Skip to main content

2017 | Supplement | Buchkapitel

4. Vibronic Couplings

verfasst von : Fabien Gatti, Benjamin Lasorne, Hans-Dieter Meyer, André Nauts

Erschienen in: Applications of Quantum Dynamics in Chemistry

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Photoinduced processes (photochemical and photophysical) often involve vibronic couplings that are responsible of ultrafast radiationless decay processes from an excited electronic state to a lower-energy one (typically, internal conversion, between same-spin electronic states, or intersystem crossing for different spins; note that corresponding light-emitting processes are called fluorescence and phosphorescence, respectively). In such a situation, the excess energy first given to the molecule through light absorption is converted into electronic excitation and then transformed into vibrational excitation.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
Throughout this chapter, the matrix \({{\varvec{H}}} ({{\varvec{q}}})\) will refer exclusively to the representation of the electronic Hamiltonian \({H}^{el} ({{\varvec{q}}})\). It should not be confused with the matrix representation of the molecular Hamiltonian. The two quantities differ by the nuclear KEO matrix (including the non-adiabatic couplings and corrections, i.e., \({T}^{nu} {{\varvec{1}}} + {\varvec{\Lambda }}\) (see Sect. 3.​2.​4 for the definition of \({\varvec{\Lambda }}\)).
 
2
Often, the equation defining the angle is simply given as
$$\begin{aligned} \varphi ({{\varvec{q}}}) = -\frac{1}{2} \arctan \frac{W({{\varvec{q}}})}{D({{\varvec{q}}})} \,. \nonumber \end{aligned}$$
However, some information is missing regarding the relative signs of \(D({{\varvec{q}}})\) and \(W({{\varvec{q}}})\) and the corresponding domains of variation of the angle. A constant value should be added according to the corresponding quadrants if a continuity condition is required. A more accurate formulation is
$$\begin{aligned} \varphi ({{\varvec{q}}}) = -\frac{1}{2} \text {Arg} (D({{\varvec{q}}}) + i W({{\varvec{q}}})) \,. \nonumber \end{aligned}$$
where \(-\pi < \text {Arg} (x + i y) \le \pi \) is the principal value of the argument of the complex number \(x + i y\). The corresponding function is sometimes denoted \(\text {atan2} (y,x)\) and this is how it is known in computer programming.
 
3
Note that two hypersurfaces that depend on \(3N - 6\) degrees of freedom can, in principle, intersect along a \((3N - 7)\)-dimensional hyperline. In contrast, two adiabatic potential energy surfaces can only intersect along the \((3N - 8)\)-dimensional seam, which is a direct consequence of the possible coupling between the degenerate states along certain directions.
 
4
Here, ill-defined local derivatives must be replaced by well-defined directional derivatives. Let us consider a first-order, two-dimensional case: \(\Delta (x,y) = \sqrt{(ax)^2 + (bx)^2}\). This function satisfies \(\Delta (0,0) = 0\), \(\Delta (x,0) = \vert ax \vert \), and \(\Delta (0,y) = \vert by \vert \). It behaves as a two-dimensional absolute-value function and is represented by an elliptic cone in the (xy)-frame, the apex of which is located at (0, 0). The left- and right-derivatives are well-defined and satisfy \(\lim _{\varepsilon \rightarrow 0^+} \frac{\Delta (\varepsilon ,0) - \Delta (0,0)}{\varepsilon } = -\lim _{\varepsilon \rightarrow 0^-} \frac{\Delta (\varepsilon ,0) - \Delta (0,0)}{\varepsilon } = \vert a \vert \) and \(\lim _{\varepsilon \rightarrow 0^+} \frac{\Delta (0,\varepsilon ) - \Delta (0,0)}{\varepsilon } = -\lim _{\varepsilon \rightarrow 0^-} \frac{\Delta (0,\varepsilon ) - \Delta (0,0)}{\varepsilon } = \vert b \vert \). They are opposite on both sides. However, \(\lim _{\varepsilon \rightarrow 0} \frac{\Delta (\varepsilon ,0) - \Delta (-\varepsilon ,0)}{2\varepsilon } = \lim _{\varepsilon \rightarrow 0} \frac{\Delta (0,\varepsilon ) - \Delta (0,-\varepsilon )}{2\varepsilon } = 0\), which shows that a two-point formula is inadequate here: the local derivatives are ill-defined because of the cusp at the origin.
 
5
This apparent double-valuedness issue is related to what is known as the geometrical Berry phase (see Refs. [7, 16, 23, 24] for further details).
 
6
In fact, the same result can be obtained with a less restrictive hypothesis. It is enough to consider that both \(\vert \overline{\Phi }_1; {{\varvec{q}}}\rangle \) and \(\vert \overline{\Phi }_2; {{\varvec{q}}}\rangle \) vary smoothly with \({{\varvec{q}}}\) around \({{\varvec{q}}}_{\text {X}}\) such that \(\langle \overline{\Phi }_\alpha ; {{\varvec{q}}}_{\text{ X }} \vert \partial _j\Phi _\beta ; {{\varvec{q}}}_{\text{ X }}\rangle \) take finite values (as opposed to \(\langle \Phi _1^{el/ad}; {{\varvec{q}}} \vert \partial _j\Phi _2^{el/ad}; {{\varvec{q}}}\rangle \) that diverges when \({{\varvec{q}}}\) tends to \( {{\varvec{q}}}_{\text{ X }}\)). Using a Hellmann-Feynman-like formula, we get
$$\begin{aligned} \partial _j \overline{H}^{(\alpha \beta )}({{\varvec{q}}}_{\text{ X }}) = \underbrace{(V_{\alpha }({{\varvec{q}}}_{\text{ X }}) - V_{\beta }({{\varvec{q}}}_{\text{ X }}))}_{=0} \langle \overline{\Phi }_\alpha ; {{\varvec{q}}}_{\text{ X }} \vert \partial _j\overline{\Phi }_\beta ; {{\varvec{q}}}_{\text{ X }}\rangle + \langle \overline{\Phi }_\alpha ; {{\varvec{q}}}_{\text{ X }} \vert \partial _j {H}^{el}({{\varvec{q}}}_{\text{ X })} \vert \overline{\Phi }_\beta ; {{\varvec{q}}}_{\text{ X }}\rangle \,, \end{aligned}$$
where we used, first, the fact that \(\overline{\Phi }\)-type states coincide with the eigenstates at \({{\varvec{q}}}_{\text{ X }}\) and, second, that they are assumed to be orthonormal,
$$\begin{aligned} \langle \partial _j\overline{\Phi }_\alpha ; {{\varvec{q}}}_{\text{ X }} \vert \overline{\Phi }_\beta ; {{\varvec{q}}}_{\text{ X }}\rangle + \langle \overline{\Phi }_\alpha ; {{\varvec{q}}}_{\text{ X }} \vert \partial _j\overline{\Phi }_\beta ; {{\varvec{q}}}_{\text{ X }}\rangle = \partial _j\langle \overline{\Phi }_\alpha ; {{\varvec{q}}}_{\text{ X }} \vert \overline{\Phi }_\beta ; {{\varvec{q}}}_{\text{ X }}\rangle =0 \,. \end{aligned}$$
In addition, it is worth noticing that, for \(\alpha , \beta = 1,2\) (restriction to two states), there is no explicit involvement of the other possible eigenstates (there are no couplings \(\langle \overline{\Phi }_1; {{\varvec{q}}}_{\text{ X }} \vert \partial _j\overline{\Phi }_\gamma ; {{\varvec{q}}}_{\text{ X }}\rangle \) or \(\langle \overline{\Phi }_2; {{\varvec{q}}}_{\text{ X }} \vert \partial _j\overline{\Phi }_\gamma ; {{\varvec{q}}}_{\text{ X }}\rangle \) for \(\gamma \ge 3\) in the above expressions). This holds to first order but a second-order expansion would require considering such terms.
 
7
The working basis set (with the bar) was chosen as a pair of crude adiabatic states for which \(\varphi _{\text {ref}} = 0\) corresponded by convention to a specific pair of degenerate adiabatic states obtained from an actual calculation. This arbitrary angle occurs to get fixed implicitly from symmetry considerations when both degenerate states potentially belong to different irreducible representations (see Chap. 7). However, in a general situation, the value of \(\varphi _{\text {ref}}\) can be fixed for convenience through an extra constraint according to context. For example, it can be used to make the two branching-space vectors orthogonal. Alternatively, it may be convenient to fix the value of \(\varphi _{\text {ref}}\) to change from the original \(\overline{{\varvec{H}}} ({{\varvec{q}}})\) to an equivalent \({{\varvec{H}}} ({{\varvec{q}}})\) according to a condition such that the off-diagonal term is zero at some reference geometry, \({{\varvec{q}}} = {{\varvec{q}}}_{\text {ref}}\), where the states are not degenerate (often, the Franck-Condon point). This ensures coincidence with the adiabatic representation at this point in addition to coincidence at the conical intersection \({{\varvec{q}}}_{\text{ X }}\). The entries of both equivalent Hamiltonian matrices are related through
$$\begin{aligned} D({{\varvec{q}}})= & {} \cos 2\varphi _{\text {ref}} \overline{D}({{\varvec{q}}}) - \sin 2\varphi _{\text {ref}} \overline{W}({{\varvec{q}}}) \,, \nonumber \\ W({{\varvec{q}}})= & {} \sin 2\varphi _{\text {ref}} \overline{D}({{\varvec{q}}}) + \cos 2\varphi _{\text {ref}} \overline{W}({{\varvec{q}}}) \nonumber \,. \end{aligned}$$
Setting \(W({{\varvec{q}}}_{\text {ref}}) = 0\) with \(D({{\varvec{q}}}_{\text {ref}}) = \Delta ({{\varvec{q}}}_{\text {ref}}) > 0\) thus yields
$$\begin{aligned} \cos 2\varphi _{\text {ref}} = \frac{\overline{D}({{\varvec{q}}}_{\text {ref}})}{\Delta ({{\varvec{q}}}_{\text {ref}})} \,, \quad \sin 2\varphi _{\text {ref}} = -\frac{\overline{W}({{\varvec{q}}}_{\text {ref}})}{\Delta ({{\varvec{q}}}_{\text {ref}})} \nonumber \,. \end{aligned}$$
This is also useful in the context of degenerate perturbation theory in order to identify \({{\varvec{V}}} ({{\varvec{q}}}_{\text{ X }} + \delta {{\varvec{q}}})\) to \({{\varvec{H}}} ({{\varvec{q}}}_{\text{ X }} + \delta {{\varvec{q}}})\) defined as the the result of the diagonalisation of \(\overline{{\varvec{H}}} ({{\varvec{q}}}_{\text{ X }} + \delta {{\varvec{q}}})\) upon setting \({{\varvec{q}}}_{\text {ref}} = {{\varvec{q}}}_{\text{ X }} + \delta {{\varvec{q}}}\).
 
8
The Mexican hat model is similar but simpler: the lower surface is isotropic around the apex of the cone, as further discussed below.
 
9
This notation reflects that \(\partial _{q_1} q_1 = 1\) and \(\partial _{q_2} q_1 = 0\) while \(\partial _{q_1} q_2 = 0\) and \(\partial _{q_2} q_2 = 1\).
 
10
Note that, as already shown, a two-state problem gets explicit solutions for the eigenvalues but this is no longer the case for problems involving more states. If so, the eigenvalues are to be calculated numerically using some diagonalisation procedure (for example the Jacobi algorithm).
 
11
This situation looks similar to an avoided crossing with respect to the adiabatic curves, see Fig. 4.3, except that now the strongly-coupled diabatic states produce curves that do not cross but rather coincide with the adiabatic ones at the origin; a \(\frac{\pi }{4}\)-rotation, sometimes referred to as a Nikitin transformation, would generate alternative diabatic states that cross and are weakly coupled. This would swap the roles of \(q_1\) and \(q_2\) as tuning and coupling modes, respectively.
 
Literatur
1.
Zurück zum Zitat Michl J, Bonacic-Koutecky V (1990) Electronic aspects of organic photochemistry. Wiley, New York Michl J, Bonacic-Koutecky V (1990) Electronic aspects of organic photochemistry. Wiley, New York
2.
Zurück zum Zitat Klessinger M, Michl J (1994) Excited states and photochemistry of organic molecules. VCH, New York Klessinger M, Michl J (1994) Excited states and photochemistry of organic molecules. VCH, New York
3.
Zurück zum Zitat Turro NJ, Ramamurthy V, Scaiano JC (2009) Principles of molecular photochemistry: an introduction. University Science Books, Sausalito, CA Turro NJ, Ramamurthy V, Scaiano JC (2009) Principles of molecular photochemistry: an introduction. University Science Books, Sausalito, CA
4.
5.
Zurück zum Zitat Bersuker IB (2006) The Jahn-Teller effect. Cambridge University Press, CambridgeCrossRef Bersuker IB (2006) The Jahn-Teller effect. Cambridge University Press, CambridgeCrossRef
6.
Zurück zum Zitat Köppel H, Yarkony DR, Barentzen H (eds) (2009) Springer series in chemical physics: the Jahn-Teller effect: fundamentals and implications for physics and chemistry, vol 97. Springer, Heidelberg Köppel H, Yarkony DR, Barentzen H (eds) (2009) Springer series in chemical physics: the Jahn-Teller effect: fundamentals and implications for physics and chemistry, vol 97. Springer, Heidelberg
7.
Zurück zum Zitat Baer M (2006) Beyond Born-Oppenheimer: electronic nonadiabatic coupling terms and conical intersections. Wiley, Hoboken, NJ Baer M (2006) Beyond Born-Oppenheimer: electronic nonadiabatic coupling terms and conical intersections. Wiley, Hoboken, NJ
8.
Zurück zum Zitat Domcke W, Yarkony DR, Köppel H (eds) (2004) Conical intersections: electronic strucutre, dynamics and spectroscopy. World Scientific, New Jersey Domcke W, Yarkony DR, Köppel H (eds) (2004) Conical intersections: electronic strucutre, dynamics and spectroscopy. World Scientific, New Jersey
9.
Zurück zum Zitat Domcke W, Yarkony DR, Köppel H (eds) (2004) Conical intersections: theory, computation and experiment. World Scientific, New Jersey Domcke W, Yarkony DR, Köppel H (eds) (2004) Conical intersections: theory, computation and experiment. World Scientific, New Jersey
10.
Zurück zum Zitat Herzberg G, Longuet-Higgins HC (1963) Intersection of potential energy surfaces in polyatomic molecules. Discuss Faraday Soc 35:77CrossRef Herzberg G, Longuet-Higgins HC (1963) Intersection of potential energy surfaces in polyatomic molecules. Discuss Faraday Soc 35:77CrossRef
11.
Zurück zum Zitat Davidson ER (1977) Global topology of triatomic potential surfaces. J Am Chem Soc 99:397CrossRef Davidson ER (1977) Global topology of triatomic potential surfaces. J Am Chem Soc 99:397CrossRef
12.
Zurück zum Zitat Desouter-Lecomte M, Galloy C, Lorquet JC, Pires MV (1979) Nonadiabatic interactions in unimolecular decay. V. Conical and Jahn-Teller intersections. J Chem Phys 71:3661 Desouter-Lecomte M, Galloy C, Lorquet JC, Pires MV (1979) Nonadiabatic interactions in unimolecular decay. V. Conical and Jahn-Teller intersections. J Chem Phys 71:3661
13.
Zurück zum Zitat Köppel H, Domcke W, Cederbaum LS (1984) Multimode molecular dynamics beyond the Born-Oppenheimer approximation. Adv Chem Phys 57:59 Köppel H, Domcke W, Cederbaum LS (1984) Multimode molecular dynamics beyond the Born-Oppenheimer approximation. Adv Chem Phys 57:59
14.
Zurück zum Zitat Atchity GJ, Xantheas SS, Ruendenberg K (1991) Potential energy surfaces near intersections. J Chem Phys 95:1862 Atchity GJ, Xantheas SS, Ruendenberg K (1991) Potential energy surfaces near intersections. J Chem Phys 95:1862
15.
Zurück zum Zitat Lengsfield BH, Yarkony DR (1992) Non-adiabatic interactions between potential energy surfaces: theory and applications. Adv Chem Phys 82 (part 2), 1 Lengsfield BH, Yarkony DR (1992) Non-adiabatic interactions between potential energy surfaces: theory and applications. Adv Chem Phys 82 (part 2), 1
16.
Zurück zum Zitat Yarkony DR (1996) Diabolical conical intersections. Rev Mod Phys 68:985 Yarkony DR (1996) Diabolical conical intersections. Rev Mod Phys 68:985
17.
Zurück zum Zitat Robb MA, Garavelli M, Olivucci M, Bernardi F (2000) A computational strategy for organic photochemistry. In: Lipkowitz KB, Boyd DB (eds) Reviews in computational chemistry, vol 15. Wiley-VCH, New York, pp 87 Robb MA, Garavelli M, Olivucci M, Bernardi F (2000) A computational strategy for organic photochemistry. In: Lipkowitz KB, Boyd DB (eds) Reviews in computational chemistry, vol 15. Wiley-VCH, New York, pp 87
18.
Zurück zum Zitat Robb MA (2014) In this molecule there must be a conical intersection. In: Williams IH, Williams NH (eds) Advances in physical organic chemistry, vol 48. Academic Press, pp 189 Robb MA (2014) In this molecule there must be a conical intersection. In: Williams IH, Williams NH (eds) Advances in physical organic chemistry, vol 48. Academic Press, pp 189
19.
Zurück zum Zitat Worth GA, Cederbaum LS (2004) Beyond Born-Oppenheimer: conical intersections and their impact on molecular dynamics. Ann Rev Phys Chem 55:127 Worth GA, Cederbaum LS (2004) Beyond Born-Oppenheimer: conical intersections and their impact on molecular dynamics. Ann Rev Phys Chem 55:127
20.
Zurück zum Zitat Worth GA, Meyer H-D, Köppel H, Cederbaum LS (2008) Using the MCTDH wavepacket propagation method to describe multimode non-adiabatic dynamics. Int Rev Phys Chem 27:569 Worth GA, Meyer H-D, Köppel H, Cederbaum LS (2008) Using the MCTDH wavepacket propagation method to describe multimode non-adiabatic dynamics. Int Rev Phys Chem 27:569
21.
Zurück zum Zitat Lasorne B, Worth GA, Robb MA (2011) Excited-state dynamics. WIREs: Comput Mol Sci 1:460 Lasorne B, Worth GA, Robb MA (2011) Excited-state dynamics. WIREs: Comput Mol Sci 1:460
22.
Zurück zum Zitat Alon OE, Cederbaum LS (2003) Hellmann-Feynman theorem at degeneracies. Phys Rev B 68:033105CrossRef Alon OE, Cederbaum LS (2003) Hellmann-Feynman theorem at degeneracies. Phys Rev B 68:033105CrossRef
23.
Zurück zum Zitat Berry MV (1984) Quantal phase factors accompanying adiabatic changes. Proc R Soc A 392:45CrossRef Berry MV (1984) Quantal phase factors accompanying adiabatic changes. Proc R Soc A 392:45CrossRef
24.
Zurück zum Zitat Mead CA (1992) The geometric phase in molecular systems. Rev Mod Phys 64:51 Mead CA (1992) The geometric phase in molecular systems. Rev Mod Phys 64:51
25.
Zurück zum Zitat Döscher M, Köppel H, Szalay PG (2002) Multistate vibronic interactions in the benzene radical cation. I. Electronic structure calculations. J Chem Phys 117:2645 Döscher M, Köppel H, Szalay PG (2002) Multistate vibronic interactions in the benzene radical cation. I. Electronic structure calculations. J Chem Phys 117:2645
26.
Zurück zum Zitat Ogg RA, Polanyi M (1935) Diabatic reactions and primary chemiluminescence. Trans Faraday Soc 31:1375 Ogg RA, Polanyi M (1935) Diabatic reactions and primary chemiluminescence. Trans Faraday Soc 31:1375
27.
Zurück zum Zitat Hellmann H, Syrkin JK (1935) Problem of anomalous small steric factors in chemical kinetics. Acta Physicochim URSS 2:433 Hellmann H, Syrkin JK (1935) Problem of anomalous small steric factors in chemical kinetics. Acta Physicochim URSS 2:433
28.
Zurück zum Zitat Smith FT (1969) Diabatic and adiabatic representations for atomic collision problems. Phys Rev 179:111 Smith FT (1969) Diabatic and adiabatic representations for atomic collision problems. Phys Rev 179:111
29.
Zurück zum Zitat Baer M (1975) Adiabatic and diabatic representations for atom-molecule collisions: treatment of the collinear arrangement. Chem Phys Lett 35:112 Baer M (1975) Adiabatic and diabatic representations for atom-molecule collisions: treatment of the collinear arrangement. Chem Phys Lett 35:112
30.
Zurück zum Zitat Baer M (1976) Adiabatic and diabatic representations for atom-diatom collisions: treatment of the three-dimensional case. Chem Phys 15:49 Baer M (1976) Adiabatic and diabatic representations for atom-diatom collisions: treatment of the three-dimensional case. Chem Phys 15:49
31.
Zurück zum Zitat Mead CA, Truhlar DG (1982) Conditions for the definition of a strictly diabatic electronic basis for molecular systems. J Chem Phys 77:6090 Mead CA, Truhlar DG (1982) Conditions for the definition of a strictly diabatic electronic basis for molecular systems. J Chem Phys 77:6090
32.
Zurück zum Zitat Desouter-Lecomte M, Dehareng D, Leyhnihant B, Praet MT, Lorquet AJ, Lorquet JC (1985) Nonadiabatic unimolecular reactions of polyatomic molecules. J Phys Chem 89:214 Desouter-Lecomte M, Dehareng D, Leyhnihant B, Praet MT, Lorquet AJ, Lorquet JC (1985) Nonadiabatic unimolecular reactions of polyatomic molecules. J Phys Chem 89:214
33.
Zurück zum Zitat Tully JC (1990) Molecular dynamics with electronic transitions. J Chem Phys 93:1061CrossRef Tully JC (1990) Molecular dynamics with electronic transitions. J Chem Phys 93:1061CrossRef
34.
Zurück zum Zitat Spiegelmann F, Malrieu JP (1984) The use of effective-Hamiltonians for the treatment of avoided crossings. 1. Adiabatic potential curves. J Phys B 17:1235 Spiegelmann F, Malrieu JP (1984) The use of effective-Hamiltonians for the treatment of avoided crossings. 1. Adiabatic potential curves. J Phys B 17:1235
35.
Zurück zum Zitat Spiegelmann F, Malrieu JP (1984) The use of effective-Hamiltonians for the treatment of avoided crossings. 2. Nearly diabatic potential curves. J Phys B 17:1259 Spiegelmann F, Malrieu JP (1984) The use of effective-Hamiltonians for the treatment of avoided crossings. 2. Nearly diabatic potential curves. J Phys B 17:1259
36.
Zurück zum Zitat Desouter-Lecomte M, Dehareng D, Lorquet JC (1987) Constructing approximately diabatic states from LCAO-SCF-CL calculations. J Chem Phys 86:1429 Desouter-Lecomte M, Dehareng D, Lorquet JC (1987) Constructing approximately diabatic states from LCAO-SCF-CL calculations. J Chem Phys 86:1429
37.
Zurück zum Zitat Cimiraglia R, Malrieu JP, Persico M, Spiegelmann F (1985) Quasi-diabatic states and dynamical couplings from ab initio CI calculations—a new proposal. J Phys B 18:3073 Cimiraglia R, Malrieu JP, Persico M, Spiegelmann F (1985) Quasi-diabatic states and dynamical couplings from ab initio CI calculations—a new proposal. J Phys B 18:3073
38.
Zurück zum Zitat Gadea FX, Pelissier M (1990) Approximately diabatic states—a relation between effective Hamiltonian techniques and explicit cancellation of the derivative coupling. J Chem Phys 93:545 Gadea FX, Pelissier M (1990) Approximately diabatic states—a relation between effective Hamiltonian techniques and explicit cancellation of the derivative coupling. J Chem Phys 93:545
39.
Zurück zum Zitat Pacher T, Cederbaum LS, Köppel H (1988) Approximately diabatic states from block diagonalization of the electronic Hamiltonian. J Chem Phys 89:7367 Pacher T, Cederbaum LS, Köppel H (1988) Approximately diabatic states from block diagonalization of the electronic Hamiltonian. J Chem Phys 89:7367
40.
Zurück zum Zitat Pacher T, Cederbaum LS, Köppel H (1993) Adiabatic and quasidiabatic states in a gauge theoretical framework. Adv Chem Phys 84:293 Pacher T, Cederbaum LS, Köppel H (1993) Adiabatic and quasidiabatic states in a gauge theoretical framework. Adv Chem Phys 84:293
41.
Zurück zum Zitat Werner H-J, Meyer W (1981) MCSCF study of the avoided curve crossing of the two lowest \({\Sigma }_1^+\) states of LiF. J Chem Phys 74:5802 Werner H-J, Meyer W (1981) MCSCF study of the avoided curve crossing of the two lowest \({\Sigma }_1^+\) states of LiF. J Chem Phys 74:5802
42.
Zurück zum Zitat Hirsch G, Buenker RJ, Petrongolo C (1990) Ab initio study of NO\(_2\). 2. Nonadiabatic coupling between the two lowest \({^2}{A}^{\prime }\) states and the construction of a diabatic representation. Mol Phys 70:835 Hirsch G, Buenker RJ, Petrongolo C (1990) Ab initio study of NO\(_2\). 2. Nonadiabatic coupling between the two lowest \({^2}{A}^{\prime }\) states and the construction of a diabatic representation. Mol Phys 70:835
43.
Zurück zum Zitat Cattarius C, Worth GA, Meyer H-D, Cederbaum LS (2001) All mode dynamics at the conical intersection of an octa-atomic molecule: multi-configuration time-dependent Hartree (MCTDH) investigation on the butatriene cation. J Chem Phys 115:2088 Cattarius C, Worth GA, Meyer H-D, Cederbaum LS (2001) All mode dynamics at the conical intersection of an octa-atomic molecule: multi-configuration time-dependent Hartree (MCTDH) investigation on the butatriene cation. J Chem Phys 115:2088
44.
Zurück zum Zitat Raab A, Worth G, Meyer H-D, Cederbaum LS (1999) Molecular dynamics of pyrazine after excitation to the S\(_2\) electronic state using a realistic 24-mode model Hamiltonian. J Chem Phys 110:936 Raab A, Worth G, Meyer H-D, Cederbaum LS (1999) Molecular dynamics of pyrazine after excitation to the S\(_2\) electronic state using a realistic 24-mode model Hamiltonian. J Chem Phys 110:936
Metadaten
Titel
Vibronic Couplings
verfasst von
Fabien Gatti
Benjamin Lasorne
Hans-Dieter Meyer
André Nauts
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-53923-2_4

Premium Partner