Skip to main content

2016 | OriginalPaper | Buchkapitel

Feasibility of the Porous Zone Approach to Modelling Vegetation in CFD

verfasst von : Fred Sonnenwald, Virginia Stovin, Ian Guymer

Erschienen in: Hydrodynamic and Mass Transport at Freshwater Aquatic Interfaces

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Vegetation within stormwater ponds varies seasonly and its presence affects the flow field, which in turn affects the pond’s Residence Time Distribution and its effectiveness at pollutant removal. Vegetated flows are complex and, as a result, few suitable tools exist for evaluating realistic stormwater pond designs. Recent research has suggested using a porous zone to represent vegetation within a CFD model, and this paper investigates the feasibility of this approach using ANSYS Fluent. One of the main benefits of using a porous zone is the ability to derive the relevant parameters from the known physical characteristics of stem diameter and porosity using the Ergun equation. A sensitivity analysis on the viscous resistance factor \(1/\alpha\) and the inertial resistance factor \(C_{2}\) has been undertaken by comparing model results to data collected from an experimental vegetated channel. Best fit values of \(C_{2}\) were obtained for a range of flow conditions including emergent and submerged vegetation. Results show the CFD model to be insensitive to \(1/\alpha\) but very sensitive to values of \(C_{2}\). For submerged vegetation, values of \(C_{2}\) derived from the Ergun equation are under-predictions of best-fit \(C_{2}\) values as only the turbulence due to the shear layer is represented. The porous zone approach does not take into account turbulence generated from stem wakes such that no meaningful predictions for emergent vegetation were obtained. \(C_{2}\) values calculated using a force balance show better agreement with best-fit \(C_{2}\) values than those derived from the Ergun equation. Manually fixing values of \(k\) and \(\varepsilon\) within the porous zone of the model shows initial promise as a means of taking stem wakes into account.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Alvarado A, Vesvikar M, Cisneros JF, Maere T, Goethals P, Nopens I (2013) CFD study to determine the optimal configuration of aerators in a full-scale waste stabilization pond. Water Res 47(13):4528–4537CrossRef Alvarado A, Vesvikar M, Cisneros JF, Maere T, Goethals P, Nopens I (2013) CFD study to determine the optimal configuration of aerators in a full-scale waste stabilization pond. Water Res 47(13):4528–4537CrossRef
Zurück zum Zitat ANSYS Inc (2012) ANSYS Fluent 14.5. Cecil Township, PA ANSYS Inc (2012) ANSYS Fluent 14.5. Cecil Township, PA
Zurück zum Zitat Ergun S (1952) Fluid flow through packed columns. Chem Eng Prog 48:89–94 Ergun S (1952) Fluid flow through packed columns. Chem Eng Prog 48:89–94
Zurück zum Zitat Hoffmann MR (2004) Application of a simple space-time averaged porous media model to flow in densely vegetated channels. J Porous Media 7(3) Hoffmann MR (2004) Application of a simple space-time averaged porous media model to flow in densely vegetated channels. J Porous Media 7(3)
Zurück zum Zitat Holland JF, Martin JF, Granata T, Bouchard V, Quigley M, Brown L (2004) Effects of wetland depth and flow rate on residence time distribution characteristics. Ecol Eng 23(3):189–203CrossRef Holland JF, Martin JF, Granata T, Bouchard V, Quigley M, Brown L (2004) Effects of wetland depth and flow rate on residence time distribution characteristics. Ecol Eng 23(3):189–203CrossRef
Zurück zum Zitat Huang YH, Saiers JE, Harvey JW, Noe GB, Mylon S (2008) Advection, dispersion, and filtration of fine particles within emergent vegetation of the florida everglades. Water Resour Res 44(4) Huang YH, Saiers JE, Harvey JW, Noe GB, Mylon S (2008) Advection, dispersion, and filtration of fine particles within emergent vegetation of the florida everglades. Water Resour Res 44(4)
Zurück zum Zitat Fluent Inc (1998) FLUENT 5 user’s guide, vol I. Lebanon, NH Fluent Inc (1998) FLUENT 5 user’s guide, vol I. Lebanon, NH
Zurück zum Zitat Jadhav RS, Buchberger SG (1995) Effects of vegetation on flow through free water surface wetlands. Ecol Eng 5(4):481–496CrossRef Jadhav RS, Buchberger SG (1995) Effects of vegetation on flow through free water surface wetlands. Ecol Eng 5(4):481–496CrossRef
Zurück zum Zitat Kadlec RH (1990) Overland flow in wetlands: vegetation resistance. J Hydraul Eng 116(5):691–706CrossRef Kadlec RH (1990) Overland flow in wetlands: vegetation resistance. J Hydraul Eng 116(5):691–706CrossRef
Zurück zum Zitat Khan S, Melville BW, Shamseldin AY, Fischer C (2012) Investigation of flow patterns in storm water retention ponds using CFD. J Environ Eng 139(1):61–69CrossRef Khan S, Melville BW, Shamseldin AY, Fischer C (2012) Investigation of flow patterns in storm water retention ponds using CFD. J Environ Eng 139(1):61–69CrossRef
Zurück zum Zitat King A, Tinoco R, Cowen E (2012) A k–ε turbulencemodel based on the scales of vertical shear and stem wakes valid for emergent and submerged vegetated flows. J Fluid Mech 701:1–39CrossRef King A, Tinoco R, Cowen E (2012) A k–ε turbulencemodel based on the scales of vertical shear and stem wakes valid for emergent and submerged vegetated flows. J Fluid Mech 701:1–39CrossRef
Zurück zum Zitat Kjellin J, Wörman A, Johansson H, Lindahl A (2007) Controlling factors for water residence time and flow patterns in Ekeby treatment wetland Sweden. Adv Water Resour 30(4):838–850CrossRef Kjellin J, Wörman A, Johansson H, Lindahl A (2007) Controlling factors for water residence time and flow patterns in Ekeby treatment wetland Sweden. Adv Water Resour 30(4):838–850CrossRef
Zurück zum Zitat Levenspiel O (1972) Chemical reaction engineering. Wiley Levenspiel O (1972) Chemical reaction engineering. Wiley
Zurück zum Zitat Li Q (2014) Effects of vegetation on pond residence time distributions using CFD modelling Master’s thesis, University of Sheffield Li Q (2014) Effects of vegetation on pond residence time distributions using CFD modelling Master’s thesis, University of Sheffield
Zurück zum Zitat Lightbody AF, Nepf HM (2006) Prediction of velocity profiles and longitudinal dispersion in emergent salt marsh vegetation. Limnol Oceanogr 51(1):218–228CrossRef Lightbody AF, Nepf HM (2006) Prediction of velocity profiles and longitudinal dispersion in emergent salt marsh vegetation. Limnol Oceanogr 51(1):218–228CrossRef
Zurück zum Zitat Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models part I – A discussion of principles. J Hydrol 10(3):282–290CrossRef Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models part I – A discussion of principles. J Hydrol 10(3):282–290CrossRef
Zurück zum Zitat Nepf H (1999) Drag, turbulence, and diffusion in flow through emergent vegetation. Water Resour Res 35(2):479–489CrossRef Nepf H (1999) Drag, turbulence, and diffusion in flow through emergent vegetation. Water Resour Res 35(2):479–489CrossRef
Zurück zum Zitat Patil S, Singh V (2011) Dispersion model for varying vertical shear in vegetated channels. J Hydraul Eng 137(10):1293–1297CrossRef Patil S, Singh V (2011) Dispersion model for varying vertical shear in vegetated channels. J Hydraul Eng 137(10):1293–1297CrossRef
Zurück zum Zitat Persson J (2000) The hydraulic performance of ponds of various layouts. Urban Water 2(3):243–250CrossRef Persson J (2000) The hydraulic performance of ponds of various layouts. Urban Water 2(3):243–250CrossRef
Zurück zum Zitat Persson J (2005) The use of design elements in wetlands. Nord Hydrol 36(2):113–120 Persson J (2005) The use of design elements in wetlands. Nord Hydrol 36(2):113–120
Zurück zum Zitat Peterson EL, Harris JA, Wadhwa LC (2000) CFD modelling pond dynamic processes. Aquacult Eng 23(1):61–93CrossRef Peterson EL, Harris JA, Wadhwa LC (2000) CFD modelling pond dynamic processes. Aquacult Eng 23(1):61–93CrossRef
Zurück zum Zitat Saggiori S (2010) CFD modelling of solute transport in vegetated flow. Master’s thesis, University of Sheffield Saggiori S (2010) CFD modelling of solute transport in vegetated flow. Master’s thesis, University of Sheffield
Zurück zum Zitat Shilton A (2000) Potential application of computational fluid dynamics to pond design. Water Sci Technol 42(10):327–334 Shilton A (2000) Potential application of computational fluid dynamics to pond design. Water Sci Technol 42(10):327–334
Zurück zum Zitat Shilton A, Kreegher S, Grigg N (2008) Comparison of computation fluid dynamics simulation against tracer data from a scale model and full-sized waste stabilization pond. J Environ Eng 134(10):845–850CrossRef Shilton A, Kreegher S, Grigg N (2008) Comparison of computation fluid dynamics simulation against tracer data from a scale model and full-sized waste stabilization pond. J Environ Eng 134(10):845–850CrossRef
Zurück zum Zitat Shucksmith J, Boxall J, Guymer I (2010) Effects of emergent and submerged natural vegetation on longitudinal mixing in open channel flow. Water Resour Res 46(4) Shucksmith J, Boxall J, Guymer I (2010) Effects of emergent and submerged natural vegetation on longitudinal mixing in open channel flow. Water Resour Res 46(4)
Zurück zum Zitat Souliotis D, Prinos P (2011) Effect of a vegetation patch on turbulent channel flow. J Hydraul Res 49(2):157–167CrossRef Souliotis D, Prinos P (2011) Effect of a vegetation patch on turbulent channel flow. J Hydraul Res 49(2):157–167CrossRef
Zurück zum Zitat Stoesser T, Kim S, Diplas P (2010) Turbulent flow through idealized emergent vegetation. J Hydraul Eng 136(12):1003–1017CrossRef Stoesser T, Kim S, Diplas P (2010) Turbulent flow through idealized emergent vegetation. J Hydraul Eng 136(12):1003–1017CrossRef
Zurück zum Zitat Stovin VR, Grimm JP, Lau STD (2008) Solute transport modeling for urban drainage structures. J Environ Eng 134(8):640–650CrossRef Stovin VR, Grimm JP, Lau STD (2008) Solute transport modeling for urban drainage structures. J Environ Eng 134(8):640–650CrossRef
Zurück zum Zitat Tanino Y, Nepf HM (2008) Lateral dispersion in random cylinder arrays at high reynolds number. J Fluid Mech 600:339–371CrossRef Tanino Y, Nepf HM (2008) Lateral dispersion in random cylinder arrays at high reynolds number. J Fluid Mech 600:339–371CrossRef
Zurück zum Zitat Tsavdaris A, Mitchell S, Williams B (2013) Use of CFD to model emergent vegetation in detention ponds. ARPN J Eng Appl Sci 8(7):495–503 Tsavdaris A, Mitchell S, Williams B (2013) Use of CFD to model emergent vegetation in detention ponds. ARPN J Eng Appl Sci 8(7):495–503
Zurück zum Zitat Tsavdaris A, Mitchell S, Williams JB (2014) Computational fluid dynamics modelling of different detention pond configurations in the interest of sustainable flow regimes and gravity sedimentation potential. Water Environ J Tsavdaris A, Mitchell S, Williams JB (2014) Computational fluid dynamics modelling of different detention pond configurations in the interest of sustainable flow regimes and gravity sedimentation potential. Water Environ J
Zurück zum Zitat Wu W, He Z (2009) Effects of vegetation on flow conveyance and sediment transport capacity. Int J Sedim Res 24(3):247–259CrossRef Wu W, He Z (2009) Effects of vegetation on flow conveyance and sediment transport capacity. Int J Sedim Res 24(3):247–259CrossRef
Zurück zum Zitat Zinke P (2010) Flow resistance parameters for natural emergent vegetation derived from a porous media model. In: Proceedings of RiverFlow 2010 Zinke P (2010) Flow resistance parameters for natural emergent vegetation derived from a porous media model. In: Proceedings of RiverFlow 2010
Metadaten
Titel
Feasibility of the Porous Zone Approach to Modelling Vegetation in CFD
verfasst von
Fred Sonnenwald
Virginia Stovin
Ian Guymer
Copyright-Jahr
2016
DOI
https://doi.org/10.1007/978-3-319-27750-9_6