, in Operator Theory: Advances and Applications 153, Birkhäuser, Basel; 13–38. Beltiţă, D., On Banach–Lie algebras, spectral decompositions and complex polarizations, in Operator Theory: Advances and Applications 153, Birkhäuser, Basel; 13–38.
[Bel05]
Zurück zum Zitat Beltiţă, D., Integrability of analytic almost complex structures on Banach manifolds, Annals of Global Anal. and Geom. 28 (2005), 59–73. Beltiţă, D., Integrability of analytic almost complex structures on Banach manifolds, Annals of Global Anal. and Geom. 28 (2005), 59–73.
[BG08]
Zurück zum Zitat Beltiţă, D., and J. Galé, Holomorphic geometric models for representations of C  ∗ -algebras, J. Funct. Anal. 255:10 (2008), 2888–2932. Beltiţă, D., and J. Galé, Holomorphic geometric models for representations of C  ∗ -algebras, J. Funct. Anal. 255:10 (2008), 2888–2932.
[BR07]
Zurück zum Zitat Beltiţă, D., and T. S. Ratiu, Geometric representation theory for unitary groups of operator algebras, Advances in Math. 208 (2007), 299–317. Beltiţă, D., and T. S. Ratiu, Geometric representation theory for unitary groups of operator algebras, Advances in Math. 208 (2007), 299–317.
[BRT07]
Zurück zum Zitat Beltiţă, D., T. S. Ratiu, and A. B. Tumpach, The restricted Grassmannian, Banach Lie-Poisson spaces, and coadjoint orbits, J. Funct. Anal. 247 (2007), no. 1, 138–168. Beltiţă, D., T. S. Ratiu, and A. B. Tumpach, The restricted Grassmannian, Banach Lie-Poisson spaces, and coadjoint orbits, J. Funct. Anal. 247 (2007), no. 1, 138–168.
[BH98]
Zurück zum Zitat Bertram, W., and J. Hilgert, Reproducing kernels on vector bundles, in Lie Theory and Its Applications in Physics III, World Scientific, Singapore, 1998; 43–58. Bertram, W., and J. Hilgert, Reproducing kernels on vector bundles, in Lie Theory and Its Applications in Physics III, World Scientific, Singapore, 1998; 43–58.
[Bou07]
Zurück zum Zitat Bourbaki, N., Espaces vectoriels topologiques. Chap.1 à 5, Springer-Verlag, Berlin, 2007 Bourbaki, N., Espaces vectoriels topologiques. Chap.1 à 5, Springer-Verlag, Berlin, 2007
[Bo80]
Zurück zum Zitat Boyer, R., Representations of the Hilbert Lie group \(U(\mathcal{H})_{2}\), Duke Math. J. 47 (1980), 325–344. Boyer, R., Representations of the Hilbert Lie group \(U(\mathcal{H})_{2}\), Duke Math. J. 47 (1980), 325–344.
[Dix96]
Zurück zum Zitat Dixmier, J., Les algèbres d’opérateurs dans l’espace Hilbertien, Éditions Gabay, 1996. Dixmier, J., Les algèbres d’opérateurs dans l’espace Hilbertien, Éditions Gabay, 1996.
[FV70]
Zurück zum Zitat Foias, C., and F.-H. Vasilescu, On the spectral theory of commutators, J. Math. Anal. Appl. 31 (1970), 473–486. Foias, C., and F.-H. Vasilescu, On the spectral theory of commutators, J. Math. Anal. Appl. 31 (1970), 473–486.
[GN03]
Zurück zum Zitat Glöckner, H., and K.-H. Neeb, Banach–Lie quotients, enlargibility, and universal complexifications, J. reine angew. Math. 560 (2003), 1–28. Glöckner, H., and K.-H. Neeb, Banach–Lie quotients, enlargibility, and universal complexifications, J. reine angew. Math. 560 (2003), 1–28.
[HR70]
Zurück zum Zitat Hewitt, E., and K.A. Ross, Abstract Harmonic Analysis II, Springer Verlag, Berlin, Heidelberg, New York, 1970. Hewitt, E., and K.A. Ross, Abstract Harmonic Analysis II, Springer Verlag, Berlin, Heidelberg, New York, 1970.
[Jo82]
Zurück zum Zitat Jørgensen, P. E. T., Spectral theory for infinitesimal generators of one-parameter groups of isometries: the min-max principle and compact perturbations, J. Math. Anal. Appl. 90:2 (1982), 343–370. Jørgensen, P. E. T., Spectral theory for infinitesimal generators of one-parameter groups of isometries: the min-max principle and compact perturbations, J. Math. Anal. Appl. 90:2 (1982), 343–370.
[Ko68]
Zurück zum Zitat Kobayashi, S., Irreducibility of certain unitary representations, J. Math. Soc. Japan 20 (1968), 638–642. Kobayashi, S., Irreducibility of certain unitary representations, J. Math. Soc. Japan 20 (1968), 638–642.
[KoT05]
Zurück zum Zitat Kobayashi, T., Multiplicity-free representations and visible actions on complex manifolds, Publ. Res. Inst. Math. Sci. 41:3 (2005), 497–549. Kobayashi, T., Multiplicity-free representations and visible actions on complex manifolds, Publ. Res. Inst. Math. Sci. 41:3 (2005), 497–549.
[KoT11]
Zurück zum Zitat —, Propagation of multiplicity-free property for holomorphic vector bundles, arXiv:math.RT/0607004v2, 23 Jul 2011; in this volume —, Propagation of multiplicity-free property for holomorphic vector bundles, arXiv:math.RT/0607004v2, 23 Jul 2011; in this volume
[Le99]
Zurück zum Zitat Lempert, L., The Dolbeault complex in infinite dimensions II, J. Amer. Math. Soc. 12:3 (1999), 775–793. Lempert, L., The Dolbeault complex in infinite dimensions II, J. Amer. Math. Soc. 12:3 (1999), 775–793.
[Li91]
Zurück zum Zitat Lisiecki, W., A classification of coherent state representations of unimodular Lie groups, Bull. Amer. Math. Soc. 25:1 (1991), 37–43. Lisiecki, W., A classification of coherent state representations of unimodular Lie groups, Bull. Amer. Math. Soc. 25:1 (1991), 37–43.
[MPW97]
Zurück zum Zitat Monastyrski, M., and Z. Pasternak-Winiarski, Maps on complex manifolds into Grassmann spaces defined by reproducing kernels of Bergman type, Demonstratio Math. 30:2 (1997), 465–474. Monastyrski, M., and Z. Pasternak-Winiarski, Maps on complex manifolds into Grassmann spaces defined by reproducing kernels of Bergman type, Demonstratio Math. 30:2 (1997), 465–474.
[MNS09]
Zurück zum Zitat Müller, C., K.-H. Neeb, and H. Seppänen, Borel–Weil Theory for Root Graded Banach–Lie groups, Int. Math. Res. Notices 2010:5 (2010), 783–823. Müller, C., K.-H. Neeb, and H. Seppänen, Borel–Weil Theory for Root Graded Banach–Lie groups, Int. Math. Res. Notices 2010:5 (2010), 783–823.
[Ne00]
Zurück zum Zitat Neeb, K.-H. Holomorphy and Convexity in Lie Theory, Expositions in Mathematics 28, de Gruyter Verlag, Berlin, 2000. Neeb, K.-H. Holomorphy and Convexity in Lie Theory, Expositions in Mathematics 28, de Gruyter Verlag, Berlin, 2000.
[Ne01]
Zurück zum Zitat —, Representations of infinite-dimensional groups, pp. 131–178; in Infinite Dimensional Kähler Manifolds, Eds. A. Huckleberry, T. Wurzbacher, DMV-Seminar 31, Birkhäuser Verlag, 2001. —, Representations of infinite-dimensional groups, pp. 131–178; in Infinite Dimensional Kähler Manifolds, Eds. A. Huckleberry, T. Wurzbacher, DMV-Seminar 31, Birkhäuser Verlag, 2001.
[Ne08]
Zurück zum Zitat —, A complex semigroup approach to group algebras of infinite-dimensional Lie groups, Semigroup Forum 77 (2008), 5–35. —, A complex semigroup approach to group algebras of infinite-dimensional Lie groups, Semigroup Forum 77 (2008), 5–35.
[Ne09]
Zurück zum Zitat —, Semibounded unitary representations of infinite-dimensional Lie groups, in Infinite Dimensional Harmonic Analysis IV , Eds. J. Hilgert et al, World Scientific, 2009; 209–222. —, Semibounded unitary representations of infinite-dimensional Lie groups, in Infinite Dimensional Harmonic Analysis IV , Eds. J. Hilgert et al, World Scientific, 2009; 209–222.
[Ne10a]
Zurück zum Zitat —, On differentiable vectors for representations of infinite-dimensional Lie groups, J. Funct. Anal. 259 (2010), 2814–2855. —, On differentiable vectors for representations of infinite-dimensional Lie groups, J. Funct. Anal. 259 (2010), 2814–2855.
[Ne10b]
Zurück zum Zitat —, On analytic vectors for unitary representations of infinite-dimensional Lie groups, Ann. Inst. Fourier 61:5 (2011), 1441–1476. arXiv:math.RT.1002.4792v1, 25 Feb 2010. —, On analytic vectors for unitary representations of infinite-dimensional Lie groups, Ann. Inst. Fourier 61:5 (2011), 1441–1476. arXiv:math.RT.1002.4792v1, 25 Feb 2010.
[Ne10c]
Zurück zum Zitat —, Semibounded representations and invariant cones in infinite-dimensional Lie algebras, Confluentes Math. 2:1 (2010), 37–134. —, Semibounded representations and invariant cones in infinite-dimensional Lie algebras, Confluentes Math. 2:1 (2010), 37–134.
[Ne11]
Zurück zum Zitat —, Semibounded representations of hermitian Lie groups, Travaux mathematiques, 21 (2012), 29–109. —, Semibounded representations of hermitian Lie groups, Travaux mathematiques, 21 (2012), 29–109.
[Od88]
Zurück zum Zitat Odzijewicz, A., On reproducing kernels and quantization of states, Comm. Math. Phys. 114 (1988), 577–597. Odzijewicz, A., On reproducing kernels and quantization of states, Comm. Math. Phys. 114 (1988), 577–597.
[Od92]
Zurück zum Zitat —, Coherent states and geometric quantization, Comm. Math. Phys. 150:2 (1992), 385–413. —, Coherent states and geometric quantization, Comm. Math. Phys. 150:2 (1992), 385–413.
[Ra85]
Zurück zum Zitat Rădulescu, F., Spectral properties of generalized multipliers, J. Oper. Theory 14:2 (1985), 277–289. Rădulescu, F., Spectral properties of generalized multipliers, J. Oper. Theory 14:2 (1985), 277–289.
[Ru73]
Zurück zum Zitat Rudin, W., Functional Analysis, McGraw Hill, 1973. Rudin, W., Functional Analysis, McGraw Hill, 1973.
[Si70]
Zurück zum Zitat Sinclair, A. M., Eigenvalues in the boundary of the numerical range, Pac. J. Math. 35:1 (1970), 231–234. Sinclair, A. M., Eigenvalues in the boundary of the numerical range, Pac. J. Math. 35:1 (1970), 231–234.
[Ta03]
Zurück zum Zitat Takesaki, M., Theory of Operator Algebras. I, Encyclopedia of Mathematical Sciences 125, Operator Algebras and Non-commutative Geometry 6, Springer-Verlag, Berlin, 2003. Takesaki, M., Theory of Operator Algebras. I, Encyclopedia of Mathematical Sciences 125, Operator Algebras and Non-commutative Geometry 6, Springer-Verlag, Berlin, 2003.
[TW70]
Zurück zum Zitat Tirao, J. A., and J. Wolf, Homogeneous holomorphic vector bundles, Indiana University Math. Journal 20:1 (1970), 15–31. Tirao, J. A., and J. Wolf, Homogeneous holomorphic vector bundles, Indiana University Math. Journal 20:1 (1970), 15–31.
[Up85]
Zurück zum Zitat Upmeier, H., Symmetric Banach Manifolds and Jordan C  ∗ -algebras, North-Holland Mathematics Studies, 104. Notas de Matemàtica 96, North-Holland Publishing Co., Amsterdam, 1985. Upmeier, H., Symmetric Banach Manifolds and Jordan C  ∗ -algebras, North-Holland Mathematics Studies, 104. Notas de Matemàtica 96, North-Holland Publishing Co., Amsterdam, 1985.
Metadaten
Titel
Holomorphic Realization of Unitary Representations of Banach–Lie Groups
verfasst von
Karl-Hermann Neeb
Copyright-Jahr
2013
Verlag
Springer New York
DOI
https://doi.org/10.1007/978-1-4614-7193-6_10