Skip to main content

2020 | OriginalPaper | Buchkapitel

Inspection Methods for 3D Concrete Printing

verfasst von : Richard Buswell, Peter Kinnell, Jie Xu, Norman Hack, Harald Kloft, Mehdi Maboudi, Markus Gerke, Peter Massin, Georg Grasser, Rob Wolfs, Freek Bos

Erschienen in: Second RILEM International Conference on Concrete and Digital Fabrication

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

3D Concrete Printing (3DCP) is being used for off-site manufacture of many elements found in the built environment, ranging from furniture to bridges. The advantage of these methods is the value added through greater geometrical freedom because a mould is not needed to create the form. In recent years, research has focused on material properties both in the wet and hardened state, while less attention has been paid to verifying printed forms through geometry measurement. Checking conformity is a critical aspect of manufacturing quality control, particularly when assembling many components, or when integrating/interfacing parts into/with existing construction. This paper takes a case study approach to explore applications of digital measurement systems prior to, during, after manufacture using 3DCP and after the assembly of a set of 3DCP parts and discusses the future prospects for such technology as part of geometry quality control for the procurement of 3DCP elements for the built environment.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
The point cloud is a term used for a set of unordered points, which are spatially sampling an object.
 
Literatur
5.
Zurück zum Zitat Buswell, R.A., de Silva, W.R.L., Bos, F.P., Schipper, R., Lowke, D., Hack, N., Kloft, H., Mechtcherine, V., Wangler, T., Roussel, N.: The RILEM process classification framework for defining and describing Digital Fabrication with Concrete. Cement and Concrete Research 134, 106068 (2020)CrossRef Buswell, R.A., de Silva, W.R.L., Bos, F.P., Schipper, R., Lowke, D., Hack, N., Kloft, H., Mechtcherine, V., Wangler, T., Roussel, N.: The RILEM process classification framework for defining and describing Digital Fabrication with Concrete. Cement and Concrete Research 134, 106068 (2020)CrossRef
6.
Zurück zum Zitat Marchon, D., Kawashima, S., Bessaies-Bey, H., Mantellato, S., Ng, S.: Hydration and rheology control of concrete for digital fabrication: potential admixtures and cement chemistry. Cem. Concr. Res. 112, 96–110 (2018)CrossRef Marchon, D., Kawashima, S., Bessaies-Bey, H., Mantellato, S., Ng, S.: Hydration and rheology control of concrete for digital fabrication: potential admixtures and cement chemistry. Cem. Concr. Res. 112, 96–110 (2018)CrossRef
7.
Zurück zum Zitat Roussel, N.: Rheological requirements for printable concretes. Cem. Concr. Res. 112, 76–85 (2018)CrossRef Roussel, N.: Rheological requirements for printable concretes. Cem. Concr. Res. 112, 76–85 (2018)CrossRef
8.
Zurück zum Zitat Reiter, L., Wangler, T., Roussel, N., Flatt, R.J.: The role of early age structural build-up in digital fabrication with concrete. Cem. Concr. Res. 112, 86–95 (2018)CrossRef Reiter, L., Wangler, T., Roussel, N., Flatt, R.J.: The role of early age structural build-up in digital fabrication with concrete. Cem. Concr. Res. 112, 86–95 (2018)CrossRef
9.
Zurück zum Zitat Asprone, D., Menna, C., Bos, F.P., Salet, T.A., Mata-Falcón, J., Kaufmann, W.: Rethinking reinforcement for digital fabrication with concrete. Cem. Concr. Res. 112, 111–121 (2018)CrossRef Asprone, D., Menna, C., Bos, F.P., Salet, T.A., Mata-Falcón, J., Kaufmann, W.: Rethinking reinforcement for digital fabrication with concrete. Cem. Concr. Res. 112, 111–121 (2018)CrossRef
11.
Zurück zum Zitat Buswell, R.A., Thorpe, A., Soar, R.C., Gibb, A.G.: Design, data and process issues for mega-scale rapid manufacturing machines used for construction. Autom. Constr. 17(8), 923–929 (2008)CrossRef Buswell, R.A., Thorpe, A., Soar, R.C., Gibb, A.G.: Design, data and process issues for mega-scale rapid manufacturing machines used for construction. Autom. Constr. 17(8), 923–929 (2008)CrossRef
12.
Zurück zum Zitat Lim, S., Buswell, R., Le, T., Wackrow, R., Austin, S.A., Gibb, A., Thorpe, T.: Development of a viable concrete printing process (2011) Lim, S., Buswell, R., Le, T., Wackrow, R., Austin, S.A., Gibb, A., Thorpe, T.: Development of a viable concrete printing process (2011)
13.
Zurück zum Zitat Xu, J., Ding, L., Cai, L., Zhang, L., Luo, H., Qin, W.: Volume-forming 3D concrete printing using a variable-size square nozzle. Autom. Constr. 104, 95–106 (2019)CrossRef Xu, J., Ding, L., Cai, L., Zhang, L., Luo, H., Qin, W.: Volume-forming 3D concrete printing using a variable-size square nozzle. Autom. Constr. 104, 95–106 (2019)CrossRef
14.
Zurück zum Zitat Ketel, S., Falzone, G., Wang, B., Washburn, N., Sant, G.: A printability index for linking slurry rheology to the geometrical attributes of 3D-printed components. Cem. Concr. Compos. 101, 32–43 (2019)CrossRef Ketel, S., Falzone, G., Wang, B., Washburn, N., Sant, G.: A printability index for linking slurry rheology to the geometrical attributes of 3D-printed components. Cem. Concr. Compos. 101, 32–43 (2019)CrossRef
15.
Zurück zum Zitat Chin, S., Kim, K., Kim, Y.S.: A process-based quality management information system. Autom. Constr. 13(2), 241–259 (2004)CrossRef Chin, S., Kim, K., Kim, Y.S.: A process-based quality management information system. Autom. Constr. 13(2), 241–259 (2004)CrossRef
16.
Zurück zum Zitat Fox, A.J., Cornell, H.A. (eds.) Quality in the Constructed Project: Proceedings of the Workshop. Amer Society of Civil Engineers (1985) Fox, A.J., Cornell, H.A. (eds.) Quality in the Constructed Project: Proceedings of the Workshop. Amer Society of Civil Engineers (1985)
17.
Zurück zum Zitat Kavanagh, T.C., Müller, F., O’Brien, J.J.: Construction Management: A Professional Approach. McGraw-Hill, New York (1978) Kavanagh, T.C., Müller, F., O’Brien, J.J.: Construction Management: A Professional Approach. McGraw-Hill, New York (1978)
18.
Zurück zum Zitat Booker, J.D., Swift, K.G., Brown, N.J.: Designing for assembly quality: strategies, guidelines and techniques. J. Eng. Des. 16(3), 279–295 (2005)CrossRef Booker, J.D., Swift, K.G., Brown, N.J.: Designing for assembly quality: strategies, guidelines and techniques. J. Eng. Des. 16(3), 279–295 (2005)CrossRef
19.
Zurück zum Zitat Shafer, D.A.: Successful assembly automation: a development and implementation guide. Society of Manufacturing Engineers (1998) Shafer, D.A.: Successful assembly automation: a development and implementation guide. Society of Manufacturing Engineers (1998)
20.
Zurück zum Zitat Maboudi, M., Bánhid, D., Gerke, M.: Investigation Of geometric performance of an indoor mobile mapping system. Int. Arch. Photogram. Rem. Sens. Spatial Inf. Sci. 42(2), 637–642 (2018)CrossRef Maboudi, M., Bánhid, D., Gerke, M.: Investigation Of geometric performance of an indoor mobile mapping system. Int. Arch. Photogram. Rem. Sens. Spatial Inf. Sci. 42(2), 637–642 (2018)CrossRef
21.
Zurück zum Zitat Wang, Q., Kim, M.K.: Applications of 3D point cloud data in the construction industry: a fifteen-year review from 2004 to 2018. Adv. Eng. Inf. 39, 306–319 (2019)CrossRef Wang, Q., Kim, M.K.: Applications of 3D point cloud data in the construction industry: a fifteen-year review from 2004 to 2018. Adv. Eng. Inf. 39, 306–319 (2019)CrossRef
22.
Zurück zum Zitat Kim, M.K., Thedja, J.P.P., Wang, Q.: Automated dimensional quality assessment for formwork and rebar of reinforced concrete components using 3D point cloud data. Autom. Constr. 112, 103077 (2020)CrossRef Kim, M.K., Thedja, J.P.P., Wang, Q.: Automated dimensional quality assessment for formwork and rebar of reinforced concrete components using 3D point cloud data. Autom. Constr. 112, 103077 (2020)CrossRef
24.
Zurück zum Zitat Kim, M.K., Wang, Q., Li, H.: Non-contact sensing based geometric quality assessment of buildings and civil structures: a review. Autom. Constr. 100, 163–179 (2019)CrossRef Kim, M.K., Wang, Q., Li, H.: Non-contact sensing based geometric quality assessment of buildings and civil structures: a review. Autom. Constr. 100, 163–179 (2019)CrossRef
25.
Zurück zum Zitat Labonnote, N., Rønnquist, A., Manum, B., Rüther, P.: Additive construction: state-of-the-art, challenges and opportunities. Autom. Constr. 72, 347–366 (2019)CrossRef Labonnote, N., Rønnquist, A., Manum, B., Rüther, P.: Additive construction: state-of-the-art, challenges and opportunities. Autom. Constr. 72, 347–366 (2019)CrossRef
26.
Zurück zum Zitat Ahn, D., Kweon, J.H., Kwon, S., Song, J., Lee, S.: Representation of surface roughness in fused deposition modeling. J. Mater. Process. Technol. 209(15–16), 5593–5600 (2009)CrossRef Ahn, D., Kweon, J.H., Kwon, S., Song, J., Lee, S.: Representation of surface roughness in fused deposition modeling. J. Mater. Process. Technol. 209(15–16), 5593–5600 (2009)CrossRef
27.
Zurück zum Zitat Buswell, R.A., de Silva, W.L., Jones, S.Z., Dirrenberger, J.: 3D printing using concrete extrusion: a roadmap for research. Cem. Concr. Res. 112, 37–49 (2018)CrossRef Buswell, R.A., de Silva, W.L., Jones, S.Z., Dirrenberger, J.: 3D printing using concrete extrusion: a roadmap for research. Cem. Concr. Res. 112, 37–49 (2018)CrossRef
28.
Zurück zum Zitat Neudecker, S., Bruns, C., Gerbers, R., Heyn, J., Dietrich, F., Dröder, K., Raatz, A., Kloft, H.: A new robotic spray technology for generative manufacturing of complex concrete structures without formwork. Procedia CIRP 43, 333–338 (2016)CrossRef Neudecker, S., Bruns, C., Gerbers, R., Heyn, J., Dietrich, F., Dröder, K., Raatz, A., Kloft, H.: A new robotic spray technology for generative manufacturing of complex concrete structures without formwork. Procedia CIRP 43, 333–338 (2016)CrossRef
29.
Zurück zum Zitat Popescu, C., Täljsten, B., Blanksvärd, T., Elfgren, L.: 3D reconstruction of existing concrete bridges using optical methods. Struct. Infrastruct. Eng. 15(7), 912–924 (2016)CrossRef Popescu, C., Täljsten, B., Blanksvärd, T., Elfgren, L.: 3D reconstruction of existing concrete bridges using optical methods. Struct. Infrastruct. Eng. 15(7), 912–924 (2016)CrossRef
30.
Zurück zum Zitat Omar, T., Nehdi, M.L.: Data acquisition technologies for construction progress tracking. Autom. Constr. 70, 143–155 (2016)CrossRef Omar, T., Nehdi, M.L.: Data acquisition technologies for construction progress tracking. Autom. Constr. 70, 143–155 (2016)CrossRef
31.
Zurück zum Zitat Akinci, B., Boukamp, F., Gordon, C., Huber, D., Lyons, C., Park, K.: A formalism for utilization of sensor systems and integrated project models for active construction quality control. Autom. constr. 15(2), 124–138 (2006)CrossRef Akinci, B., Boukamp, F., Gordon, C., Huber, D., Lyons, C., Park, K.: A formalism for utilization of sensor systems and integrated project models for active construction quality control. Autom. constr. 15(2), 124–138 (2006)CrossRef
32.
Zurück zum Zitat Gordon, S.J., Lichti, D.D.: Modeling terrestrial laser scanner data for precise structural deformation measurement. J. Surv. Eng. 133(2), 72–80 (2007)CrossRef Gordon, S.J., Lichti, D.D.: Modeling terrestrial laser scanner data for precise structural deformation measurement. J. Surv. Eng. 133(2), 72–80 (2007)CrossRef
33.
Zurück zum Zitat Bosché, F.: Automated recognition of 3D CAD model objects in laser scans and calculation of as-built dimensions for dimensional compliance control in construction. Adv. Eng. Inf. 24(1), 107–118 (2010)CrossRef Bosché, F.: Automated recognition of 3D CAD model objects in laser scans and calculation of as-built dimensions for dimensional compliance control in construction. Adv. Eng. Inf. 24(1), 107–118 (2010)CrossRef
35.
Zurück zum Zitat Golparvar-Fard, M., Pena-Mora, F., Savarese, S.: Automated progress monitoring using unordered daily construction photographs and IFC-based building information models. J. Comput. Civil Eng. 29(1), 04014025 (2015)CrossRef Golparvar-Fard, M., Pena-Mora, F., Savarese, S.: Automated progress monitoring using unordered daily construction photographs and IFC-based building information models. J. Comput. Civil Eng. 29(1), 04014025 (2015)CrossRef
36.
Zurück zum Zitat Braun, A., Tuttas, S., Stilla, U., Borrmann, A.: Process-and computer vision-based detection of as-built components on construction sites. In: Proceedings of the International Symposium on Automation and Robotics in Construction, ISARC, vol. 35, pp. 1–7. IAARC Publications (2018) Braun, A., Tuttas, S., Stilla, U., Borrmann, A.: Process-and computer vision-based detection of as-built components on construction sites. In: Proceedings of the International Symposium on Automation and Robotics in Construction, ISARC, vol. 35, pp. 1–7. IAARC Publications (2018)
37.
Zurück zum Zitat Hamledari, H., McCabe, B., Davari, S.: Automated computer vision-based detection of components of under-construction indoor partitions. Autom. Constr. 74, 78–94 (2017)CrossRef Hamledari, H., McCabe, B., Davari, S.: Automated computer vision-based detection of components of under-construction indoor partitions. Autom. Constr. 74, 78–94 (2017)CrossRef
38.
Zurück zum Zitat Besl, P.J., McKay, N.D.: Method for registration of 3-D shapes. In: Sensor Fusion IV: Control Paradigms and Data Structures, vol. 1611, pp. 586–606. International Society for Optics and Photonics (1992) Besl, P.J., McKay, N.D.: Method for registration of 3-D shapes. In: Sensor Fusion IV: Control Paradigms and Data Structures, vol. 1611, pp. 586–606. International Society for Optics and Photonics (1992)
39.
Zurück zum Zitat Xu, J., Buswell, R.A., Kinnell, P., Biro, I., Hodgson, J., Konstantinidis, N., Ding, L.: Inspecting manufacturing precision of 3D printed concrete parts based on geometric dimensioning and tolerancing. Autom. Constr. 117, 103233 (2020)CrossRef Xu, J., Buswell, R.A., Kinnell, P., Biro, I., Hodgson, J., Konstantinidis, N., Ding, L.: Inspecting manufacturing precision of 3D printed concrete parts based on geometric dimensioning and tolerancing. Autom. Constr. 117, 103233 (2020)CrossRef
41.
Zurück zum Zitat Lim, S., Buswell, R.A., Valentine, P.J., Piker, D., Austin, S.A., De Kestelier, X.: Modelling curved-layered printing paths for fabricating large-scale construction components. Addit. Manuf. 12, 216–230 (2016) Lim, S., Buswell, R.A., Valentine, P.J., Piker, D., Austin, S.A., De Kestelier, X.: Modelling curved-layered printing paths for fabricating large-scale construction components. Addit. Manuf. 12, 216–230 (2016)
42.
Zurück zum Zitat Wolfs, R.J., Bos, F.P., van Strien, E.C., Salet, T.A.: A real-time height measurement and feedback system for 3D concrete printing. In: High Tech Concrete: Where Technology and Engineering Meet - Proceedings of the 2017 Fib Symposium, pp. 2474–2483. Springer, Cham (2018) Wolfs, R.J., Bos, F.P., van Strien, E.C., Salet, T.A.: A real-time height measurement and feedback system for 3D concrete printing. In: High Tech Concrete: Where Technology and Engineering Meet - Proceedings of the 2017 Fib Symposium, pp. 2474–2483. Springer, Cham (2018)
43.
Zurück zum Zitat Lindemann, H., Gerbers, R., Ibrahim, S., Dietrich, F., Herrmann, E., Dröder, K., Raatz, A., Kloft, H.: Development of a shotcrete 3D-printing (SC3DP) technology for additive manufacturing of reinforced freeform concrete structures. In: RILEM International Conference on Concrete and Digital Fabrication, pp. 287–298. Springer, Cham (2018) Lindemann, H., Gerbers, R., Ibrahim, S., Dietrich, F., Herrmann, E., Dröder, K., Raatz, A., Kloft, H.: Development of a shotcrete 3D-printing (SC3DP) technology for additive manufacturing of reinforced freeform concrete structures. In: RILEM International Conference on Concrete and Digital Fabrication, pp. 287–298. Springer, Cham (2018)
44.
Zurück zum Zitat Grasser, G., Pammer, L., Köll, H., Werner, E., Bos, F.P.: Complex architecture in printed concrete: the case of the Innsbruck University 350th anniversary pavilion Cohesion. In: Proceedings of Digital Concrete 2020, (2020) Grasser, G., Pammer, L., Köll, H., Werner, E., Bos, F.P.: Complex architecture in printed concrete: the case of the Innsbruck University 350th anniversary pavilion Cohesion. In: Proceedings of Digital Concrete 2020, (2020)
Metadaten
Titel
Inspection Methods for 3D Concrete Printing
verfasst von
Richard Buswell
Peter Kinnell
Jie Xu
Norman Hack
Harald Kloft
Mehdi Maboudi
Markus Gerke
Peter Massin
Georg Grasser
Rob Wolfs
Freek Bos
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-030-49916-7_78

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.