Skip to main content

2020 | OriginalPaper | Buchkapitel

Rational Designing of Gas Turbine Inlet Air Cooling System

verfasst von : Andrii Radchenko, Lukasz Bohdal, Yang Zongming, Bohdan Portnoi, Veniamin Tkachenko

Erschienen in: Advanced Manufacturing Processes

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

An enhancement of gas turbine (GT) fuel efficiency at high temperatures of ambient air is possible by its cooling in exhaust heat conversion chillers (EHCCh) using the heat of exhaust gas. The cooling capacity of EHCCh should cover the GT inlet air cooling needs for as long time as possible during the year with great fuel effect. As a criterion to determine the rational design cooling capacity of the EHCCh the annual fuel saving of GT due to inlet air cooling is chosen. To avoid oversizing the EHCCh, chillers have to operate at heat loads closed to their design values. To satisfy these requirements, the EHCCh should be designed for rational cooling capacity value that provides the maximum yearly fuel saving due to gas turbine inlet air cooling. Two different methods for determining the EHCCh design cooling capacities, based on the yearly fuel savings due to GT inlet air cooling, are considered, providing a closed to the maximum annular fuel savings and the maximum rate of annular fuel saving increment in response to increasing a cooling capacity. The GT unite with two-stage cooling inlet air to 15 ℃ in the high-temperature air cooler by absorption lithium-bromide chiller (ACh) and further subcooling down to 10 ℃ in the low-temperature air cooler by ejector chiller (ECh) are considered for evaluation of the fuel saving and rational design cooling capacities of chillers in different climatic conditions.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Farouk, N., Sheng, L., Hayat, Q.: Effect of ambient temperature on the performance of gas turbines power plant. Int. J. Comput. Sci. Issues 10(1(3)), 439–442 (2013) Farouk, N., Sheng, L., Hayat, Q.: Effect of ambient temperature on the performance of gas turbines power plant. Int. J. Comput. Sci. Issues 10(1(3)), 439–442 (2013)
2.
Zurück zum Zitat Kumar, T.A., Muzaffarul, H.M., Islam, M.: Effect of ambient temperature on the performance of a combined cycle power plant. Trans. Can. Soc. Mech. Eng. 37(4), 1177–1188 (2013)CrossRef Kumar, T.A., Muzaffarul, H.M., Islam, M.: Effect of ambient temperature on the performance of a combined cycle power plant. Trans. Can. Soc. Mech. Eng. 37(4), 1177–1188 (2013)CrossRef
3.
Zurück zum Zitat Mahmoudi, S.M., Zare, V., Ranjbar, F., Farshi, L.: Energy and exergy analysis of simple and regenerative gas turbines inlet air cooling using absorption refrigeration. J. Appl. Sci. 9(13), 2399–2407 (2009)CrossRef Mahmoudi, S.M., Zare, V., Ranjbar, F., Farshi, L.: Energy and exergy analysis of simple and regenerative gas turbines inlet air cooling using absorption refrigeration. J. Appl. Sci. 9(13), 2399–2407 (2009)CrossRef
4.
Zurück zum Zitat Bassily, A.M.: Performance improvements of the intercooled reheat recuperated gas-turbine cycle using absorption inlet-cooling and evaporative after-cooling. Appl. Energy 77, 249–272 (2004)CrossRef Bassily, A.M.: Performance improvements of the intercooled reheat recuperated gas-turbine cycle using absorption inlet-cooling and evaporative after-cooling. Appl. Energy 77, 249–272 (2004)CrossRef
5.
Zurück zum Zitat Zhang, T., Liu, Z., Hao, H., Chang, L.: Application research of intake-air cooling technologies in gas-steam combined cycle power plants in China. J. Power Energy Eng. 2, 304–311 (2014)CrossRef Zhang, T., Liu, Z., Hao, H., Chang, L.: Application research of intake-air cooling technologies in gas-steam combined cycle power plants in China. J. Power Energy Eng. 2, 304–311 (2014)CrossRef
6.
Zurück zum Zitat Günnur, Ş.G., et al.: The effect of ambient temperature on electric power generation in natural gas combined cycle power plant-a case study. Energy Rep. 4, 682–690 (2018)CrossRef Günnur, Ş.G., et al.: The effect of ambient temperature on electric power generation in natural gas combined cycle power plant-a case study. Energy Rep. 4, 682–690 (2018)CrossRef
7.
Zurück zum Zitat Yang, Ch., Yang, Z., Cai, R.: Analytical method for evaluation of gas turbine inlet air cooling in combined cycle power plant. Appl. Energy 86, 848–856 (2009)CrossRef Yang, Ch., Yang, Z., Cai, R.: Analytical method for evaluation of gas turbine inlet air cooling in combined cycle power plant. Appl. Energy 86, 848–856 (2009)CrossRef
8.
Zurück zum Zitat Nixdorf, M., Prelipceanu, A., Hein, D.: Thermo-economic analysis of inlet air conditioning methods of a cogeneration gas turbine plant. In: Proceedings of ASME TURBO EXPO, 10 p. (2002). Paper GT-2002-30561 Nixdorf, M., Prelipceanu, A., Hein, D.: Thermo-economic analysis of inlet air conditioning methods of a cogeneration gas turbine plant. In: Proceedings of ASME TURBO EXPO, 10 p. (2002). Paper GT-2002-30561
9.
Zurück zum Zitat Konovalov, D., Kobalava, H.: Efficiency analysis of gas turbine plant cycles with water injection by the aerothermopressor. In: Ivanov, V., et al. (eds.) Advances in Design, Simulation and Manufacturing II. DSMIE 2019. Lecture Notes in Mechanical Engineering, pp. 581–591. Springer, Cham (2020) Konovalov, D., Kobalava, H.: Efficiency analysis of gas turbine plant cycles with water injection by the aerothermopressor. In: Ivanov, V., et al. (eds.) Advances in Design, Simulation and Manufacturing II. DSMIE 2019. Lecture Notes in Mechanical Engineering, pp. 581–591. Springer, Cham (2020)
10.
Zurück zum Zitat Al-Ibrahim, A.M., Varnhamm, A.: A review of inlet air-cooling technologies for enhancing the performance of combustion turbines in Saudi Arabia. Appl. Therm. Eng. 30, 1879–1888 (2010)CrossRef Al-Ibrahim, A.M., Varnhamm, A.: A review of inlet air-cooling technologies for enhancing the performance of combustion turbines in Saudi Arabia. Appl. Therm. Eng. 30, 1879–1888 (2010)CrossRef
11.
Zurück zum Zitat Ameri, M., Hejazi, S.H.: The study of capacity enhancement of the Chabahar gas turbine installation using an absorption chiller. Appl. Therm. Eng. 24, 59–68 (2004)CrossRef Ameri, M., Hejazi, S.H.: The study of capacity enhancement of the Chabahar gas turbine installation using an absorption chiller. Appl. Therm. Eng. 24, 59–68 (2004)CrossRef
12.
Zurück zum Zitat Dawoud, B., Zurigat, Y.H., Bortmany, J.: Thermodynamic assessment of power requirements and impact of different gas-turbine inlet air cooling techniques at two different locations in Oman. Appl. Therm. Eng. 25, 1579–1598 (2005)CrossRef Dawoud, B., Zurigat, Y.H., Bortmany, J.: Thermodynamic assessment of power requirements and impact of different gas-turbine inlet air cooling techniques at two different locations in Oman. Appl. Therm. Eng. 25, 1579–1598 (2005)CrossRef
13.
Zurück zum Zitat Khaliq, A., Dincer, I., Sharma, P.B.: Development and analysis of industrial waste heat based trigeneration for combined production of power heat and cold. J. Energy Inst. 83(2), 79–85 (2010)CrossRef Khaliq, A., Dincer, I., Sharma, P.B.: Development and analysis of industrial waste heat based trigeneration for combined production of power heat and cold. J. Energy Inst. 83(2), 79–85 (2010)CrossRef
14.
Zurück zum Zitat Temir, G., Bilge, D., Emanet, O.: An application of trigeneration and its economic analysis. Energy Sources 26, 857–867 (2004)CrossRef Temir, G., Bilge, D., Emanet, O.: An application of trigeneration and its economic analysis. Energy Sources 26, 857–867 (2004)CrossRef
15.
Zurück zum Zitat International Energy Agency: Combined heat and power: evaluating the benefits of greater global investment (2008) International Energy Agency: Combined heat and power: evaluating the benefits of greater global investment (2008)
16.
Zurück zum Zitat Tom, K.: Combined heating and power and emissions trading: options for policy makers. International Energy Agency (2008) Tom, K.: Combined heating and power and emissions trading: options for policy makers. International Energy Agency (2008)
17.
Zurück zum Zitat Elberry, M.F., et al.: Performance improvement of power plants using absorption cooling system. Alex. Eng. J. 57, 2679–2686 (2018)CrossRef Elberry, M.F., et al.: Performance improvement of power plants using absorption cooling system. Alex. Eng. J. 57, 2679–2686 (2018)CrossRef
18.
Zurück zum Zitat Radchenko, M., Radchenko, R., Ostapenko, O., Zubarev, A., Hrych, A.: Enhancing the utilization of gas engine module exhaust heat by two-stage chillers for combined electricity, heat and refrigeration. In: 5th International Conference on Systems and Informatics, ICSAI 2018, Jiangsu, Nanjing, China, pp. 240–244 (2019) Radchenko, M., Radchenko, R., Ostapenko, O., Zubarev, A., Hrych, A.: Enhancing the utilization of gas engine module exhaust heat by two-stage chillers for combined electricity, heat and refrigeration. In: 5th International Conference on Systems and Informatics, ICSAI 2018, Jiangsu, Nanjing, China, pp. 240–244 (2019)
19.
Zurück zum Zitat Radchenko, M., Radchenko, R., Kornienko, V., Pyrysunko, M.: Semi-empirical correlations of pollution processes on the condensation surfaces of exhaust gas boilers with water-fuel emulsion combustion. In: Ivanov, V., et al. (eds.) Advances in Design, Simulation and Manufacturing II. DSMIE 2019. Lecture Notes in Mechanical Engineering, pp. 853–862. Springer, Cham (2020) Radchenko, M., Radchenko, R., Kornienko, V., Pyrysunko, M.: Semi-empirical correlations of pollution processes on the condensation surfaces of exhaust gas boilers with water-fuel emulsion combustion. In: Ivanov, V., et al. (eds.) Advances in Design, Simulation and Manufacturing II. DSMIE 2019. Lecture Notes in Mechanical Engineering, pp. 853–862. Springer, Cham (2020)
20.
Zurück zum Zitat Marques, R.P., Hacon, D., Tessarollo, A., Parise, J.A.R.: Thermodynamic analysis of trigeneration systems taking into account refrigeration, heating and electricity load demands. Energy Build. 42, 2323–2330 (2010)CrossRef Marques, R.P., Hacon, D., Tessarollo, A., Parise, J.A.R.: Thermodynamic analysis of trigeneration systems taking into account refrigeration, heating and electricity load demands. Energy Build. 42, 2323–2330 (2010)CrossRef
21.
Zurück zum Zitat Ortiga, J., Bruno, J.C., Coronas, A.: Operational optimisation of a complex trigeneration system connected to a district heating and cooling network. Appl. Therm. Eng. 50, 1536–1542 (2013)CrossRef Ortiga, J., Bruno, J.C., Coronas, A.: Operational optimisation of a complex trigeneration system connected to a district heating and cooling network. Appl. Therm. Eng. 50, 1536–1542 (2013)CrossRef
22.
Zurück zum Zitat Popli, S., Rodgers, P., Eveloy, V.: Trigeneration scheme for energy efficiency enhancement in a natural gas processing plant through turbine exhaust gas waste heat utilization. Appl. Energy 93, 623–636 (2012)CrossRef Popli, S., Rodgers, P., Eveloy, V.: Trigeneration scheme for energy efficiency enhancement in a natural gas processing plant through turbine exhaust gas waste heat utilization. Appl. Energy 93, 623–636 (2012)CrossRef
23.
Zurück zum Zitat Popli, S., Rodgers, P., Eveloy, V.: Gas turbine efficiency enhancement using waste heat powered absorption chillers in the oil and gas industry. Appl. Therm. Eng. 50, 918–931 (2013)CrossRef Popli, S., Rodgers, P., Eveloy, V.: Gas turbine efficiency enhancement using waste heat powered absorption chillers in the oil and gas industry. Appl. Therm. Eng. 50, 918–931 (2013)CrossRef
24.
Zurück zum Zitat Kuehn, T.H., Ramsey, J.W., Threlkeld, J.L.: Thermal Environmental Engineering. Prentice Hall, NJ (1998) Kuehn, T.H., Ramsey, J.W., Threlkeld, J.L.: Thermal Environmental Engineering. Prentice Hall, NJ (1998)
25.
Zurück zum Zitat Chacartegui, R., Jimenez-Espadafor, F., Sanchez, D., Sanchez, T.: Analysis of combustion turbine inlet air cooling systems applied to an operating cogeneration power plant. Energy Convers. Manag. 49, 2130–2141 (2008)CrossRef Chacartegui, R., Jimenez-Espadafor, F., Sanchez, D., Sanchez, T.: Analysis of combustion turbine inlet air cooling systems applied to an operating cogeneration power plant. Energy Convers. Manag. 49, 2130–2141 (2008)CrossRef
26.
Zurück zum Zitat Santos, A.P., Andrade, C.R.: Analysis of gas turbine performance with inlet air cooling techniques applied to Brazilian sites. J. Aerosp. Technol. Manag. 4(3), 341–353 (2012). São José dos CamposCrossRef Santos, A.P., Andrade, C.R.: Analysis of gas turbine performance with inlet air cooling techniques applied to Brazilian sites. J. Aerosp. Technol. Manag. 4(3), 341–353 (2012). São José dos CamposCrossRef
27.
Zurück zum Zitat Alhazmy, M., Najjar, Y.: Augmentation of gas turbine performance using air coolers. Appl. Therm. Eng. 24, 415–429 (2004)CrossRef Alhazmy, M., Najjar, Y.: Augmentation of gas turbine performance using air coolers. Appl. Therm. Eng. 24, 415–429 (2004)CrossRef
28.
Zurück zum Zitat Mortazavi, A., Somers, C., Alabdulkarem, A., Hwang, Y., Radermacher, R.: Enhancement of APCI cycle efficiency with absorption chillers. Energy 35, 3877–3882 (2010)CrossRef Mortazavi, A., Somers, C., Alabdulkarem, A., Hwang, Y., Radermacher, R.: Enhancement of APCI cycle efficiency with absorption chillers. Energy 35, 3877–3882 (2010)CrossRef
29.
Zurück zum Zitat Radchenko, N.: A concept of the design and operation of heat exchangers with change of phase. Arch. Thermodyn. Pol. Acad. Sci. 25(4), 3–19 (2004) Radchenko, N.: A concept of the design and operation of heat exchangers with change of phase. Arch. Thermodyn. Pol. Acad. Sci. 25(4), 3–19 (2004)
30.
Zurück zum Zitat Bohdal, T., Sikora, M., Widomska, K., Radchenko, A.M.: Investigation of flow structures during HFE-7100 refrigerant condensation. Arch. Thermodyn. Pol. Acad. Sci. 36(4), 25–34 (2015) Bohdal, T., Sikora, M., Widomska, K., Radchenko, A.M.: Investigation of flow structures during HFE-7100 refrigerant condensation. Arch. Thermodyn. Pol. Acad. Sci. 36(4), 25–34 (2015)
31.
Zurück zum Zitat Radchenko, N.: On reducing the size of liquid separators for injector circulation plate freezers. Int. J. Refrig 5(8), 267–269 (1985)CrossRef Radchenko, N.: On reducing the size of liquid separators for injector circulation plate freezers. Int. J. Refrig 5(8), 267–269 (1985)CrossRef
32.
Zurück zum Zitat Radchenko, A., Radchenko, M., Trushliakov, E., Kantor, S., Tkachenko, V.: Statistical method to define rational heat loads on railway air conditioning system for changeable climatic conditions. In: 5th International Conference on Systems and Informatics, ICSAI 2018, Jiangsu, Nanjing, China, pp. 1308–1312 (2018) Radchenko, A., Radchenko, M., Trushliakov, E., Kantor, S., Tkachenko, V.: Statistical method to define rational heat loads on railway air conditioning system for changeable climatic conditions. In: 5th International Conference on Systems and Informatics, ICSAI 2018, Jiangsu, Nanjing, China, pp. 1308–1312 (2018)
33.
Zurück zum Zitat Trushliakov, E., Radchenko, M., Radchenko, A., Kantor, S., Zongming, Y.: Statistical approach to improve the efficiency of air conditioning system performance in changeable climatic conditions. In: 5th International Conference on Systems and Informatics, ICSAI 2018, Jiangsu, Nanjing, China, pp. 1303–1307 (2018) Trushliakov, E., Radchenko, M., Radchenko, A., Kantor, S., Zongming, Y.: Statistical approach to improve the efficiency of air conditioning system performance in changeable climatic conditions. In: 5th International Conference on Systems and Informatics, ICSAI 2018, Jiangsu, Nanjing, China, pp. 1303–1307 (2018)
34.
Zurück zum Zitat Bohdal, L., Kukielka, L., Świłło, S., Radchenko, A.M., Kułakowska, A.: Modelling and experimental analysis of shear-slitting process of light metal alloys using FEM, SPH and vision-based methods. In: AIP Conference Proceedings, vol. 2078, p. 020060 (2019) Bohdal, L., Kukielka, L., Świłło, S., Radchenko, A.M., Kułakowska, A.: Modelling and experimental analysis of shear-slitting process of light metal alloys using FEM, SPH and vision-based methods. In: AIP Conference Proceedings, vol. 2078, p. 020060 (2019)
35.
Zurück zum Zitat Bohdal, L., Kukielka, L., Radchenko, A.M., Patyk, R., Kułakowski, M., Chodór, J.: Modelling of guillotining process of grain oriented silicon steel using FEM. In: AIP Conference Proceedings, vol. 2078, p. 020080 (2019) Bohdal, L., Kukielka, L., Radchenko, A.M., Patyk, R., Kułakowski, M., Chodór, J.: Modelling of guillotining process of grain oriented silicon steel using FEM. In: AIP Conference Proceedings, vol. 2078, p. 020080 (2019)
36.
Zurück zum Zitat Radchenko, A., Radchenko, M., Konovalov, A., Zubarev, A.: Increasing electrical power output and fuel efficiency of gas engines in integrated energy system by absorption chiller scavenge air cooling on the base of monitoring data treatment. In: HTRSE-2018, E3S Web of Conferences, vol. 70, p. 03011, 6 p. (2018) Radchenko, A., Radchenko, M., Konovalov, A., Zubarev, A.: Increasing electrical power output and fuel efficiency of gas engines in integrated energy system by absorption chiller scavenge air cooling on the base of monitoring data treatment. In: HTRSE-2018, E3S Web of Conferences, vol. 70, p. 03011, 6 p. (2018)
37.
Zurück zum Zitat Radchenko, R., Radchenko, A., Serbin, S., Kantor, S., Portnoi, B.: Gas turbine unite inlet air cooling by using an excessive refrigeration capacity of absorption-ejector chiller in booster air cooler. In: HTRSE-2018, E3S Web of Conferences, vol. 70, p. 03012, 6 p. (2018) Radchenko, R., Radchenko, A., Serbin, S., Kantor, S., Portnoi, B.: Gas turbine unite inlet air cooling by using an excessive refrigeration capacity of absorption-ejector chiller in booster air cooler. In: HTRSE-2018, E3S Web of Conferences, vol. 70, p. 03012, 6 p. (2018)
38.
Zurück zum Zitat Wang, K.: Handbook of Air Conditioning and Refrigeration, 2nd edn. McGraw-Hill, New York (2000) Wang, K.: Handbook of Air Conditioning and Refrigeration, 2nd edn. McGraw-Hill, New York (2000)
Metadaten
Titel
Rational Designing of Gas Turbine Inlet Air Cooling System
verfasst von
Andrii Radchenko
Lukasz Bohdal
Yang Zongming
Bohdan Portnoi
Veniamin Tkachenko
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-030-40724-7_60

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.