Skip to main content

2020 | OriginalPaper | Buchkapitel

Advanced Radial Basis Functions Mesh Morphing for High Fidelity Fluid-Structure Interaction with Known Movement of the Walls: Simulation of an Aortic Valve

verfasst von : Leonardo Geronzi, Emanuele Gasparotti, Katia Capellini, Ubaldo Cella, Corrado Groth, Stefano Porziani, Andrea Chiappa, Simona Celi, Marco Evangelos Biancolini

Erschienen in: Computational Science – ICCS 2020

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

High fidelity Fluid-Structure Interaction (FSI) can be tackled by means of non-linear Finite Element Models (FEM) suitable to capture large deflections of structural parts interacting with fluids and by means of detailed Computational Fluid Dynamics (CFD). High fidelity is gained thanks to the spatial resolution of the computational grids and a key enabler to have a proper exchange of information between the structural solver and the fluid one is the management of the interfaces. A class of applications consists in problems where the complex movement of the walls is known in advance or can be computed by FEM and has to be transferred to the CFD solver. The aforementioned approach, known also as one-way FSI, requires effective methods for the time marching adaption of the computation grid of the CFD model. A versatile and well established approach consists in a continuum update of the mesh that is regenerated so to fit the evolution of the moving walls. In this study, an innovative method based on Radial Basis Functions (RBF) mesh morphing is proposed, allowing to keep the same mesh topology suitable for a continuum update of the shape. A set of key configurations are exactly guaranteed whilst time interpolation is adopted between frames. The new framework is detailed and then demonstrated, adopting as a reference the established approach based on remeshing, for the study of a Polymeric-Prosthetic Heart Valve (P-PHV).

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Marom, G.: Numerical methods for fluid-structure interaction models of aortic valves. Arch. Comput. Methods Eng. 22(4), 595–620 (2015)MathSciNetCrossRef Marom, G.: Numerical methods for fluid-structure interaction models of aortic valves. Arch. Comput. Methods Eng. 22(4), 595–620 (2015)MathSciNetCrossRef
2.
Zurück zum Zitat Roy, D., Kauffmann, C., Delorme, S., Lerouge, S., Cloutier, G., Soulez, G.: A literature review of the numerical analysis of abdominal aortic aneurysms treated with endovascular stent grafts. Comput. Math. Methods Med. 2012, Article ID 820389, 16 p. (2012). https://doi.org/10.1155/2012/820389 Roy, D., Kauffmann, C., Delorme, S., Lerouge, S., Cloutier, G., Soulez, G.: A literature review of the numerical analysis of abdominal aortic aneurysms treated with endovascular stent grafts. Comput. Math. Methods Med. 2012, Article ID 820389, 16 p. (2012). https://​doi.​org/​10.​1155/​2012/​820389
3.
Zurück zum Zitat Avrahami, I., Rosenfeld, M., Raz, S., Einav, S.: Numerical model of flow in a sac-type ventricular assist device. Artif. Organs 30(7), 529–538 (2006)CrossRef Avrahami, I., Rosenfeld, M., Raz, S., Einav, S.: Numerical model of flow in a sac-type ventricular assist device. Artif. Organs 30(7), 529–538 (2006)CrossRef
7.
Zurück zum Zitat Atasoy, F., Sen, B., Nar, F., Bozkurt, I.: Improvement of radial basis function interpolation performance on cranial implant design. Int. J. Adv. Comput. Sci. Appl. 8(8), 83–88 (2017) Atasoy, F., Sen, B., Nar, F., Bozkurt, I.: Improvement of radial basis function interpolation performance on cranial implant design. Int. J. Adv. Comput. Sci. Appl. 8(8), 83–88 (2017)
9.
Zurück zum Zitat Capellini, K., et al.: An image-based and RBF mesh morphing CFD simulation for parametric aTAA hemodynamics. In: Vairo, G. (ed.) Proceedings VII Meeting Italian Chapter of the European Society of Biomechanics (ESB-ITA 2017) (2017) Capellini, K., et al.: An image-based and RBF mesh morphing CFD simulation for parametric aTAA hemodynamics. In: Vairo, G. (ed.) Proceedings VII Meeting Italian Chapter of the European Society of Biomechanics (ESB-ITA 2017) (2017)
10.
Zurück zum Zitat Capellini, K., et al.: Computational fluid dynamic study for aTAA hemodynamics: an integrated image-based and radial basis functions mesh morphing approach. J. Biomech. Eng. 140(11), 111007 (2018)CrossRef Capellini, K., et al.: Computational fluid dynamic study for aTAA hemodynamics: an integrated image-based and radial basis functions mesh morphing approach. J. Biomech. Eng. 140(11), 111007 (2018)CrossRef
11.
Zurück zum Zitat Capellini, K., et al.: A coupled CFD and RBF mesh morphing technique as surrogate for one-way FSI study. In: Proceedings VIII Meeting Italian Chapter of the European Society of Biomechanics, (ESB-ITA 2018) (2018) Capellini, K., et al.: A coupled CFD and RBF mesh morphing technique as surrogate for one-way FSI study. In: Proceedings VIII Meeting Italian Chapter of the European Society of Biomechanics, (ESB-ITA 2018) (2018)
12.
Zurück zum Zitat Groth, C., Cella, U., Costa, E., Biancolini, M.E.: Fast high fidelity CFD/CSM fluid structure interaction using RBF mesh morphing and modal superposition method. Aircr. Eng. Aerosp. Technol. 91, 893–904 (2019)CrossRef Groth, C., Cella, U., Costa, E., Biancolini, M.E.: Fast high fidelity CFD/CSM fluid structure interaction using RBF mesh morphing and modal superposition method. Aircr. Eng. Aerosp. Technol. 91, 893–904 (2019)CrossRef
13.
Zurück zum Zitat Biancolini, M.E., Cella, U., Groth, C., Genta, M.: Static aeroelastic analysis of an aircraft wind-tunnel model by means of modal RBF mesh updating. J. Aerosp. Eng. 29(6), 04016061 (2016)CrossRef Biancolini, M.E., Cella, U., Groth, C., Genta, M.: Static aeroelastic analysis of an aircraft wind-tunnel model by means of modal RBF mesh updating. J. Aerosp. Eng. 29(6), 04016061 (2016)CrossRef
14.
15.
Zurück zum Zitat Van Zuijlen, A.H., de Aukje, B., Bijl, H.: Higher-order time integration through smooth mesh deformation for 3D fluid-structure interaction simulations. J. Comput. Phys. 224(1), 414–430 (2007)MathSciNetCrossRef Van Zuijlen, A.H., de Aukje, B., Bijl, H.: Higher-order time integration through smooth mesh deformation for 3D fluid-structure interaction simulations. J. Comput. Phys. 224(1), 414–430 (2007)MathSciNetCrossRef
16.
Zurück zum Zitat Di Domenico, N., et al.: Fluid structure interaction analysis: vortex shedding induced vibrations. Procedia Struct. Integrity 8, 422–432 (2018)CrossRef Di Domenico, N., et al.: Fluid structure interaction analysis: vortex shedding induced vibrations. Procedia Struct. Integrity 8, 422–432 (2018)CrossRef
17.
Zurück zum Zitat Costa, E., Groth, C., Lavedrine, J., Caridi, D., Dupain, G., Biancolini, M.E.: Unsteady FSI analysis of a square array of tubes in water crossflow. In: Biancolini, M.E., Cella, U. (eds.) Flexible Engineering Toward Green Aircraft. LNACM, vol. 92, pp. 129–152. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-36514-1_8CrossRef Costa, E., Groth, C., Lavedrine, J., Caridi, D., Dupain, G., Biancolini, M.E.: Unsteady FSI analysis of a square array of tubes in water crossflow. In: Biancolini, M.E., Cella, U. (eds.) Flexible Engineering Toward Green Aircraft. LNACM, vol. 92, pp. 129–152. Springer, Cham (2020). https://​doi.​org/​10.​1007/​978-3-030-36514-1_​8CrossRef
18.
Zurück zum Zitat Cella, U., Marco, E.B.: Aeroelastic analysis of aircraft wind-tunnel model coupling structural and fluid dynamic codes. J. Aircr. 49(2), 407–414 (2012)CrossRef Cella, U., Marco, E.B.: Aeroelastic analysis of aircraft wind-tunnel model coupling structural and fluid dynamic codes. J. Aircr. 49(2), 407–414 (2012)CrossRef
19.
Zurück zum Zitat Keye, S.: Fluid-structure coupled analysis of a transport aircraft and flight-test validation. J. Aircr. 48(2), 381–390 (2011)CrossRef Keye, S.: Fluid-structure coupled analysis of a transport aircraft and flight-test validation. J. Aircr. 48(2), 381–390 (2011)CrossRef
20.
Zurück zum Zitat Biancolini, M.E., Chiappa, A., Giorgetti, F., Groth, C., Cella, U., Salvini, P.: A balanced load mapping method based on radial basis functions and fuzzy sets. Int. J. Numer. Meth. Eng. 115(12), 1411–1429 (2018)CrossRef Biancolini, M.E., Chiappa, A., Giorgetti, F., Groth, C., Cella, U., Salvini, P.: A balanced load mapping method based on radial basis functions and fuzzy sets. Int. J. Numer. Meth. Eng. 115(12), 1411–1429 (2018)CrossRef
21.
Zurück zum Zitat Ghosh, R.P., et al.: Comparative fluid-structure interaction analysis of polymeric transcatheter and surgical aortic valves’ hemodynamics and structural mechanics. J. Biomech. Eng. 140(12), 121002 (2018)CrossRef Ghosh, R.P., et al.: Comparative fluid-structure interaction analysis of polymeric transcatheter and surgical aortic valves’ hemodynamics and structural mechanics. J. Biomech. Eng. 140(12), 121002 (2018)CrossRef
22.
Zurück zum Zitat Bezuidenhout, D., Williams, D.F., Zilla, P.: Polymeric heart valves for surgical implantation, catheter-based technologies and heart assist devices. Biomaterials 36, 6–25 (2015)CrossRef Bezuidenhout, D., Williams, D.F., Zilla, P.: Polymeric heart valves for surgical implantation, catheter-based technologies and heart assist devices. Biomaterials 36, 6–25 (2015)CrossRef
23.
Zurück zum Zitat Ghanbari, H., Viatge, H., Kidane, A.G., Burriesci, G., Tavakoli, M., Seifalian, A.M.: Polymeric heart valves: new materials, emerging hopes. Trends Biotechnol. 27(6), 359–367 (2009)CrossRef Ghanbari, H., Viatge, H., Kidane, A.G., Burriesci, G., Tavakoli, M., Seifalian, A.M.: Polymeric heart valves: new materials, emerging hopes. Trends Biotechnol. 27(6), 359–367 (2009)CrossRef
24.
Zurück zum Zitat Hirt, C.W., Amsden, A.A., Cook, J.L.: An arbitrary Lagrangian-Eulerian computing method for all flow speeds. J. Comput. Phys. 14(3), 227–253 (1974)CrossRef Hirt, C.W., Amsden, A.A., Cook, J.L.: An arbitrary Lagrangian-Eulerian computing method for all flow speeds. J. Comput. Phys. 14(3), 227–253 (1974)CrossRef
26.
Zurück zum Zitat Zhang, Q., Hisada, T.: Analysis of fluid-structure interaction problems with structural buckling and large domain changes by ALE finite element method. Comput. Methods Appl. Mech. Eng. 190(48), 6341–6357 (2001)CrossRef Zhang, Q., Hisada, T.: Analysis of fluid-structure interaction problems with structural buckling and large domain changes by ALE finite element method. Comput. Methods Appl. Mech. Eng. 190(48), 6341–6357 (2001)CrossRef
27.
Zurück zum Zitat Baum, J., Luo, H., Loehner, R.: A new ALE adaptive unstructured methodology for the simulation of moving bodies. In 32nd Aerospace Sciences Meeting and Exhibit, pp. 1–14 (1994) Baum, J., Luo, H., Loehner, R.: A new ALE adaptive unstructured methodology for the simulation of moving bodies. In 32nd Aerospace Sciences Meeting and Exhibit, pp. 1–14 (1994)
28.
Zurück zum Zitat Braaten, M., Shyy, W.: A study of recirculating flow computation using body-fitted coordinates: consistency aspects and mesh skewness. Numer. Heat Trans. Part A: Appl. 9(5), 559–574 (1986) Braaten, M., Shyy, W.: A study of recirculating flow computation using body-fitted coordinates: consistency aspects and mesh skewness. Numer. Heat Trans. Part A: Appl. 9(5), 559–574 (1986)
29.
Zurück zum Zitat Profir, M.M.: Mesh morphing techniques in CFD. In: International Student Conference on Pure and Applied Mathematics, pp. 195–208 (2011) Profir, M.M.: Mesh morphing techniques in CFD. In: International Student Conference on Pure and Applied Mathematics, pp. 195–208 (2011)
30.
Zurück zum Zitat Yu, H., Xie, T., Paszczyñski, S., Wilamowski, B.M.: Advantages of radial basis function networks for dynamic system design. IEEE Trans. Industr. Electron. 58(12), 5438–5450 (2011)CrossRef Yu, H., Xie, T., Paszczyñski, S., Wilamowski, B.M.: Advantages of radial basis function networks for dynamic system design. IEEE Trans. Industr. Electron. 58(12), 5438–5450 (2011)CrossRef
31.
Zurück zum Zitat Biancolini, M.E.: Mesh morphing and smoothing by means of radial basis functions (RBF): a practical example using fluent and RBF morph. In: Handbook of Research on Computational Science and Engineering: Theory and Practice, pp. 347–380. IGI Global (2012) Biancolini, M.E.: Mesh morphing and smoothing by means of radial basis functions (RBF): a practical example using fluent and RBF morph. In: Handbook of Research on Computational Science and Engineering: Theory and Practice, pp. 347–380. IGI Global (2012)
32.
Zurück zum Zitat RBF Morph for FLUENT: User’s Guide. Release V1.93 (2019). Accessed 2019 RBF Morph for FLUENT: User’s Guide. Release V1.93 (2019). Accessed 2019
33.
Zurück zum Zitat RBF Morph: Modelling Guidelines and Best Practices Guide. Release V1.93. Accessed 2019 RBF Morph: Modelling Guidelines and Best Practices Guide. Release V1.93. Accessed 2019
34.
Zurück zum Zitat Anderson, R.H.: Clinical anatomy of the aortic root. Heart 84(6), 670–673 (2000)CrossRef Anderson, R.H.: Clinical anatomy of the aortic root. Heart 84(6), 670–673 (2000)CrossRef
36.
Zurück zum Zitat Jiang, H., Campbell, G., Boughner, D., Wan, W.K., Quantz, M.: Design and manufacture of a polyvinyl alcohol (PVA) cryogel tri-leaflet heart valve prosthesis. Med. Eng. Phys. 26(4), 269–277 (2004)CrossRef Jiang, H., Campbell, G., Boughner, D., Wan, W.K., Quantz, M.: Design and manufacture of a polyvinyl alcohol (PVA) cryogel tri-leaflet heart valve prosthesis. Med. Eng. Phys. 26(4), 269–277 (2004)CrossRef
37.
Zurück zum Zitat Reid, K.: The anatomy of the sinus of Valsalva. Thorax 25(1), 79–85 (1970)CrossRef Reid, K.: The anatomy of the sinus of Valsalva. Thorax 25(1), 79–85 (1970)CrossRef
38.
Zurück zum Zitat 3.1 Dynamic Mesh Update Methods. Release V12.0. Accessed Jan 2009 3.1 Dynamic Mesh Update Methods. Release V12.0. Accessed Jan 2009
39.
Zurück zum Zitat Si, H., Fuxiang, Y., Jing, G.: Numerical simulation of 3D unsteady flow in centrifugal pump by dynamic mesh technique. Procedia Eng. 61, 270–275 (2013)CrossRef Si, H., Fuxiang, Y., Jing, G.: Numerical simulation of 3D unsteady flow in centrifugal pump by dynamic mesh technique. Procedia Eng. 61, 270–275 (2013)CrossRef
40.
Zurück zum Zitat Maselli, D., et al.: Sinotubular junction size affects aortic root geometry and aortic valve function in the aortic valve reimplantation procedure: an in vitro study using the Valsalva graft. Ann. Thorac. Surg. 84(4), 1214–1218 (2007)CrossRef Maselli, D., et al.: Sinotubular junction size affects aortic root geometry and aortic valve function in the aortic valve reimplantation procedure: an in vitro study using the Valsalva graft. Ann. Thorac. Surg. 84(4), 1214–1218 (2007)CrossRef
41.
Zurück zum Zitat Helenbrook, B.T.: Mesh deformation using the biharmonic operator. Int. J. Numer. Meth. Eng. 56(7), 1007–1021 (2003)CrossRef Helenbrook, B.T.: Mesh deformation using the biharmonic operator. Int. J. Numer. Meth. Eng. 56(7), 1007–1021 (2003)CrossRef
Metadaten
Titel
Advanced Radial Basis Functions Mesh Morphing for High Fidelity Fluid-Structure Interaction with Known Movement of the Walls: Simulation of an Aortic Valve
verfasst von
Leonardo Geronzi
Emanuele Gasparotti
Katia Capellini
Ubaldo Cella
Corrado Groth
Stefano Porziani
Andrea Chiappa
Simona Celi
Marco Evangelos Biancolini
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-030-50433-5_22