Skip to main content
Erschienen in:
Buchtitelbild

2016 | OriginalPaper | Buchkapitel

1. Introduction

verfasst von : Zhicheng Lin, Pui-In Mak (Elvis), Rui Paulo Martins

Erschienen in: Ultra-Low-Power and Ultra-Low-Cost Short-Range Wireless Receivers in Nanoscale CMOS

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The immense scope of Internet of Things (IoT) potentiates huge market opportunities for short-range wireless connectivity. To achieve this, it is highly desirable to use ultra-low-power (ULP) and ultra-low-cost (ULC) short-range radios.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat R. Kraemer, M.D. Katz, Short-Range, Wireless Communications Emerging Technologies and Applications (Wiley, United Kingdom, 2009) R. Kraemer, M.D. Katz, Short-Range, Wireless Communications Emerging Technologies and Applications (Wiley, United Kingdom, 2009)
3.
Zurück zum Zitat IEEE Std 802.15.4. New York: IEEE (2003) IEEE Std 802.15.4. New York: IEEE (2003)
4.
Zurück zum Zitat J.A. Gutiérrez, E.H. Callaway, R.L. Barrett, Low-rate Wireless Personal Area Networks (IEEE, New York, 2004) J.A. Gutiérrez, E.H. Callaway, R.L. Barrett, Low-rate Wireless Personal Area Networks (IEEE, New York, 2004)
5.
Zurück zum Zitat F. Abdel-Latif, E.A. Hussiec, Ultra Low Power IEEE 802.15.4/ZigBee Compliant Transceiver, Ph.D. thesis, Texas A&M University, Dec 2009 F. Abdel-Latif, E.A. Hussiec, Ultra Low Power IEEE 802.15.4/ZigBee Compliant Transceiver, Ph.D. thesis, Texas A&M University, Dec 2009
6.
Zurück zum Zitat IEEE Standard for Local and Metropolitan Area Networks—Part 15.6: Wireless Body Area Networks, IEEE 802 LAN/MAN Standards Committee, 6 Feb 2012 IEEE Standard for Local and Metropolitan Area Networks—Part 15.6: Wireless Body Area Networks, IEEE 802 LAN/MAN Standards Committee, 6 Feb 2012
7.
Zurück zum Zitat K.S. Kwak, S. Ullah, N. Ullah, An overview of IEEE 802.15.6 standard, in Proceedings 3rd International Symposium on Applied Sciences in Biomedical and Communication Technologies (ISABEL), Nov 2010 K.S. Kwak, S. Ullah, N. Ullah, An overview of IEEE 802.15.6 standard, in Proceedings 3rd International Symposium on Applied Sciences in Biomedical and Communication Technologies (ISABEL), Nov 2010
8.
Zurück zum Zitat A. Wang, M. Dawkins, G. Devita et al., A 1 V 5 mA multimode IEEE 802.15.6/bluetooth low-energy WBAN transceiver for biotelemetry applications. IEEE J. Solid-State Circ. 48(1), 186–198 (2010)CrossRef A. Wang, M. Dawkins, G. Devita et al., A 1 V 5 mA multimode IEEE 802.15.6/bluetooth low-energy WBAN transceiver for biotelemetry applications. IEEE J. Solid-State Circ. 48(1), 186–198 (2010)CrossRef
9.
Zurück zum Zitat N. Hunn, WiFore Consulting, Essentials of Short-Range Wireless (Cambridge University Press, Cambridge, 2010) N. Hunn, WiFore Consulting, Essentials of Short-Range Wireless (Cambridge University Press, Cambridge, 2010)
10.
Zurück zum Zitat J. Decuir, Standards Architect, Bluetooth 4.0: Low Energy, CSR plc, 2010 J. Decuir, Standards Architect, Bluetooth 4.0: Low Energy, CSR plc, 2010
12.
Zurück zum Zitat ZigBee Compared with Bluetooth Low Energy. Green Peak Technologies ZigBee Compared with Bluetooth Low Energy. Green Peak Technologies
13.
Zurück zum Zitat Y. Liu, X. Huang, M. Vidojkovic, et al., A 1.9 nJ/b 2.4 GHz multistandard (bluetooth low energy/Zigbee/IEEE802.15.6) transceiver for personal/body-area networks. ISSCC Dig. Tech. Papers, pp. 446–447, Feb 2013 Y. Liu, X. Huang, M. Vidojkovic, et al., A 1.9 nJ/b 2.4 GHz multistandard (bluetooth low energy/Zigbee/IEEE802.15.6) transceiver for personal/body-area networks. ISSCC Dig. Tech. Papers, pp. 446–447, Feb 2013
14.
Zurück zum Zitat R. Rajan, Ultra-Low Power Short-Range Radio Transceiver, Microsemi Corporation, May 2012 R. Rajan, Ultra-Low Power Short-Range Radio Transceiver, Microsemi Corporation, May 2012
15.
Zurück zum Zitat S. Bandyopadhyay, A. Chandrakasan, Platform architecture for solar, thermal and vibration energy combining with MPPT and single inductor, in Proceedings of the Symposium on VLSI circuits, pp. 238–239, June 2011 S. Bandyopadhyay, A. Chandrakasan, Platform architecture for solar, thermal and vibration energy combining with MPPT and single inductor, in Proceedings of the Symposium on VLSI circuits, pp. 238–239, June 2011
16.
Zurück zum Zitat E. Carlson, K. Strunz, B. Otis, A 20 mV input boost converter with efficient digital control for thermoelectric energy harvesting. IEEE J. Solid-State Circ. 45(4), 741–750 (2010)CrossRef E. Carlson, K. Strunz, B. Otis, A 20 mV input boost converter with efficient digital control for thermoelectric energy harvesting. IEEE J. Solid-State Circ. 45(4), 741–750 (2010)CrossRef
17.
Zurück zum Zitat Y.-C. Shih, B. Otis, An inductorless dc-dc converter for energy harvesting with a 1.2 W bandgap-referenced output controller. IEEE Trans. Circuits Syst. II, Exp. Briefs 58(12), 832–836 (2011)CrossRef Y.-C. Shih, B. Otis, An inductorless dc-dc converter for energy harvesting with a 1.2 W bandgap-referenced output controller. IEEE Trans. Circuits Syst. II, Exp. Briefs 58(12), 832–836 (2011)CrossRef
18.
Zurück zum Zitat K. Kadirvel, Y. Ramadass, U. Lyles, et al., A 330 nA energy harvesting charger with battery management for solar and thermoelectric energy harvesting. ISSCC Dig. Tech. Papers, pp. 106–108, Feb 2012 K. Kadirvel, Y. Ramadass, U. Lyles, et al., A 330 nA energy harvesting charger with battery management for solar and thermoelectric energy harvesting. ISSCC Dig. Tech. Papers, pp. 106–108, Feb 2012
19.
Zurück zum Zitat J.-P. Im, S.-W. Wang, K.-H. Lee, et al., A 40 mV transformer reuse self-startup boost converter with MPPT control for thermoelectric energy harvesting. ISSCC Dig. Tech. Papers, pp. 104–106, Feb 2012 J.-P. Im, S.-W. Wang, K.-H. Lee, et al., A 40 mV transformer reuse self-startup boost converter with MPPT control for thermoelectric energy harvesting. ISSCC Dig. Tech. Papers, pp. 104–106, Feb 2012
20.
Zurück zum Zitat F. Zhang, Y. Miyahara, B. Otis, Design of a 300 mV 2.4 GHz receiver using transformer-coupled techniques. IEEE J. Solid-State Circ. 48(12), 3190–3205 (2013)CrossRef F. Zhang, Y. Miyahara, B. Otis, Design of a 300 mV 2.4 GHz receiver using transformer-coupled techniques. IEEE J. Solid-State Circ. 48(12), 3190–3205 (2013)CrossRef
21.
Zurück zum Zitat B. Cook, A. Berny, A. Molnar et al., Low-power 2.4 GHz transceiver with passive RX front-end and 400 mV supply. IEEE J. Solid-State Circ. 41(12), 2757–2766 (2006)CrossRef B. Cook, A. Berny, A. Molnar et al., Low-power 2.4 GHz transceiver with passive RX front-end and 400 mV supply. IEEE J. Solid-State Circ. 41(12), 2757–2766 (2006)CrossRef
22.
Zurück zum Zitat A. Balankutty, S.-A. Yu, Y. Feng, P. Kinget, A 0.6 V zero-IF/low-IF receiver with integrated fractional-N synthesizer for 2.4 GHz ISM-band applications. IEEE J. Solid-State Circ. 45(3), 538–553 (2010)CrossRef A. Balankutty, S.-A. Yu, Y. Feng, P. Kinget, A 0.6 V zero-IF/low-IF receiver with integrated fractional-N synthesizer for 2.4 GHz ISM-band applications. IEEE J. Solid-State Circ. 45(3), 538–553 (2010)CrossRef
23.
Zurück zum Zitat T.S. Rappaport, Wireless communications principles and practices (Prentice-Hall, New Jersey, 2002) T.S. Rappaport, Wireless communications principles and practices (Prentice-Hall, New Jersey, 2002)
24.
Zurück zum Zitat J.S. Seybold, Introduction to RF propagation (Wiley, Hoboken, 2005) J.S. Seybold, Introduction to RF propagation (Wiley, Hoboken, 2005)
25.
Zurück zum Zitat J. Bae, K. Song, H. Lee et al., A 0.24 nJ/b wireless body-area-network transceiver with scalable double-FSK modulation. IEEE J. Solid-State Circ. 47(1), 310–321 (2012)CrossRef J. Bae, K. Song, H. Lee et al., A 0.24 nJ/b wireless body-area-network transceiver with scalable double-FSK modulation. IEEE J. Solid-State Circ. 47(1), 310–321 (2012)CrossRef
26.
Zurück zum Zitat R.S. Elliott, Antenna Theory and Design, Revised edn. (Wiley, New York, 2003) R.S. Elliott, Antenna Theory and Design, Revised edn. (Wiley, New York, 2003)
27.
Zurück zum Zitat A. Liscidini, M. Tedeschi, R. Castello, Low-power quadrature receivers for ZigBee (IEEE 802.15.4) applications. IEEE J. Solid-State Circ. 45, 1710–1719 (2010)CrossRef A. Liscidini, M. Tedeschi, R. Castello, Low-power quadrature receivers for ZigBee (IEEE 802.15.4) applications. IEEE J. Solid-State Circ. 45, 1710–1719 (2010)CrossRef
28.
Zurück zum Zitat W. Kluge, F. Poegel, H. Roller et al., A fully integrated 2.4 GHz IEEE 802.15.4-compliant transceiver for ZigBee TM applications. IEEE J. Solid-State Circ. 41, 2767–2775 (2006)CrossRef W. Kluge, F. Poegel, H. Roller et al., A fully integrated 2.4 GHz IEEE 802.15.4-compliant transceiver for ZigBee TM applications. IEEE J. Solid-State Circ. 41, 2767–2775 (2006)CrossRef
29.
Zurück zum Zitat M. Camus, B. Butaye, L. Garcia et al., A 5.4 mW 0.07 mm2 2.4 GHz front-end receiver in 90 nm CMOS for IEEE 802.15.4 WPAN stand. IEEE J. Solid-State Circ. 43, 1372–1383 (2008)CrossRef M. Camus, B. Butaye, L. Garcia et al., A 5.4 mW 0.07 mm2 2.4 GHz front-end receiver in 90 nm CMOS for IEEE 802.15.4 WPAN stand. IEEE J. Solid-State Circ. 43, 1372–1383 (2008)CrossRef
30.
Zurück zum Zitat J. Masuch, M. Delgado-Restituto, A 1.1 mW-RX—81.4 dBm sensitivity CMOS transceiver for bluetooth low energy. IEEE Trans. Microw. Theor. Tech. 61(4), 1660–1674 (2013)CrossRef J. Masuch, M. Delgado-Restituto, A 1.1 mW-RX—81.4 dBm sensitivity CMOS transceiver for bluetooth low energy. IEEE Trans. Microw. Theor. Tech. 61(4), 1660–1674 (2013)CrossRef
31.
Zurück zum Zitat M. Contaldo, B. Baneriee, D. Ruffieux et al., A 2.4 GHz BAW-based transceiver for wireless body area networks. IEEE Trans. Biomed. Circ. Syst. 4(6), 391–399 (2010)CrossRef M. Contaldo, B. Baneriee, D. Ruffieux et al., A 2.4 GHz BAW-based transceiver for wireless body area networks. IEEE Trans. Biomed. Circ. Syst. 4(6), 391–399 (2010)CrossRef
32.
Zurück zum Zitat J. Ayers, N. Panitantum, K. Mayaram, et al., A 2.4 GHz wireless transceiver with 0.95 nJ/b link energy for multi-hop battery-free wireless sensor networks, in Proceedings of the Symposium on VLSI Circuits, pp. 29–30, June 2010 J. Ayers, N. Panitantum, K. Mayaram, et al., A 2.4 GHz wireless transceiver with 0.95 nJ/b link energy for multi-hop battery-free wireless sensor networks, in Proceedings of the Symposium on VLSI Circuits, pp. 29–30, June 2010
33.
Zurück zum Zitat B. Otis, Y. Chee, J. Rabaey, A 400 µW-RX, 1.6 mW-TX super—regenerative transceiver for wireless sensor networks. ISSCC Dig. Tech. Pap. 1, 396–606 (2005) B. Otis, Y. Chee, J. Rabaey, A 400 µW-RX, 1.6 mW-TX super—regenerative transceiver for wireless sensor networks. ISSCC Dig. Tech. Pap. 1, 396–606 (2005)
34.
Zurück zum Zitat P. Popplewell, V. Karam, A. Shamim et al., A 5.2 GHz BFSK transceiver using injection-locking and an on-chip antenna. IEEE J. Solid-State Circ. 43(4), 981–990 (2008)CrossRef P. Popplewell, V. Karam, A. Shamim et al., A 5.2 GHz BFSK transceiver using injection-locking and an on-chip antenna. IEEE J. Solid-State Circ. 43(4), 981–990 (2008)CrossRef
35.
Zurück zum Zitat M. Vidojkovic, X. Huang, P. Harpe et al., A 2.4 GHz ULP OOK single-chip transceiver for healthcare applications. IEEE Trans. Biomed. Circ. Syst. 5(6), 523–534 (2011)CrossRef M. Vidojkovic, X. Huang, P. Harpe et al., A 2.4 GHz ULP OOK single-chip transceiver for healthcare applications. IEEE Trans. Biomed. Circ. Syst. 5(6), 523–534 (2011)CrossRef
36.
Zurück zum Zitat A. Zahabi, M. Anis, M. Ortmanns, 3.1 GHz–3.8 GHz integrated transmission line super-regeneration amplifier with degenerative quenching technique for impulse-FM-UWB transceiver, in Proceedings of European Solid-State Circuits Conference, pp. 387–390, Sept 2011 A. Zahabi, M. Anis, M. Ortmanns, 3.1 GHz–3.8 GHz integrated transmission line super-regeneration amplifier with degenerative quenching technique for impulse-FM-UWB transceiver, in Proceedings of European Solid-State Circuits Conference, pp. 387–390, Sept 2011
37.
Zurück zum Zitat M. Anis, R. Tielert, N. When, A 10 Mb/s 2.6 mW 6-to-10 GHz UWB impulse transceiver. in Proceedings of IEEE International Conference on Ultra-Wideband (ICUWB), vol. 1, pp. 129–132, Sept 2008 M. Anis, R. Tielert, N. When, A 10 Mb/s 2.6 mW 6-to-10 GHz UWB impulse transceiver. in Proceedings of IEEE International Conference on Ultra-Wideband (ICUWB), vol. 1, pp. 129–132, Sept 2008
38.
Zurück zum Zitat M. Crepaldi, L. Chen, J. Fernandes et al., An ultra-wideband impulse-radio transceiver chipset using synchronized-OOK modulation. IEEE J. Solid-State Circ. 46(10), 2284–2299 (2011)CrossRef M. Crepaldi, L. Chen, J. Fernandes et al., An ultra-wideband impulse-radio transceiver chipset using synchronized-OOK modulation. IEEE J. Solid-State Circ. 46(10), 2284–2299 (2011)CrossRef
39.
Zurück zum Zitat R.K. Dokania, X. Wang, S. Tallur et al., A low power impulse radio design for body-area-networks. IEEE Trans. Circ. Syst. I, Reg. Pap. 58(7), 1458–1469 (2011)MathSciNetCrossRef R.K. Dokania, X. Wang, S. Tallur et al., A low power impulse radio design for body-area-networks. IEEE Trans. Circ. Syst. I, Reg. Pap. 58(7), 1458–1469 (2011)MathSciNetCrossRef
40.
Zurück zum Zitat S. Gambini, J. Crossley, E. Alon et al., A fully integrated, 290 pJ/bit UWB dual-mode transceiver for cm-range wireless interconnects. IEEE J. Solid-State Circ. 47(3), 586–598 (2012)CrossRef S. Gambini, J. Crossley, E. Alon et al., A fully integrated, 290 pJ/bit UWB dual-mode transceiver for cm-range wireless interconnects. IEEE J. Solid-State Circ. 47(3), 586–598 (2012)CrossRef
41.
Zurück zum Zitat S. Solda, M. Caruso, A. Bevilacqua et al., A 5 Mb/s UWB-IR Transceiver front-end for wireless sensor networks in 0.13 µm CMOS. IEEE J. Solid-State Circ. 46(7), 1636–1647 (2011)CrossRef S. Solda, M. Caruso, A. Bevilacqua et al., A 5 Mb/s UWB-IR Transceiver front-end for wireless sensor networks in 0.13 µm CMOS. IEEE J. Solid-State Circ. 46(7), 1636–1647 (2011)CrossRef
42.
Zurück zum Zitat X. Wang, Y. Yikun, B. Busze, et al., A meter-range UWB transceiver chipset for around-the-head audio streaming. ISSCC Tech. Papers, pp. 450–452, Feb 2012 X. Wang, Y. Yikun, B. Busze, et al., A meter-range UWB transceiver chipset for around-the-head audio streaming. ISSCC Tech. Papers, pp. 450–452, Feb 2012
43.
Zurück zum Zitat D.D. Wentzloff, F.S. Lee, D.C. Daly, et al., Energy efficient pulsed-UWB CMOS circuits and systems, in Proceedings of IEEE International Conference on Ultra-Wideband (ICUWB), pp. 282–287, Sept 2007 D.D. Wentzloff, F.S. Lee, D.C. Daly, et al., Energy efficient pulsed-UWB CMOS circuits and systems, in Proceedings of IEEE International Conference on Ultra-Wideband (ICUWB), pp. 282–287, Sept 2007
44.
Zurück zum Zitat Y. Zheng, T. Yan, W. Chyuen, et al., A CMOS carrier less UWB transceiver for WPAN applications. ISSCC Dig. Tech. Papers, pp. 378–387, Feb 2006 Y. Zheng, T. Yan, W. Chyuen, et al., A CMOS carrier less UWB transceiver for WPAN applications. ISSCC Dig. Tech. Papers, pp. 378–387, Feb 2006
45.
Zurück zum Zitat M. Anis, M. Ortmanns, N. Wehn, A 2.5 mW 2 Mb/s fully integrated impulse-FM-UWB transceiver in 0.18 μm CMOS. IEEE MTT-S Int. Microwave Symp. Dig. pp. 1–3, June 2011 M. Anis, M. Ortmanns, N. Wehn, A 2.5 mW 2 Mb/s fully integrated impulse-FM-UWB transceiver in 0.18 μm CMOS. IEEE MTT-S Int. Microwave Symp. Dig. pp. 1–3, June 2011
46.
Zurück zum Zitat S. Geng, D. Liu, Y. Li, et. al., A 13.3mW 500 Mb/s IR-UWB transceiver with link-margin enhancement technique for meter-range communications. ISSCC Dig. Tech. Papers, pp. 160–161, Feb 2014 S. Geng, D. Liu, Y. Li, et. al., A 13.3mW 500 Mb/s IR-UWB transceiver with link-margin enhancement technique for meter-range communications. ISSCC Dig. Tech. Papers, pp. 160–161, Feb 2014
47.
Zurück zum Zitat X. Wang, Y. Yu, B. Busze, et al., A meter-range UWB transceiver chipset for around-the-head audio streaming. ISSCC Dig. Tech. Papers, pp. 450–451, Feb 2012 X. Wang, Y. Yu, B. Busze, et al., A meter-range UWB transceiver chipset for around-the-head audio streaming. ISSCC Dig. Tech. Papers, pp. 450–451, Feb 2012
48.
Zurück zum Zitat Z. Lin, P.-I. Mak, R.P. Martins, A 0.14 mm2, 1.4 mW, 59.4 dB-SFDR, 2.4 GHz ZigBee/WPAN receiver exploiting a “Split-LNTA + 50 % LO” topology in 65 nm CMOS. IEEE Trans. Microw. Theory Tech. 62, 1525–1534 (2014)CrossRef Z. Lin, P.-I. Mak, R.P. Martins, A 0.14 mm2, 1.4 mW, 59.4 dB-SFDR, 2.4 GHz ZigBee/WPAN receiver exploiting a “Split-LNTA + 50 % LO” topology in 65 nm CMOS. IEEE Trans. Microw. Theory Tech. 62, 1525–1534 (2014)CrossRef
49.
Zurück zum Zitat Z. Lin, P.-I. Mak, R. P. Martins, A 1.7 mW 0.22 mm2 2.4 GHz ZigBee RX exploiting a current-reuse blixer + hybrid filter topology in 65 nm CMOS. ISSCC Dig. Tech. Papers, pp. 448–449, Feb 2013 Z. Lin, P.-I. Mak, R. P. Martins, A 1.7 mW 0.22 mm2 2.4 GHz ZigBee RX exploiting a current-reuse blixer + hybrid filter topology in 65 nm CMOS. ISSCC Dig. Tech. Papers, pp. 448–449, Feb 2013
50.
Zurück zum Zitat Z. Lin, P.-I. Mak, R.P. Martins, A 2.4-GHz ZigBee receiver exploiting an RF-to-BB-current-reuse blixer + hybrid filter topology in 65 nm CMOS. IEEE J. Solid-State Circ. 49, 1333–1344 (2014)CrossRef Z. Lin, P.-I. Mak, R.P. Martins, A 2.4-GHz ZigBee receiver exploiting an RF-to-BB-current-reuse blixer + hybrid filter topology in 65 nm CMOS. IEEE J. Solid-State Circ. 49, 1333–1344 (2014)CrossRef
51.
Zurück zum Zitat Z. Lin, P.-I. Mak, R.P. Martins, Analysis and modeling of a gain—boosted N-path switched-capacitor bandpass filter. IEEE Trans. Circ. Syst. I 9, 2560–2568, Sept 2014 Z. Lin, P.-I. Mak, R.P. Martins, Analysis and modeling of a gain—boosted N-path switched-capacitor bandpass filter. IEEE Trans. Circ. Syst. I 9, 2560–2568, Sept 2014
52.
Zurück zum Zitat Z. Lin, P.-I. Mak, R.P. Martins, A 0.5 V 1.15 mW 0.2 mm2 sub-GHz ZigBee receiver supporting 433/860/915/960 MHz ISM bands with zero external components. ISSCC Dig. Tech. Papers, pp. 164–165, Feb 2014 Z. Lin, P.-I. Mak, R.P. Martins, A 0.5 V 1.15 mW 0.2 mm2 sub-GHz ZigBee receiver supporting 433/860/915/960 MHz ISM bands with zero external components. ISSCC Dig. Tech. Papers, pp. 164–165, Feb 2014
53.
Zurück zum Zitat Z. Lin, P.-I. Mak, R.P. Martins, A sub-GHz multi-ISM-band ZigBee receiver using function-reuse and gain-boosted N-path techniques for IoT applications. IEEE J. Solid-State Circ. 49, 2990–3004 (2014)CrossRef Z. Lin, P.-I. Mak, R.P. Martins, A sub-GHz multi-ISM-band ZigBee receiver using function-reuse and gain-boosted N-path techniques for IoT applications. IEEE J. Solid-State Circ. 49, 2990–3004 (2014)CrossRef
Metadaten
Titel
Introduction
verfasst von
Zhicheng Lin
Pui-In Mak (Elvis)
Rui Paulo Martins
Copyright-Jahr
2016
DOI
https://doi.org/10.1007/978-3-319-21524-2_1

Neuer Inhalt