Skip to main content

2017 | OriginalPaper | Buchkapitel

Assessment of Thermodynamic Efficiency of Carbon Dioxide Separation in Capture Plants by Using Gas–Liquid Absorption

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Typical carbon capture plants include CO2 separation and compression steps. CO2 separation from diluted flue gases may be achieved by using gas-liquid absorption. This process requires work input for e.g. separating CO2 from flue gases and regenerating the CO2 loaded solvent. Hence, CO2 capture plants involving gas-liquid absorption consume a remarkable part of power and thermal energy generated by power plants. By increasing the thermodynamic efficiency of capture plants one can increase the produced power and save fossil fuels. Therefore, this study provides a quantitative assessment of the thermodynamic efficiency of CO2 separation in capture plants. To this aim the minimum work required for CO2 separation and actual work input in realistic carbon capture plants are estimated. The results reveal that for the state-of-the-art MEA solvent the thermodynamic efficiency of the capture plant is about 16%, for state-of-the-art advanced solvent based capture process (ASBCP) is about 25%, while given the progress in developing ASBCPs in near future it may reach about 30%. Additional measures to reduce the energy requirement of the capture plant such as heat pumps are also discussed. This all means that CO2 separation by gas-liquid absorption is still a relatively inefficient process and remarkable potential for further improvements with step change innovations in gas-liquid absorption exist and may be beneficially used for optimising CO2 capture plants.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Calbry-Muzyka S, Edwards CF (2014) Thermodynamic benchmarking of CO2 capture systems: exergy analysis methodology for adsorption processes. Energy Procedia 63:1–17CrossRef Calbry-Muzyka S, Edwards CF (2014) Thermodynamic benchmarking of CO2 capture systems: exergy analysis methodology for adsorption processes. Energy Procedia 63:1–17CrossRef
2.
Zurück zum Zitat Rochedo PRR, Szklo A (2013) Designing learning curves for carbon capture based on chemical absorption according to the minimum work of separation. Appl Energy 108:383–391CrossRef Rochedo PRR, Szklo A (2013) Designing learning curves for carbon capture based on chemical absorption according to the minimum work of separation. Appl Energy 108:383–391CrossRef
3.
Zurück zum Zitat Budzianowski WM (2016) Explorative analysis of advanced solvent processes for energy efficient carbon dioxide capture by gas-liquid absorption. Int J Greenhouse Gas Control 49:108–120CrossRef Budzianowski WM (2016) Explorative analysis of advanced solvent processes for energy efficient carbon dioxide capture by gas-liquid absorption. Int J Greenhouse Gas Control 49:108–120CrossRef
4.
Zurück zum Zitat Budzianowski WM (2015) Single solvents, solvent blends, and advanced solvent systems in CO2 capture by absorption: a review. Int J Glob Warming 7(2):184–225CrossRef Budzianowski WM (2015) Single solvents, solvent blends, and advanced solvent systems in CO2 capture by absorption: a review. Int J Glob Warming 7(2):184–225CrossRef
5.
Zurück zum Zitat Gaskell D. (1995) Introduction to the thermodynamics of materials. Taylor & Francis. Washington D.C Gaskell D. (1995) Introduction to the thermodynamics of materials. Taylor & Francis. Washington D.C
6.
Zurück zum Zitat House KZ, Harvey CF, Aziz MJ, Schrag DP (2009) The energy penalty of post-combustion CO2 capture & storage and its implications for retrofitting the U.S. installed base. Energy Environ Sci 2:193–205CrossRef House KZ, Harvey CF, Aziz MJ, Schrag DP (2009) The energy penalty of post-combustion CO2 capture & storage and its implications for retrofitting the U.S. installed base. Energy Environ Sci 2:193–205CrossRef
7.
Zurück zum Zitat Budzianowski WM (2012) Negative carbon intensity of renewable energy technologies involving biomass or carbon dioxide as inputs. Renew Sustain Energy Rev 16(9):6507–6521CrossRef Budzianowski WM (2012) Negative carbon intensity of renewable energy technologies involving biomass or carbon dioxide as inputs. Renew Sustain Energy Rev 16(9):6507–6521CrossRef
8.
Zurück zum Zitat Budzianowski WM (2012) Value-added carbon management technologies for low CO2 intensive carbon-based energy vectors. Energy 41(1):280–297CrossRef Budzianowski WM (2012) Value-added carbon management technologies for low CO2 intensive carbon-based energy vectors. Energy 41(1):280–297CrossRef
9.
Zurück zum Zitat Budzianowski WM (2012) Benefits of biogas upgrading to biomethane by high-pressure reactive solvent scrubbing. Biofuels, Bioprod Biorefin 6(1):12–20CrossRef Budzianowski WM (2012) Benefits of biogas upgrading to biomethane by high-pressure reactive solvent scrubbing. Biofuels, Bioprod Biorefin 6(1):12–20CrossRef
10.
Zurück zum Zitat Svendsen HF, Hessen ET, Mejdell T (2011) Carbon dioxide capture by absorption, challenges and possibilities. Chem Eng J 171(3):718–724CrossRef Svendsen HF, Hessen ET, Mejdell T (2011) Carbon dioxide capture by absorption, challenges and possibilities. Chem Eng J 171(3):718–724CrossRef
11.
Zurück zum Zitat Zhang G, Yang Y, Xu G, Zhang K, Zhang D (2015) CO2 capture by chemical absorption in coal-fired power plants: energy-saving mechanism, proposed methods, and performance analysis. Int J Greenhouse Gas Control 39:449–462CrossRef Zhang G, Yang Y, Xu G, Zhang K, Zhang D (2015) CO2 capture by chemical absorption in coal-fired power plants: energy-saving mechanism, proposed methods, and performance analysis. Int J Greenhouse Gas Control 39:449–462CrossRef
12.
Zurück zum Zitat Yu J, Wang S (2015) Modeling analysis of energy requirement in aqueous ammonia based CO2 capture process. Int J Greenhouse Gas Control 43:33–45CrossRef Yu J, Wang S (2015) Modeling analysis of energy requirement in aqueous ammonia based CO2 capture process. Int J Greenhouse Gas Control 43:33–45CrossRef
13.
Zurück zum Zitat Geuzebroek FH, Schneiders LHJM, Kraaijveld GJC, Feron PHM (2004) Exergy analysis of alkanolamine-based CO2 removal unit with AspenPlus. Energy 29(9–10):1241–1248CrossRef Geuzebroek FH, Schneiders LHJM, Kraaijveld GJC, Feron PHM (2004) Exergy analysis of alkanolamine-based CO2 removal unit with AspenPlus. Energy 29(9–10):1241–1248CrossRef
14.
Zurück zum Zitat Skorek-Osikowska A, Kotowicz J, Janusz-Szymańska K (2012) Comparison of the energy intensity of the selected CO2-capture methods applied in the ultra-supercritical coal power plants. Energy Fuels 26(11):6509–6517 Skorek-Osikowska A, Kotowicz J, Janusz-Szymańska K (2012) Comparison of the energy intensity of the selected CO2-capture methods applied in the ultra-supercritical coal power plants. Energy Fuels 26(11):6509–6517
15.
Zurück zum Zitat Arias AM, Mores PL, Scenna NJ, Mussati SF (2016) Optimal design and sensitivity analysis of post-combustion CO2 capture process by chemical absorption with amines. J Clean Prod 115:315–331CrossRef Arias AM, Mores PL, Scenna NJ, Mussati SF (2016) Optimal design and sensitivity analysis of post-combustion CO2 capture process by chemical absorption with amines. J Clean Prod 115:315–331CrossRef
16.
Zurück zum Zitat Budzianowski WM, Wylock CE, Marciniak PA (2017) Power requirements of biogas upgrading by water scrubbing and biomethane compression: comparative analysis of various plant configurations. Energy Convers Manag. doi:10.1016/j.enconman.2016.03.018 Budzianowski WM, Wylock CE, Marciniak PA (2017) Power requirements of biogas upgrading by water scrubbing and biomethane compression: comparative analysis of various plant configurations. Energy Convers Manag. doi:10.​1016/​j.​enconman.​2016.​03.​018
17.
Zurück zum Zitat Razi N, Svendsen HF, Bolland O (2013) Cost and energy sensitivity analysis of absorber design in CO2 capture with MEA. Int J Greenhouse Gas Control 19:331–339CrossRef Razi N, Svendsen HF, Bolland O (2013) Cost and energy sensitivity analysis of absorber design in CO2 capture with MEA. Int J Greenhouse Gas Control 19:331–339CrossRef
18.
Zurück zum Zitat Avci A, Karagoz I (2009) A novel explicit equation for friction factor in smooth and rough pipes. ASME J Fluids Eng 131:061203CrossRef Avci A, Karagoz I (2009) A novel explicit equation for friction factor in smooth and rough pipes. ASME J Fluids Eng 131:061203CrossRef
19.
Zurück zum Zitat Lin Y, Rochelle GT (2016) Approaching a reversible stripping process for CO2 capture. Chem Eng J 283:1033–1043CrossRef Lin Y, Rochelle GT (2016) Approaching a reversible stripping process for CO2 capture. Chem Eng J 283:1033–1043CrossRef
20.
Zurück zum Zitat Kim H, Lee KS (2016) Design guidance for an energy-thrift absorption process for carbon capture: analysis of thermal energy consumption for a conventional process configuration. Int J Greenhouse Gas Control 47:291–302CrossRef Kim H, Lee KS (2016) Design guidance for an energy-thrift absorption process for carbon capture: analysis of thermal energy consumption for a conventional process configuration. Int J Greenhouse Gas Control 47:291–302CrossRef
21.
Zurück zum Zitat Alhajaj A, Mac Dowell N, Shah N (2016) A techno-economic analysis of post-combustion CO2 capture and compression applied to a combined cycle gas turbine: Part I. A parametric study of the key technical performance indicators. Int J Greenhouse Gas Control 44:26–41CrossRef Alhajaj A, Mac Dowell N, Shah N (2016) A techno-economic analysis of post-combustion CO2 capture and compression applied to a combined cycle gas turbine: Part I. A parametric study of the key technical performance indicators. Int J Greenhouse Gas Control 44:26–41CrossRef
22.
Zurück zum Zitat House KZ, Baclig AC, Ranjan M, van Nierop EA, Wilcox J, Herzog HJ (2011) Economic and energetic analysis of capturing CO2 from ambient air. Proc Natl Acad Sci USA 108(51):20428–20433CrossRef House KZ, Baclig AC, Ranjan M, van Nierop EA, Wilcox J, Herzog HJ (2011) Economic and energetic analysis of capturing CO2 from ambient air. Proc Natl Acad Sci USA 108(51):20428–20433CrossRef
23.
Zurück zum Zitat Wilcox J. Carbon capture. 2012. Springer, New York Wilcox J. Carbon capture. 2012. Springer, New York
24.
Zurück zum Zitat Wołowicz M, Milewski J, Futyma K, Bujalski W (2014) Boosting the efficiency of an 800 MW-class power plant through utilization of low temperature heat of flue gases. Appl Mech Mater 483:315–321CrossRef Wołowicz M, Milewski J, Futyma K, Bujalski W (2014) Boosting the efficiency of an 800 MW-class power plant through utilization of low temperature heat of flue gases. Appl Mech Mater 483:315–321CrossRef
25.
Zurück zum Zitat Higgins SJ, Liu YA (2015) CO2 capture modeling, energy savings, and heat pump integration. Ind Eng Chem Res 54(9):2526–2553CrossRef Higgins SJ, Liu YA (2015) CO2 capture modeling, energy savings, and heat pump integration. Ind Eng Chem Res 54(9):2526–2553CrossRef
26.
Zurück zum Zitat Wang M, Joel AS, Ramshaw C, Eimer D, Musa NM (2015) Process intensification for post-combustion CO2 capture with chemical absorption: a critical review. Appl Energy 158:275–291CrossRef Wang M, Joel AS, Ramshaw C, Eimer D, Musa NM (2015) Process intensification for post-combustion CO2 capture with chemical absorption: a critical review. Appl Energy 158:275–291CrossRef
Metadaten
Titel
Assessment of Thermodynamic Efficiency of Carbon Dioxide Separation in Capture Plants by Using Gas–Liquid Absorption
verfasst von
Wojciech M. Budzianowski
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-47262-1_2