Skip to main content

2021 | OriginalPaper | Buchkapitel

Addressing the Class Imbalance Problem in Medical Image Segmentation via Accelerated Tversky Loss Function

verfasst von : Nikhil Nasalwai, Narinder Singh Punn, Sanjay Kumar Sonbhadra, Sonali Agarwal

Erschienen in: Advances in Knowledge Discovery and Data Mining

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Image segmentation in the medical domain has gained a lot of research interest in recent years with the advancements in deep learning algorithms and related technologies. Medical image datasets are often imbalanced and to handle the imbalance problem, deep learning models are equipped with modified loss functions to effectively penalize the training weights for false predictions and conduct unbiased learning. Recent works have introduced various loss functions suitable for certain scenarios of segmentation. In this paper, we have explored the existing loss functions that are widely used for medical image segmentation, following which an accelerated Tversky loss (ATL) function is proposed that uses log cosh function to better optimize the gradients. The no-new U-Net (nn-Unet) model is adopted as the base model to validate the behaviour of the loss functions by using the standard benchmark segmentation performance metrics. To establish the robustness and effectiveness of the loss functions, multiple datasets are adopted, where ATL function illustrated better performance with faster convergence and better mask generation.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Badrinarayanan, V., Kendall, A., Cipolla, R.: SegNet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Machine Intell. 39(12), 2481–2495 (2017)CrossRef Badrinarayanan, V., Kendall, A., Cipolla, R.: SegNet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Machine Intell. 39(12), 2481–2495 (2017)CrossRef
2.
Zurück zum Zitat Brosch, T., Yoo, Y., Tang, L.Y.W., Li, D.K.B., Traboulsee, A., Tam, R.: Deep convolutional encoder networks for multiple sclerosis lesion segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 3–11. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_1CrossRef Brosch, T., Yoo, Y., Tang, L.Y.W., Li, D.K.B., Traboulsee, A., Tam, R.: Deep convolutional encoder networks for multiple sclerosis lesion segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 3–11. Springer, Cham (2015). https://​doi.​org/​10.​1007/​978-3-319-24574-4_​1CrossRef
3.
Zurück zum Zitat Caliva, F., Iriondo, C., Martinez, A.M., Majumdar, S., Pedoia, V.: Distance map loss penalty term for semantic segmentation. arXiv preprint arXiv:1908.03679 (2019) Caliva, F., Iriondo, C., Martinez, A.M., Majumdar, S., Pedoia, V.: Distance map loss penalty term for semantic segmentation. arXiv preprint arXiv:​1908.​03679 (2019)
4.
Zurück zum Zitat Zhang, Z., Wu, C., Coleman, S., Kerr, D.: Dense-inception U-Net for medical image segmentation. Comput. Methods Programs Biomed. 192, 105395 (2020). ISSN 0169-2607CrossRef Zhang, Z., Wu, C., Coleman, S., Kerr, D.: Dense-inception U-Net for medical image segmentation. Comput. Methods Programs Biomed. 192, 105395 (2020). ISSN 0169-2607CrossRef
5.
Zurück zum Zitat Esteva, A., et al.: A guide to deep learning in healthcare. Nature Med. 25(1), 24–29 (2019)CrossRef Esteva, A., et al.: A guide to deep learning in healthcare. Nature Med. 25(1), 24–29 (2019)CrossRef
6.
Zurück zum Zitat He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp, 770–778 (2016) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp, 770–778 (2016)
7.
Zurück zum Zitat Huang, G., Liu, Z., van der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks (2018) Huang, G., Liu, Z., van der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks (2018)
8.
10.
Zurück zum Zitat Jain, A., Ratnoo, S., Kumar., D.: Addressing class imbalance problem in medical diagnosis: a genetic algorithm approach. In: International Conference on Information, Communication, Instrumentation and Control, pp. 1–8 (2017) Jain, A., Ratnoo, S., Kumar., D.: Addressing class imbalance problem in medical diagnosis: a genetic algorithm approach. In: International Conference on Information, Communication, Instrumentation and Control, pp. 1–8 (2017)
11.
Zurück zum Zitat Kervadec, H., Bouchtiba, J., Desrosiers, C., Granger, E., Dolz, J., Ben Ayed, I.: Boundary loss for highly unbalanced segmentation. Medical Image Anal. 67, 101851 (2021). ISSN 1361–8415CrossRef Kervadec, H., Bouchtiba, J., Desrosiers, C., Granger, E., Dolz, J., Ben Ayed, I.: Boundary loss for highly unbalanced segmentation. Medical Image Anal. 67, 101851 (2021). ISSN 1361–8415CrossRef
12.
Zurück zum Zitat Lei, T., Wang, R., Wan, Y., Du, X., Meng, H., Nandi, A.K.: Medical image segmentation using deep learning: a survey. arXiv preprint arXiv:2009.13120 (2020) Lei, T., Wang, R., Wan, Y., Du, X., Meng, H., Nandi, A.K.: Medical image segmentation using deep learning: a survey. arXiv preprint arXiv:​2009.​13120 (2020)
13.
Zurück zum Zitat Lin, T., et al.: Focal loss for dense object detection. In: 2017 IEEE International Conference on Computer Vision, pp. 2999–3007 (2017) Lin, T., et al.: Focal loss for dense object detection. In: 2017 IEEE International Conference on Computer Vision, pp. 2999–3007 (2017)
14.
Zurück zum Zitat Sankaran, P., et al.: Multi-task learning and weighted cross-entropy for DNN-based keyword spotting. In: Interspeech, vol. 9, pp. 760–764 (2016) Sankaran, P., et al.: Multi-task learning and weighted cross-entropy for DNN-based keyword spotting. In: Interspeech, vol. 9, pp. 760–764 (2016)
15.
Zurück zum Zitat Punn, N.S., Agarwal, S.: Inception u-net architecture for semantic segmentation to identify nuclei in microscopy cell images. ACM Trans. Multimedia Comput. Commun. Appl. (TOMM) 16(1), 1–15 (2020)CrossRef Punn, N.S., Agarwal, S.: Inception u-net architecture for semantic segmentation to identify nuclei in microscopy cell images. ACM Trans. Multimedia Comput. Commun. Appl. (TOMM) 16(1), 1–15 (2020)CrossRef
16.
Zurück zum Zitat Punn, N.S., Agarwal. S.: Multi-modality encoded fusion with 3d inception U-Net and decoder model for brain tumor segmentation. In: Multimedia Tools and Applications, pp. 1–16 (2020) Punn, N.S., Agarwal. S.: Multi-modality encoded fusion with 3d inception U-Net and decoder model for brain tumor segmentation. In: Multimedia Tools and Applications, pp. 1–16 (2020)
17.
Zurück zum Zitat Rahman, M.A., Wang, Y.: Optimizing intersection-over-union in deep neural networks for image segmentation. In: ISVC (2016) Rahman, M.A., Wang, Y.: Optimizing intersection-over-union in deep neural networks for image segmentation. In: ISVC (2016)
18.
Zurück zum Zitat Ribera, J., Güera, D., Chen, Y., Delp, E.: Weighted hausdorff distance: a loss function for object localization. ArXiv, abs/1806.07564 (2018) Ribera, J., Güera, D., Chen, Y., Delp, E.: Weighted hausdorff distance: a loss function for object localization. ArXiv, abs/1806.07564 (2018)
20.
Zurück zum Zitat Simpson, A.L., et al.: A large annotated medical image dataset for the development and evaluation of segmentation algorithms (2019). arXiv: 1902.09063 [cs.CV] Simpson, A.L., et al.: A large annotated medical image dataset for the development and evaluation of segmentation algorithms (2019). arXiv:​ 1902.​09063 [cs.CV]
21.
Zurück zum Zitat Suzuki, K.: Overview of deep learning in medical imaging. Radiol. Phys. Technol. 10(3), 257–273 (2017)CrossRef Suzuki, K.: Overview of deep learning in medical imaging. Radiol. Phys. Technol. 10(3), 257–273 (2017)CrossRef
22.
Zurück zum Zitat Szegedy C., et al.: Going deeper with convolutions. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015) Szegedy C., et al.: Going deeper with convolutions. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)
23.
Zurück zum Zitat Taghanaki, S.A., et al.: Combo loss: Handling input and output imbalance in multi-organ segmentation (2018). arXiv: 1805.02798 [cs.CV] Taghanaki, S.A., et al.: Combo loss: Handling input and output imbalance in multi-organ segmentation (2018). arXiv:​ 1805.​02798 [cs.CV]
24.
Zurück zum Zitat Tajbakhsh, N., Jeyaseelan, L., Li, Q., Chiang, J., Wu, Z., Ding, X.: Embracing imperfect datasets: a review of deep learning solutions for medical image segmentation. Medical Image Anal. 63, 101693 (2020) Tajbakhsh, N., Jeyaseelan, L., Li, Q., Chiang, J., Wu, Z., Ding, X.: Embracing imperfect datasets: a review of deep learning solutions for medical image segmentation. Medical Image Anal. 63, 101693 (2020)
25.
Zurück zum Zitat Wong, K.C.L., Moradi, M., Tang, H., Syeda-Mahmood, T.: 3D segmentation with exponential logarithmic loss for highly unbalanced object sizes. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) 3d segmentation with exponential logarithmic loss for highly unbalanced object sizes. LNCS, vol. 11072, pp. 612–619. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00931-1_70CrossRef Wong, K.C.L., Moradi, M., Tang, H., Syeda-Mahmood, T.: 3D segmentation with exponential logarithmic loss for highly unbalanced object sizes. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) 3d segmentation with exponential logarithmic loss for highly unbalanced object sizes. LNCS, vol. 11072, pp. 612–619. Springer, Cham (2018). https://​doi.​org/​10.​1007/​978-3-030-00931-1_​70CrossRef
26.
Zurück zum Zitat Wu, Z., Shen, C., van den Hengel, A.: Bridging category-level and instance-level semantic image segmentation (2016). arXiv: 1605.06885 [cs.CV] Wu, Z., Shen, C., van den Hengel, A.: Bridging category-level and instance-level semantic image segmentation (2016). arXiv:​ 1605.​06885 [cs.CV]
27.
Zurück zum Zitat Zhang, Z., Sabuncu, M.: Generalized cross entropy loss for training deep neural networks with noisy labels. Adv. Neural. Inf. Process. Syst. 31, 8778–8788 (2018) Zhang, Z., Sabuncu, M.: Generalized cross entropy loss for training deep neural networks with noisy labels. Adv. Neural. Inf. Process. Syst. 31, 8778–8788 (2018)
Metadaten
Titel
Addressing the Class Imbalance Problem in Medical Image Segmentation via Accelerated Tversky Loss Function
verfasst von
Nikhil Nasalwai
Narinder Singh Punn
Sanjay Kumar Sonbhadra
Sonali Agarwal
Copyright-Jahr
2021
DOI
https://doi.org/10.1007/978-3-030-75768-7_31

Premium Partner