Skip to main content

2016 | OriginalPaper | Buchkapitel

Discretization Methods for Solids Undergoing Finite Deformations

verfasst von : Peter Wriggers

Erschienen in: Advanced Finite Element Technologies

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Finite element methods for solving engineering problems are used since decades in industrial applications. This market is still growing and the underlying methodologies, formulations, and algorithms seem to be settled. But still there are open questions and problems when applying the finite element method to situations where finite strains occur. Another problem area is the incorporation of constraints into the formulations, such as incompressibility, contact, and directional constraints needed to formulate anisotropic material behavior. In this section, we present the basic continuum formulation and different discretization techniques that can be used to overcome the problems mentioned above. Additionally, a set of test problems is presented that can be applied to test new finite element formulations.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
Small letters are used for indices of vectors and tensors which are related to the basis \(\mathbf{e }_i\) of the current or spatial configuration. The quantities \(x_i\) are the spatial coordinates of X.
 
2
Note that this split represents physically a different strain energy function than (35).
 
3
The construction of such principle has advantages. One of them is that the development of efficient algorithms for the solution of the nonlinear equations can be based on optimization strategies.
 
4
This result corresponds to the variation \(\delta \mathbf{E }\), defined already (49). The partial derivative of W with respect to \(\mathbf{C }\) leads to the second Piola-Kirchhoff stress tensor \(\mathbf{S }\), see (30): \(\mathbf{S } = 2\,\partial W/\partial \mathbf{C }\). Hence Eq. (57) is equivalent to the weak form (50) for a hyperelastic material.
 
5
The user can overrule the automatic selection of the integration rule, but this is only necessary when special shape functions are used.
 
6
All data are provided as dimensionless constants, it is assumed that the dimensions match real physical data.
 
7
Here the variable p is the stress component related to the constraint, e.g., the stress in direction of \(\mathbf{a }\). It has to be scaled in order to yield the correct stress.
 
Literatur
Zurück zum Zitat Altenbach, J., & Altenbach, H. (1994). Einführung in die Kontinuumsmechanik. Stuttgart: Teubner-Verlag.MATH Altenbach, J., & Altenbach, H. (1994). Einführung in die Kontinuumsmechanik. Stuttgart: Teubner-Verlag.MATH
Zurück zum Zitat Arnold, D. N., Brezzi, F., & Douglas, J. (1984). Peers: A new mixed finite element for plane elasticity. Japan Journal of Applied Mathematics, 1, 347–367.MathSciNetCrossRefMATH Arnold, D. N., Brezzi, F., & Douglas, J. (1984). Peers: A new mixed finite element for plane elasticity. Japan Journal of Applied Mathematics, 1, 347–367.MathSciNetCrossRefMATH
Zurück zum Zitat Auricchio, F., da Velga, L. B., Lovadina, C., Reali, A., Taylor, R. L., & Wriggers, P. (2013). Approximation of incompressible large deformation elastic problems: some unresolved issues. Computational Mechanics, 52, 1153–1167.MathSciNetCrossRefMATH Auricchio, F., da Velga, L. B., Lovadina, C., Reali, A., Taylor, R. L., & Wriggers, P. (2013). Approximation of incompressible large deformation elastic problems: some unresolved issues. Computational Mechanics, 52, 1153–1167.MathSciNetCrossRefMATH
Zurück zum Zitat Belytschko, T., Ong, J. S. J., Liu, W. K., & Kennedy, J. M. (1984). Hourglass control in linear and nonlinear problems. Computer Methods in Applied Mechanics and Engineering, 43, 251–276.CrossRefMATH Belytschko, T., Ong, J. S. J., Liu, W. K., & Kennedy, J. M. (1984). Hourglass control in linear and nonlinear problems. Computer Methods in Applied Mechanics and Engineering, 43, 251–276.CrossRefMATH
Zurück zum Zitat Brezzi, F., & Fortin, M. (1991). Mixed and hybrid finite element methods. Berlin: Springer.CrossRefMATH Brezzi, F., & Fortin, M. (1991). Mixed and hybrid finite element methods. Berlin: Springer.CrossRefMATH
Zurück zum Zitat Chadwick, P. (1999). Continuum mechanics, Concise theory and problems. Mineola: Dover Publications. Chadwick, P. (1999). Continuum mechanics, Concise theory and problems. Mineola: Dover Publications.
Zurück zum Zitat Ciarlet, P. G. (1988). Mathematical elasticity I: Three-dimensional elasticity. Amsterdam: North-Holland.MATH Ciarlet, P. G. (1988). Mathematical elasticity I: Three-dimensional elasticity. Amsterdam: North-Holland.MATH
Zurück zum Zitat Cottrell, J. A., Hughes, T. J. R., & Bazilevs, Y. (2009). Isogeometric analysis: Toward integration of CAD and FEA. New York: Wiley.CrossRef Cottrell, J. A., Hughes, T. J. R., & Bazilevs, Y. (2009). Isogeometric analysis: Toward integration of CAD and FEA. New York: Wiley.CrossRef
Zurück zum Zitat Duffet, G., & Reddy, B. D. (1983). The analysis of incompressible hyperelastic bodies by the finite element method. Computer Methods in Applied Mechanics and Engineering, 41, 105–120.MathSciNetCrossRef Duffet, G., & Reddy, B. D. (1983). The analysis of incompressible hyperelastic bodies by the finite element method. Computer Methods in Applied Mechanics and Engineering, 41, 105–120.MathSciNetCrossRef
Zurück zum Zitat Eringen, A. (1967). Mechanics of Continua. New York: Wiley.MATH Eringen, A. (1967). Mechanics of Continua. New York: Wiley.MATH
Zurück zum Zitat Flory, P. (1961). Thermodynamic relations for high elastic materials. Transactions of the Faraday Society, 57, 829–838.MathSciNetCrossRef Flory, P. (1961). Thermodynamic relations for high elastic materials. Transactions of the Faraday Society, 57, 829–838.MathSciNetCrossRef
Zurück zum Zitat Fraeijs de Veubeke, B. M. (1975). Stress function approach. In World Congress on the Finite Element Method in Structural Mechanics (pp. 1–51). Bournmouth. Fraeijs de Veubeke, B. M. (1975). Stress function approach. In World Congress on the Finite Element Method in Structural Mechanics (pp. 1–51). Bournmouth.
Zurück zum Zitat Häggblad, B., & Sundberg, J. A. (1983). Large strain solutions of rubber components. Computers and Structures, 17, 835–843.CrossRef Häggblad, B., & Sundberg, J. A. (1983). Large strain solutions of rubber components. Computers and Structures, 17, 835–843.CrossRef
Zurück zum Zitat Holzapfel, G. A. (2000). Nonlinear solid mechanics. Chichester: Wiley.MATH Holzapfel, G. A. (2000). Nonlinear solid mechanics. Chichester: Wiley.MATH
Zurück zum Zitat Hughes, T. R. J. (1987). The finite element method. Englewood Cliffs: Prentice Hall.MATH Hughes, T. R. J. (1987). The finite element method. Englewood Cliffs: Prentice Hall.MATH
Zurück zum Zitat Korelc, J. (1997). Automatic generation of finite-element code by simultaneous optimization of expressions. Theoretical Computer Science, 187, 231–248.CrossRefMATH Korelc, J. (1997). Automatic generation of finite-element code by simultaneous optimization of expressions. Theoretical Computer Science, 187, 231–248.CrossRefMATH
Zurück zum Zitat Korelc, J. (2002). Multi-language and multi-environment generation of nonlinear finite element codes. Engineering with Computers, 18, 312–327.CrossRef Korelc, J. (2002). Multi-language and multi-environment generation of nonlinear finite element codes. Engineering with Computers, 18, 312–327.CrossRef
Zurück zum Zitat Malvern, L. E. (1969). Introduction to the mechanics of a continuous medium. Englewood Cliffs: Prentice-Hall.MATH Malvern, L. E. (1969). Introduction to the mechanics of a continuous medium. Englewood Cliffs: Prentice-Hall.MATH
Zurück zum Zitat Marsden, J. E., & Hughes, T. J. R. (1983). Mathematical foundations of elasticity. Englewood Cliffs: Prentice-Hall.MATH Marsden, J. E., & Hughes, T. J. R. (1983). Mathematical foundations of elasticity. Englewood Cliffs: Prentice-Hall.MATH
Zurück zum Zitat Oden, J. T., & Key, J. E. (1970). Numerical analysis of finite axisymmetrical deformations of incompressible elastic solids of revolution. International Journal of Solids and Structures, 6, 497–518.CrossRefMATH Oden, J. T., & Key, J. E. (1970). Numerical analysis of finite axisymmetrical deformations of incompressible elastic solids of revolution. International Journal of Solids and Structures, 6, 497–518.CrossRefMATH
Zurück zum Zitat Ogden, R. W. (1984). Non-linear elastic deformations. Chichester: Ellis Horwood and Wiley.MATH Ogden, R. W. (1984). Non-linear elastic deformations. Chichester: Ellis Horwood and Wiley.MATH
Zurück zum Zitat Reese, S. (2005). On a physically stabilized one point finite element formulation for three-dimensional finite elasto-plasticity. Computer Methods in Applied Mechanics and Engineering, 194, 4685–4715.CrossRefMATH Reese, S. (2005). On a physically stabilized one point finite element formulation for three-dimensional finite elasto-plasticity. Computer Methods in Applied Mechanics and Engineering, 194, 4685–4715.CrossRefMATH
Zurück zum Zitat Reese, S., & Wriggers, P. (2000). A new stabilization concept for finite elements in large deformation problems. International Journal for Numerical Methods in Engineering, 48, 79–110.CrossRefMATH Reese, S., & Wriggers, P. (2000). A new stabilization concept for finite elements in large deformation problems. International Journal for Numerical Methods in Engineering, 48, 79–110.CrossRefMATH
Zurück zum Zitat Simo, J. C., & Armero, F. (1992). Geometrically non-linear enhanced strain mixed methods and the method of incompatible modes. International Journal for Numerical Methods in Engineering, 33, 1413–1449.MathSciNetCrossRefMATH Simo, J. C., & Armero, F. (1992). Geometrically non-linear enhanced strain mixed methods and the method of incompatible modes. International Journal for Numerical Methods in Engineering, 33, 1413–1449.MathSciNetCrossRefMATH
Zurück zum Zitat Simo, J. C., Armero, F., & Taylor, R. L. (1993). Improved versions of assumed enhanced strain tri-linear elements for 3D finite deformation problems. Computer Methods in Applied Mechanics and Engineering, 110, 359–386.MathSciNetCrossRefMATH Simo, J. C., Armero, F., & Taylor, R. L. (1993). Improved versions of assumed enhanced strain tri-linear elements for 3D finite deformation problems. Computer Methods in Applied Mechanics and Engineering, 110, 359–386.MathSciNetCrossRefMATH
Zurück zum Zitat Simo, J. C., & Rifai, M. S. (1990). A class of assumed strain methods and the method of incompatible modes. International Journal for Numerical Methods in Engineering, 29, 1595–1638.MathSciNetCrossRefMATH Simo, J. C., & Rifai, M. S. (1990). A class of assumed strain methods and the method of incompatible modes. International Journal for Numerical Methods in Engineering, 29, 1595–1638.MathSciNetCrossRefMATH
Zurück zum Zitat Simo, J. C., Taylor, R. L., & Pister, K. S. (1985). Variational and projection methods for the volume constraint in finite deformation elasto-plasticity. Computer Methods in Applied Mechanics and Engineering, 51, 177–208.MathSciNetCrossRefMATH Simo, J. C., Taylor, R. L., & Pister, K. S. (1985). Variational and projection methods for the volume constraint in finite deformation elasto-plasticity. Computer Methods in Applied Mechanics and Engineering, 51, 177–208.MathSciNetCrossRefMATH
Zurück zum Zitat Sussman, T., & Bathe, K. J. (1987). A finite element formulation for nonlinear incompressible elastic and inelastic analysis. Computers and Structures, 26, 357–409.CrossRefMATH Sussman, T., & Bathe, K. J. (1987). A finite element formulation for nonlinear incompressible elastic and inelastic analysis. Computers and Structures, 26, 357–409.CrossRefMATH
Zurück zum Zitat Truesdell, C., & Noll, W. (1965). The nonlinear field theories of mechanics. In S. Flügge (Ed.), Handbuch der Physik III/3. Berlin: Springer. Truesdell, C., & Noll, W. (1965). The nonlinear field theories of mechanics. In S. Flügge (Ed.), Handbuch der Physik III/3. Berlin: Springer.
Zurück zum Zitat Truesdell, C., & Toupin, R. (1960). The classical field theorie. Handbuch der Physik III/1. Berlin: Springer. Truesdell, C., & Toupin, R. (1960). The classical field theorie. Handbuch der Physik III/1. Berlin: Springer.
Zurück zum Zitat Washizu, K. (1975). Variational methods in elasticity and plasticity (2nd ed.). Oxford: Pergamon Press.MATH Washizu, K. (1975). Variational methods in elasticity and plasticity (2nd ed.). Oxford: Pergamon Press.MATH
Zurück zum Zitat Wriggers, P. (2008). Nonlinear finite elements. Berlin: Springer.MATH Wriggers, P. (2008). Nonlinear finite elements. Berlin: Springer.MATH
Zurück zum Zitat Zienkiewicz, O. C., & Taylor, R. L. (1989). The finite element method (4th ed., Vol. 1). London: McGraw Hill. Zienkiewicz, O. C., & Taylor, R. L. (1989). The finite element method (4th ed., Vol. 1). London: McGraw Hill.
Zurück zum Zitat Zienkiewicz, O. C., & Taylor, R. L. (2000). The finite element method (5th ed., Vol. 2). Oxford: Butterworth-Heinemann. Zienkiewicz, O. C., & Taylor, R. L. (2000). The finite element method (5th ed., Vol. 2). Oxford: Butterworth-Heinemann.
Zurück zum Zitat Zienkiewicz, O. C., Taylor, R. L., & Too, J. M. (1971). Reduced integration technique in general analysis of plates and shells. International Journal for Numerical Methods in Engineering, 3, 275–290.CrossRefMATH Zienkiewicz, O. C., Taylor, R. L., & Too, J. M. (1971). Reduced integration technique in general analysis of plates and shells. International Journal for Numerical Methods in Engineering, 3, 275–290.CrossRefMATH
Metadaten
Titel
Discretization Methods for Solids Undergoing Finite Deformations
verfasst von
Peter Wriggers
Copyright-Jahr
2016
DOI
https://doi.org/10.1007/978-3-319-31925-4_2

Premium Partner