Skip to main content

2014 | OriginalPaper | Buchkapitel

3. Microstrip Antenna Design by Using Electromagnetic Bandgap Material

verfasst von : Kumud Ranjan Jha, Ghanshyam Singh

Erschienen in: Terahertz Planar Antennas for Next Generation Communication

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The hostile atmospheric condition increases the attenuation of the signal, and it becomes very significant over 100 GHz, which is the lower boundary of the terahertz regime of the electromagnetic spectrum. The signal loss restricts the use of this license-free band (above 250 GHz) to be effectively utilized in the various scientific applications. However, the terahertz wireless communication is also affected by this atmospheric behavior. To counter the losses, the picocell and spot beam techniques are useful. In picocell, the electromagnetic energy is confined within a small cell area, and due to this, the energy density is increased, which makes the communication possible in that small regions. In the case of the spot beam, again the electromagnetic energy is concentrated in the line-of-sight (LOS) direction, and in this way, the distance of the communication range is increased. However, the energy may be focused along LOS only with the help of highly directive antenna. In THz regime, various types of antennas have been numerically studied and experimentally developed [14]. Among them, the planar antenna technology offers greater potential of integration with other planar devices [5].

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Han K., Nguyen, T. K., Park, I., Han, H.: Terahertz Yagi-Uda antenna for high input resistance. J. Infrared Milli. Tera.Waves 31(5), 441–454 (2010) Han K., Nguyen, T. K., Park, I., Han, H.: Terahertz Yagi-Uda antenna for high input resistance. J. Infrared Milli. Tera.Waves 31(5), 441–454 (2010)
2.
Zurück zum Zitat Miao, W., Delorme, Y., Dauply, F., Lefevre, R., Lecomte, B., Feret, A., Beaudin, G., Krieg, J.M., Zhang, W., Cheng, S.H., Shi, S.C.: Investigation of a 600-GHz membrane-based twin slot antenna for HEB mixers. In: Proc. 19th Int. Symp. Space Tera. Tech., Gronigen, Netherland, Apr. 28–30, 2008, pp. 563–567 (2008) Miao, W., Delorme, Y., Dauply, F., Lefevre, R., Lecomte, B., Feret, A., Beaudin, G., Krieg, J.M., Zhang, W., Cheng, S.H., Shi, S.C.: Investigation of a 600-GHz membrane-based twin slot antenna for HEB mixers. In: Proc. 19th Int. Symp. Space Tera. Tech., Gronigen, Netherland, Apr. 28–30, 2008, pp. 563–567 (2008)
3.
Zurück zum Zitat Sharma, A., Singh, G.: Rectangular microstrip patch antenna design at THz frequency for short-distance wireless communication. J. Infrared Millim. Terahertz Waves 30(1), 1–7 (2009) Sharma, A., Singh, G.: Rectangular microstrip patch antenna design at THz frequency for short-distance wireless communication. J. Infrared Millim. Terahertz Waves 30(1), 1–7 (2009)
4.
Zurück zum Zitat Shimiza, N., Nagastuma, T.: Photodiode-integrated microstrip antenna array for sub-terahertz radiation. IEEE Photonic Technol. Lett. 18(6), 743–746 (2006) Shimiza, N., Nagastuma, T.: Photodiode-integrated microstrip antenna array for sub-terahertz radiation. IEEE Photonic Technol. Lett. 18(6), 743–746 (2006)
5.
Zurück zum Zitat Angngeney, J. : THz photoconductive antennas made from ion-bombarded semiconductors. J. Infrared Milli. Tera.Waves, 33(4), 455–475 (2012) Angngeney, J. : THz photoconductive antennas made from ion-bombarded semiconductors. J. Infrared Milli. Tera.Waves, 33(4), 455–475 (2012)
6.
Zurück zum Zitat Piesiewicz, R., Islam, M. N., Koch, M., Kurner, T.: Towards short-range terahertz communication systems: basic considerations. In: Proc. 18th Int. Conf. Appl. Electromagnetics Commn., Dubrovnik, Croatia, Oct. 12–14, 2005, pp.1–5 (2005) Piesiewicz, R., Islam, M. N., Koch, M., Kurner, T.: Towards short-range terahertz communication systems: basic considerations. In: Proc. 18th Int. Conf. Appl. Electromagnetics Commn., Dubrovnik, Croatia, Oct. 12–14, 2005, pp.1–5 (2005)
7.
Zurück zum Zitat Grischkowsky, D., Duling III, I.N., Chen, T.C., Chi, C-C.: Electromagnetic shock waves from transmission lines. Phys. Rev. Lett. 59(15), 1663–1666 (1987) Grischkowsky, D., Duling III, I.N., Chen, T.C., Chi, C-C.: Electromagnetic shock waves from transmission lines. Phys. Rev. Lett. 59(15), 1663–1666 (1987)
8.
Zurück zum Zitat Bhattacharyya, A. K.: Characteristics of space and surface waves in a multilayered structure. IEEE Trans. Antennas Propag. 38(8), 1231–1238 (1990) Bhattacharyya, A. K.: Characteristics of space and surface waves in a multilayered structure. IEEE Trans. Antennas Propag. 38(8), 1231–1238 (1990)
9.
Zurück zum Zitat Lu, Z., Prather, D.W.: Calculation of effective permittivity, permeability, and surface impedance of negative-refractive photonic crystals,” Optics Express. 15(13), 8340–8345 (2007) Lu, Z., Prather, D.W.: Calculation of effective permittivity, permeability, and surface impedance of negative-refractive photonic crystals,” Optics Express. 15(13), 8340–8345 (2007)
10.
Zurück zum Zitat Munemassa, Y., Mitra, M., Takanao, T., Sano, M.: Lightwave antenna with a small aperture manufactured using MEMS processing technology. IEEE Trans. Antennas Propag. 55(11), 3046–3051 (2007) Munemassa, Y., Mitra, M., Takanao, T., Sano, M.: Lightwave antenna with a small aperture manufactured using MEMS processing technology. IEEE Trans. Antennas Propag. 55(11), 3046–3051 (2007)
11.
Zurück zum Zitat Lubecke, V., Mizuno, K., Rebeiz, G.: Micromachining for terahertz applications. IEEE Trans. Microw. Theo. Tech. 46(11), pp. 1821–1831 (1998) Lubecke, V., Mizuno, K., Rebeiz, G.: Micromachining for terahertz applications. IEEE Trans. Microw. Theo. Tech. 46(11), pp. 1821–1831 (1998)
12.
Zurück zum Zitat Maagt, P. de, Gonzalo, R., Vardaxoglou, J.C.: Review of electromagnetic bandgap technology and applications. Radio Science Bulletin 309, 11–24 (2004) Maagt, P. de, Gonzalo, R., Vardaxoglou, J.C.: Review of electromagnetic bandgap technology and applications. Radio Science Bulletin 309, 11–24 (2004)
13.
Zurück zum Zitat Boutayeb, H., Denidni, T. A.: Gain enhancement of microstrip patch antenna using a cylindrical electromagnetic crystal. IEEE Trans. Antennas Propag. 55(11), 3140–3144 (2007) Boutayeb, H., Denidni, T. A.: Gain enhancement of microstrip patch antenna using a cylindrical electromagnetic crystal. IEEE Trans. Antennas Propag. 55(11), 3140–3144 (2007)
14.
Zurück zum Zitat Park, Y. J., Herschlein, A., Wiesbeck, W.: A photonic band-gap structure for guiding and suppressing surface waves in millimeter-wave antennas. IEEE Trans. Microwave Theory Tech. 49, (10), 1854–1859 (2001) Park, Y. J., Herschlein, A., Wiesbeck, W.: A photonic band-gap structure for guiding and suppressing surface waves in millimeter-wave antennas. IEEE Trans. Microwave Theory Tech. 49, (10), 1854–1859 (2001)
15.
Zurück zum Zitat Yang, H.Y.D., Alexopoulos, N.G., Yablonovitch. E.: Photonic band-gap materials for high-gain printed antennas. IEEE Trans. Antennas Propag. 45(1), 185–187 (1997) Yang, H.Y.D., Alexopoulos, N.G., Yablonovitch. E.: Photonic band-gap materials for high-gain printed antennas. IEEE Trans. Antennas Propag. 45(1), 185–187 (1997)
16.
Zurück zum Zitat Gonalzo, R., Maagt, P. de., Sorolla, M.: Enhanced patch antenna performance by suppressing surface waves using photonic band gap structures. IEEE Trans. Microw. Theo. Tech. 47(11), 2131–2138 (1999) Gonalzo, R., Maagt, P. de., Sorolla, M.: Enhanced patch antenna performance by suppressing surface waves using photonic band gap structures. IEEE Trans. Microw. Theo. Tech. 47(11), 2131–2138 (1999)
17.
Zurück zum Zitat Lubkoswski, G., Bandlow, B., Schumann, R., Weiland, T.: Effective modeling of double negative metamaterial macrostructures. IEEE Trans. Microw. Theo. Tech. 57(5), 1136–1146 (2009) Lubkoswski, G., Bandlow, B., Schumann, R., Weiland, T.: Effective modeling of double negative metamaterial macrostructures. IEEE Trans. Microw. Theo. Tech. 57(5), 1136–1146 (2009)
18.
Zurück zum Zitat Dorota, A.P.: Metamaterials and photonic crystals-potential applications for self-organized eutectic micro- and nano structures. Science Plena 4(1), 14801-1-11 (2008) Dorota, A.P.: Metamaterials and photonic crystals-potential applications for self-organized eutectic micro- and nano structures. Science Plena 4(1), 14801-1-11 (2008)
19.
Zurück zum Zitat Smith, D.R., Pendry, J. B., Wiltshire, M. C. K.: Metamaterials and negative refractive index. Science 305(5685), 788–792 (2004) Smith, D.R., Pendry, J. B., Wiltshire, M. C. K.: Metamaterials and negative refractive index. Science 305(5685), 788–792 (2004)
20.
Zurück zum Zitat Joseph, S.C., Rahmat-Samii, Y.: Patch antennas on externally perforated high dielectric constant substrates. IEEE Trans. Antennas Propag. 47(12), 1785–1794 (1999) Joseph, S.C., Rahmat-Samii, Y.: Patch antennas on externally perforated high dielectric constant substrates. IEEE Trans. Antennas Propag. 47(12), 1785–1794 (1999)
21.
Zurück zum Zitat Coccioli, R., Deal, W.R., Itoh, T.L Radiation characteristics of a patch antenna on a thin PBG substrate. In: Proc. IEEE Antenna propag. Symp., Atlanta, GA, Jun 21–26, 1998, pp. 656–659 (1998) Coccioli, R., Deal, W.R., Itoh, T.L Radiation characteristics of a patch antenna on a thin PBG substrate. In: Proc. IEEE Antenna propag. Symp., Atlanta, GA, Jun 21–26, 1998, pp. 656–659 (1998)
22.
Zurück zum Zitat Agi, K., Malloy, K.J., Schamiloglu, E., Mojahedi, M.: Compact microstrip patch on photonic crystal substrates. In: USNC/URSINat. Radio Sci. Meet. Dig., Atlanta, GA, June 1998, pp. 119 (1998) Agi, K., Malloy, K.J., Schamiloglu, E., Mojahedi, M.: Compact microstrip patch on photonic crystal substrates. In: USNC/URSINat. Radio Sci. Meet. Dig., Atlanta, GA, June 1998, pp. 119 (1998)
23.
Zurück zum Zitat Shumpert, J.D.: Modelling of periodic dielectric structures. Ph.D. Dissertation, Univ. Michigan (2001) Shumpert, J.D.: Modelling of periodic dielectric structures. Ph.D. Dissertation, Univ. Michigan (2001)
24.
Zurück zum Zitat Datta, S., Chan, C.T., Ho, K.M., Soukoulis, C.M.: Effective dielectric constant of periodic composite structures. Phys. Review B 48(20), pp. 14936–14943 (1993) Datta, S., Chan, C.T., Ho, K.M., Soukoulis, C.M.: Effective dielectric constant of periodic composite structures. Phys. Review B 48(20), pp. 14936–14943 (1993)
25.
Zurück zum Zitat Decoopman, T., Tayeb, G., Enoch, S., Maystre, D., Gralak, B.: Photonic crystal lens: from negative refraction and negative index to negative permittivity and permeability. Phys. Review Lett. 97(7), pp. 073905-1-4 (2006) Decoopman, T., Tayeb, G., Enoch, S., Maystre, D., Gralak, B.: Photonic crystal lens: from negative refraction and negative index to negative permittivity and permeability. Phys. Review Lett. 97(7), pp. 073905-1-4 (2006)
26.
Zurück zum Zitat Gralak, B., Enoch, S., Tayeb, G.: Anomalous refractive properties of photonic crystals. J. Opt. Soc. Am. A 17(7), 1012–1020 (2000) Gralak, B., Enoch, S., Tayeb, G.: Anomalous refractive properties of photonic crystals. J. Opt. Soc. Am. A 17(7), 1012–1020 (2000)
27.
Zurück zum Zitat Efros, A.L., Pokrovsky, A.L.: Dielectric photonic crystal as medium with negative electric permittivity and magnetic permeability. Solid State Commun. 129(10), pp. 643–647 (2004) Efros, A.L., Pokrovsky, A.L.: Dielectric photonic crystal as medium with negative electric permittivity and magnetic permeability. Solid State Commun. 129(10), pp. 643–647 (2004)
28.
Zurück zum Zitat Brien, S.O’., Pendry, J. B.: Magnetic activity at infrared frequencies in structured metallic photonic crystals. J. Phys.: Condens. Matter 14, 6383–6394 (2002) Brien, S.O’., Pendry, J. B.: Magnetic activity at infrared frequencies in structured metallic photonic crystals. J. Phys.: Condens. Matter 14, 6383–6394 (2002)
29.
Zurück zum Zitat Zhaolin Lu, Z., Prather, D. W.: Calculation of effective permittivity, permeability, and surface impedance of negative-refraction photonic crystals. Opt. Express 15(13), pp. 8340–8345 (2007) Zhaolin Lu, Z., Prather, D. W.: Calculation of effective permittivity, permeability, and surface impedance of negative-refraction photonic crystals. Opt. Express 15(13), pp. 8340–8345 (2007)
30.
Zurück zum Zitat Choi, M., Seung Hoon Lee, S.H., Kim, Y., Seung Beom Kang, S.B., Jonghwa Shin, J., Min Hwan Kwak, M.H., Kwang-Young Kang, K-Y, Lee, Y-H., park, N., Min, B..: A terahertz metamaterial with unnaturally high refractive index. Nature 470, 369–374 (2011) Choi, M., Seung Hoon Lee, S.H., Kim, Y., Seung Beom Kang, S.B., Jonghwa Shin, J., Min Hwan Kwak, M.H., Kwang-Young Kang, K-Y, Lee, Y-H., park, N., Min, B..: A terahertz metamaterial with unnaturally high refractive index. Nature 470, 369–374 (2011)
31.
Zurück zum Zitat Markos, P., Soukoulis, C.M.: Transmission properties and effective electromagnetic parameters of double negative materials. Opt. Express 11(7), 649–661 (2003) Markos, P., Soukoulis, C.M.: Transmission properties and effective electromagnetic parameters of double negative materials. Opt. Express 11(7), 649–661 (2003)
32.
Zurück zum Zitat Chen, X., Grzegorezyk, T.M., Wu, B. I., Parchrco, Jr., J., Kong, J. A.: Robust method to retrieve the constructive effective parameters of metamaterials. Phy. Rev., E 70, 16608-1-7 (2004) Chen, X., Grzegorezyk, T.M., Wu, B. I., Parchrco, Jr., J., Kong, J. A.: Robust method to retrieve the constructive effective parameters of metamaterials. Phy. Rev., E 70, 16608-1-7 (2004)
33.
Zurück zum Zitat Siegel, P.H.: Terahertz technology. IEEE Trans. Microwave Theory and Tech. 50(3), 910–928 (2002) Siegel, P.H.: Terahertz technology. IEEE Trans. Microwave Theory and Tech. 50(3), 910–928 (2002)
34.
Zurück zum Zitat Balanis, C. A.: Antenna Theory Analysis and Design. John Wiley and Sons, New York (2001) Balanis, C. A.: Antenna Theory Analysis and Design. John Wiley and Sons, New York (2001)
35.
Zurück zum Zitat Kohlegraf, D. C.: Design and testing of frequency selective surface based wide-band multiple antenna system. B. Sc. (Hon.) Thesis. The Ohio State University, Columbus, USA (2005) Kohlegraf, D. C.: Design and testing of frequency selective surface based wide-band multiple antenna system. B. Sc. (Hon.) Thesis. The Ohio State University, Columbus, USA (2005)
36.
Zurück zum Zitat Singh, G.: Design consideration for rectangular microstrip patch antenna on electromagnetic crystal substrate at terahertz frequency. Infrared Physics and Technology 53(1), 17–22 (2010) Singh, G.: Design consideration for rectangular microstrip patch antenna on electromagnetic crystal substrate at terahertz frequency. Infrared Physics and Technology 53(1), 17–22 (2010)
37.
Zurück zum Zitat Matsuura, M. Tani, M., Sakai, K.: Generation of coherent terahertz radiation by photomixing in dipole photoconductive antennas. Appl. Phys. Lett. 70, 559–561 (1997) Matsuura, M. Tani, M., Sakai, K.: Generation of coherent terahertz radiation by photomixing in dipole photoconductive antennas. Appl. Phys. Lett. 70, 559–561 (1997)
38.
Zurück zum Zitat Jha, K. R., Singh, G.: Analysis and design of enhanced directivity microstrip antenna at terahertz frequency by using electromagnetic bandgap material. Int. J. Numer. Model. Electron. Netw. Devices Fields 24(5), 410–424 (2011) Jha, K. R., Singh, G.: Analysis and design of enhanced directivity microstrip antenna at terahertz frequency by using electromagnetic bandgap material. Int. J. Numer. Model. Electron. Netw. Devices Fields 24(5), 410–424 (2011)
Metadaten
Titel
Microstrip Antenna Design by Using Electromagnetic Bandgap Material
verfasst von
Kumud Ranjan Jha
Ghanshyam Singh
Copyright-Jahr
2014
DOI
https://doi.org/10.1007/978-3-319-02341-0_3

Neuer Inhalt