Skip to main content

2018 | OriginalPaper | Buchkapitel

Exploring Sparse Graphs with Advice (Extended Abstract)

verfasst von : Hans-Joachim Böckenhauer, Janosch Fuchs, Walter Unger

Erschienen in: Approximation and Online Algorithms

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Moving an autonomous agent through an unknown environment is one of the crucial problems for robotics and network analysis. Therefore, it received a lot of attention in the last decades and was analyzed in many different settings. The graph exploration problem is a theoretical and abstract model, where an algorithm has to decide how an agent, also called explorer, moves through a network with n vertices and m edges such that every point of interest is visited at least once. For its decisions, the knowledge of the algorithm is limited by the perception capacities of the explorer. We look at the fixed-graph scenario proposed by Kalyanasundaram and Pruhs (ICALP, 1993), where the explorer starts at a vertex of the network and sees all reachable vertices, their unique names and their distance from the current position.
Because the algorithm only learns the structure of the graph during computation, it cannot deterministically compute an optimal tour that visits every vertex at least once without prior knowledge. Therefore, we are interested in the amount of crucial a-priori information needed to solve the problem optimally, which we measure in terms of the well-studied model of advice complexity. Here, a deterministic algorithm can at any time access a binary advice tape written beforehand by an oracle that knows the optimal solution, the graph and the behavior of the algorithm. The number of bits read by the algorithm until the end of computation is called the advice complexity.
We look at the graph exploration problem on unknown directed graphs and focus on cyclic solutions. It is known that \(\mathcal {O}(n\log n)\) bits of advice are necessary and sufficient to compute an optimal solution, for general graphs. In this work, we present algorithms with an advice complexity of \(\mathcal {O}(m)\), thus improving the classical bound for sparse graphs.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
Note that, with each decision, the algorithm influences the new input for the next decision. Thus, strictly speaking, the graph exploration problem is no classical online problem. But the adversary still knows the behavior of the deterministic algorithm and can, with this knowledge, prepare the input graph, the unique identifiers for the vertices, and thus the enumeration of the edges. Hence, we can analyze the graph exploration problem using the same methodology as used for online problems.
 
Literatur
1.
2.
Zurück zum Zitat Bender, M.A., Fernández, A., Ron, D., Sahai, A., Vadhan, S.: The power of a pebble: exploring and mapping directed graphs. Inf. Comput. 176(1), 1–21 (2002)MathSciNetCrossRef Bender, M.A., Fernández, A., Ron, D., Sahai, A., Vadhan, S.: The power of a pebble: exploring and mapping directed graphs. Inf. Comput. 176(1), 1–21 (2002)MathSciNetCrossRef
4.
Zurück zum Zitat Blum, A., Raghavan, P., Schieber, B.: Navigating in unfamiliar geometric terrain. SIAM J. Comput. 26(1), 110–137 (1997)MathSciNetCrossRef Blum, A., Raghavan, P., Schieber, B.: Navigating in unfamiliar geometric terrain. SIAM J. Comput. 26(1), 110–137 (1997)MathSciNetCrossRef
5.
Zurück zum Zitat Böckenhauer, H.J., Fuchs, J., Unger, W.: The graph exploration problem with advice. CoRR abs/1804.06675 (2018) Böckenhauer, H.J., Fuchs, J., Unger, W.: The graph exploration problem with advice. CoRR abs/1804.06675 (2018)
7.
Zurück zum Zitat Brass, P., Vigan, I., Xu, N.: Improved analysis of a multirobot graph exploration strategy. In: 2014 13th International Conference on Control Automation Robotics & Vision (ICARCV), pp. 1906–1910. IEEE (2014) Brass, P., Vigan, I., Xu, N.: Improved analysis of a multirobot graph exploration strategy. In: 2014 13th International Conference on Control Automation Robotics & Vision (ICARCV), pp. 1906–1910. IEEE (2014)
9.
Zurück zum Zitat Das, S., Flocchini, P., Kutten, S., Nayak, A., Santoro, N.: Map construction of unknown graphs by multiple agents. Theor. Comput. Sci. 385(1–3), 34–48 (2007)MathSciNetCrossRef Das, S., Flocchini, P., Kutten, S., Nayak, A., Santoro, N.: Map construction of unknown graphs by multiple agents. Theor. Comput. Sci. 385(1–3), 34–48 (2007)MathSciNetCrossRef
10.
Zurück zum Zitat Diks, K., Fraigniaud, P., Kranakis, E., Pelc, A.: Tree exploration with little memory. J. Algorithms 51(1), 38–63 (2004)MathSciNetCrossRef Diks, K., Fraigniaud, P., Kranakis, E., Pelc, A.: Tree exploration with little memory. J. Algorithms 51(1), 38–63 (2004)MathSciNetCrossRef
13.
Zurück zum Zitat Emek, Y., Fraigniaud, P., Korman, A., Rosén, A.: Online computation with advice. Theor. Comput. Sci. 412(24), 2642–2656 (2011)MathSciNetCrossRef Emek, Y., Fraigniaud, P., Korman, A., Rosén, A.: Online computation with advice. Theor. Comput. Sci. 412(24), 2642–2656 (2011)MathSciNetCrossRef
15.
Zurück zum Zitat Foerster, K.T., Wattenhofer, R.: Lower and upper competitive bounds for online directed graph exploration. Theor. Comput. Sci. 655, 15–29 (2016)MathSciNetCrossRef Foerster, K.T., Wattenhofer, R.: Lower and upper competitive bounds for online directed graph exploration. Theor. Comput. Sci. 655, 15–29 (2016)MathSciNetCrossRef
17.
Zurück zum Zitat Fraigniaud, P., Ilcinkas, D., Pelc, A.: Tree exploration with advice. Inf. Comput. 206(11), 1276–1287 (2008)MathSciNetCrossRef Fraigniaud, P., Ilcinkas, D., Pelc, A.: Tree exploration with advice. Inf. Comput. 206(11), 1276–1287 (2008)MathSciNetCrossRef
23.
Zurück zum Zitat Kortenkamp, D., Bonasso, R.P., Murphy, R.: Artificial Intelligence and Mobile Robots: Case Studies of Successful Robot Systems. MIT Press, Cambridge (1998) Kortenkamp, D., Bonasso, R.P., Murphy, R.: Artificial Intelligence and Mobile Robots: Case Studies of Successful Robot Systems. MIT Press, Cambridge (1998)
24.
Zurück zum Zitat Královič, R.: Personal communication (2017) Královič, R.: Personal communication (2017)
25.
Zurück zum Zitat Megow, N., Mehlhorn, K., Schweitzer, P.: Online graph exploration: new results on old and new algorithms. Theor. Comput. Sci. 463, 62–72 (2012)MathSciNetCrossRef Megow, N., Mehlhorn, K., Schweitzer, P.: Online graph exploration: new results on old and new algorithms. Theor. Comput. Sci. 463, 62–72 (2012)MathSciNetCrossRef
27.
Zurück zum Zitat Thrun, S., et al.: Autonomous exploration and mapping of abandoned mines. IEEE Robot. Autom. Mag. 11(4), 79–91 (2004)CrossRef Thrun, S., et al.: Autonomous exploration and mapping of abandoned mines. IEEE Robot. Autom. Mag. 11(4), 79–91 (2004)CrossRef
28.
Zurück zum Zitat Thrun, S., et al.: Robotic mapping: a survey. In: Exploring Artificial Intelligence in the New Millennium, vol. 1, pp. 1–35 (2002) Thrun, S., et al.: Robotic mapping: a survey. In: Exploring Artificial Intelligence in the New Millennium, vol. 1, pp. 1–35 (2002)
Metadaten
Titel
Exploring Sparse Graphs with Advice (Extended Abstract)
verfasst von
Hans-Joachim Böckenhauer
Janosch Fuchs
Walter Unger
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-030-04693-4_7

Premium Partner