Skip to main content

2017 | OriginalPaper | Buchkapitel

13. Flexible Piezoelectric and Pyroelectric Polymers and Nanocomposites for Energy Harvesting Applications

verfasst von : Chaoying Wan, Christopher Rhys Bowen

Erschienen in: Polymer-Engineered Nanostructures for Advanced Energy Applications

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Ferroelectric polymers are promising functional materials for energy harvesting applications, given their low stiffness, high flexibility, toughness, ease of modification to tailor properties, processability and low density. This chapter provides detailed description of the molecular structure, polymorphs and properties of ferroelectric vinylidene fluoride (VDF)-based fluoropolymers and related nanocomposites. The nature of the ferroelectric crystalline phase plays a key role in the piezo- and pyroelectric properties of the polymer‚ various methods to increase the content of the polar ferroelectric polymorphs in the polymers are discussed, such as copolymerization, addition of nanoparticles, nanoconfinement, electrospinning, and post-treatment.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Nalwa HS (1995) Ferroelectric polymers: chemistry physics, and applications. CRC Press, Boca Raton Nalwa HS (1995) Ferroelectric polymers: chemistry physics, and applications. CRC Press, Boca Raton
2.
Zurück zum Zitat Martins P, Lopes AC, Lanceros-Mendez S (2014) Electroactive phases of poly(vinylidene fluoride) determination, processing and applications. Prog Polym Sci 39(4):683–706CrossRef Martins P, Lopes AC, Lanceros-Mendez S (2014) Electroactive phases of poly(vinylidene fluoride) determination, processing and applications. Prog Polym Sci 39(4):683–706CrossRef
3.
Zurück zum Zitat Cui Z, Hassankiadeh NT, Zhuang Y et al (2015) Crystalline polymorphism in poly(vinylidenefluoride) membranes. Prog Polym Sci 51:94–126CrossRef Cui Z, Hassankiadeh NT, Zhuang Y et al (2015) Crystalline polymorphism in poly(vinylidenefluoride) membranes. Prog Polym Sci 51:94–126CrossRef
4.
Zurück zum Zitat Ameduri B (2009) From vinylidene fluoride (VDF) to the applications of VDF-containing polymers and copolymers: recent developments and future trends. Chem Rev 109(12):6632–6686CrossRef Ameduri B (2009) From vinylidene fluoride (VDF) to the applications of VDF-containing polymers and copolymers: recent developments and future trends. Chem Rev 109(12):6632–6686CrossRef
5.
Zurück zum Zitat Lovinger AJ (1981) Conformational defects and associated molecular motions in crystalline poly(vinylidene fluoride). J Appl Phys 52(10):5934–5938CrossRef Lovinger AJ (1981) Conformational defects and associated molecular motions in crystalline poly(vinylidene fluoride). J Appl Phys 52(10):5934–5938CrossRef
6.
Zurück zum Zitat Gomes J, Nunes JS, Sencadas V et al (2010) Influence of the phase content and degree of crystallinity on the piezo- and ferroelectric properties of poly(vinylidene fluoride). Smart Mater Struct 19(6):1065–1110CrossRef Gomes J, Nunes JS, Sencadas V et al (2010) Influence of the phase content and degree of crystallinity on the piezo- and ferroelectric properties of poly(vinylidene fluoride). Smart Mater Struct 19(6):1065–1110CrossRef
7.
Zurück zum Zitat Yamada E, Nishioka A, Suzuki H et al (2009) Effect of blended montomollironite on crystallization of poly(vinylidene fluoride). Polym J 41(5):383–388CrossRef Yamada E, Nishioka A, Suzuki H et al (2009) Effect of blended montomollironite on crystallization of poly(vinylidene fluoride). Polym J 41(5):383–388CrossRef
8.
Zurück zum Zitat Gregorio JR, Cestari M (1994) Effect of crystallization temperature on the crystalline phase content and morphology of poly(vinylidene fluoride). J Polym Sci Pol Phys 32(5):859–870CrossRef Gregorio JR, Cestari M (1994) Effect of crystallization temperature on the crystalline phase content and morphology of poly(vinylidene fluoride). J Polym Sci Pol Phys 32(5):859–870CrossRef
9.
Zurück zum Zitat Li Y, Tang S, Pan M-W et al (2015) Polymorphic extended-chain and folded-chain crystals in poly(vinylidene fluoride) achieved by combination of high pressure and ion-dipole interaction. Macromolecules 48(23):8565–8573CrossRef Li Y, Tang S, Pan M-W et al (2015) Polymorphic extended-chain and folded-chain crystals in poly(vinylidene fluoride) achieved by combination of high pressure and ion-dipole interaction. Macromolecules 48(23):8565–8573CrossRef
10.
Zurück zum Zitat Song D, Yang D, Feng Z (2006) Formation of β-phase microcrystals from the melt of PVF2-PMMA blends induced by quenching. J Mater Sci 25(1):57–64CrossRef Song D, Yang D, Feng Z (2006) Formation of β-phase microcrystals from the melt of PVF2-PMMA blends induced by quenching. J Mater Sci 25(1):57–64CrossRef
11.
Zurück zum Zitat Tao M, Liu F, Ma B et al (2013) Effect of solvent power on PVDF membrane polymorphism during phase inversion. Desalination 316:137–145 Tao M, Liu F, Ma B et al (2013) Effect of solvent power on PVDF membrane polymorphism during phase inversion. Desalination 316:137–145
12.
Zurück zum Zitat Ramasundaram S, Yoon S, Kim KJ et al (2009) Crystalline structure and ferroelectric response of poly(vinylidene fluoride)/organically modified silicate thin films prepared by heat controlled spin coating. Macromol Chem Phys 210(11):951–960CrossRef Ramasundaram S, Yoon S, Kim KJ et al (2009) Crystalline structure and ferroelectric response of poly(vinylidene fluoride)/organically modified silicate thin films prepared by heat controlled spin coating. Macromol Chem Phys 210(11):951–960CrossRef
13.
Zurück zum Zitat Kei N, Kenji I, Toshihisa H et al (2003) Pyroelectricity of ferroelectric vinylidene fluoride-oligomer-evaporated thin films. Jpn J Appl Phys 42(11A):13–34 Kei N, Kenji I, Toshihisa H et al (2003) Pyroelectricity of ferroelectric vinylidene fluoride-oligomer-evaporated thin films. Jpn J Appl Phys 42(11A):13–34
14.
Zurück zum Zitat Kim WJ, Han MH, Shin Y-H et al (2016) First-Principles study of the α-β phase transition of ferroelectric poly(vinylidene difluoride): observation of multiple transition pathways. J Phys Chem B 120(12):3240–3249CrossRef Kim WJ, Han MH, Shin Y-H et al (2016) First-Principles study of the α-β phase transition of ferroelectric poly(vinylidene difluoride): observation of multiple transition pathways. J Phys Chem B 120(12):3240–3249CrossRef
15.
Zurück zum Zitat Yu Y-J, McGaughey AJH (2016) Energy barriers for dipole moment flipping in PVDF-related ferroelectric polymers. J Chem Phys 144(1):014901CrossRef Yu Y-J, McGaughey AJH (2016) Energy barriers for dipole moment flipping in PVDF-related ferroelectric polymers. J Chem Phys 144(1):014901CrossRef
16.
Zurück zum Zitat Mohammadi B, Yousefi AA, Bellah SM (2007) Effect of tensile strain rate and elongation on crystalline structure and piezoelectric properties of PVDF thin films. Polym Test 26(1):42–50CrossRef Mohammadi B, Yousefi AA, Bellah SM (2007) Effect of tensile strain rate and elongation on crystalline structure and piezoelectric properties of PVDF thin films. Polym Test 26(1):42–50CrossRef
17.
Zurück zum Zitat Hsu T-C, Geil PH (1989) Deformation and transformation mechanisms of poly(vinylidene fluoride) (PVF2). J Mater Sci 24(4):1219–1232CrossRef Hsu T-C, Geil PH (1989) Deformation and transformation mechanisms of poly(vinylidene fluoride) (PVF2). J Mater Sci 24(4):1219–1232CrossRef
18.
Zurück zum Zitat Hess CM, Rudolph AR, Reid PJ (2015) Imaging the effects of annealing on the polymorphic phases of poly(vinylidene fluoride). J Phys Chem 119(10):4127–4132CrossRef Hess CM, Rudolph AR, Reid PJ (2015) Imaging the effects of annealing on the polymorphic phases of poly(vinylidene fluoride). J Phys Chem 119(10):4127–4132CrossRef
19.
Zurück zum Zitat Shklovsky J, Engel L, Sverdlov Y et al (2012) Nano-imprinting lithography of P(VDF-TrFE-CFE) for flexible freestanding MEMS devices. Microelectron Eng 100:41–46CrossRef Shklovsky J, Engel L, Sverdlov Y et al (2012) Nano-imprinting lithography of P(VDF-TrFE-CFE) for flexible freestanding MEMS devices. Microelectron Eng 100:41–46CrossRef
20.
Zurück zum Zitat Maji S, Sarkar PK, Aggarwal L et al (2015) Self-oriented [small beta]-crystalline phase in the polyvinylidene fluoride ferroelectric and piezo-sensitive ultrathin Langmuir–Schaefer film. Phys Chem Chem Phys 17(12):8159–8165CrossRef Maji S, Sarkar PK, Aggarwal L et al (2015) Self-oriented [small beta]-crystalline phase in the polyvinylidene fluoride ferroelectric and piezo-sensitive ultrathin Langmuir–Schaefer film. Phys Chem Chem Phys 17(12):8159–8165CrossRef
21.
Zurück zum Zitat Chen Y, Chen X, Zhou D et al (2016) Low-temperature crystallization of P(VDF-TrFE-CFE) studied by Flash DSC. Polymer 84:319–327CrossRef Chen Y, Chen X, Zhou D et al (2016) Low-temperature crystallization of P(VDF-TrFE-CFE) studied by Flash DSC. Polymer 84:319–327CrossRef
22.
Zurück zum Zitat Oliveira F, Leterrier Y, Månson J-A et al (2014) Process influences on the structure, piezoelectric, and gas-barrier properties of PVDF-TrFE copolymer. J Polym Sci Pol Phys 52(7):496–506CrossRef Oliveira F, Leterrier Y, Månson J-A et al (2014) Process influences on the structure, piezoelectric, and gas-barrier properties of PVDF-TrFE copolymer. J Polym Sci Pol Phys 52(7):496–506CrossRef
23.
Zurück zum Zitat Hu Z, Tian M, Nysten B et al (2009) Regular arrays of highly ordered ferroelectric polymer nanostructures for non-volatile low-voltage memories. Nat Mater 8(1):62–67CrossRef Hu Z, Tian M, Nysten B et al (2009) Regular arrays of highly ordered ferroelectric polymer nanostructures for non-volatile low-voltage memories. Nat Mater 8(1):62–67CrossRef
24.
Zurück zum Zitat Cao J-H, Zhu B-K, Ji G-L et al (2005) Preparation and characterization of PVDF-HFP microporous flat membranes by supercritical CO2 induced phase separation. J Membr Sci 266(1–2):102–109CrossRef Cao J-H, Zhu B-K, Ji G-L et al (2005) Preparation and characterization of PVDF-HFP microporous flat membranes by supercritical CO2 induced phase separation. J Membr Sci 266(1–2):102–109CrossRef
25.
Zurück zum Zitat Li Z, Wang Y, Cheng Z-Y (2006) Electromechanical properties of poly(vinylidene-fluoride-chlorotrifluoroethylene) copolymer. Appl Phys Lett 88(6):862–904 Li Z, Wang Y, Cheng Z-Y (2006) Electromechanical properties of poly(vinylidene-fluoride-chlorotrifluoroethylene) copolymer. Appl Phys Lett 88(6):862–904
26.
Zurück zum Zitat Furukawa T (1989) Ferroelectric properties of vinylidene fluoride copolymers. Phase Transit A Multi J 18(3–4):143–211CrossRef Furukawa T (1989) Ferroelectric properties of vinylidene fluoride copolymers. Phase Transit A Multi J 18(3–4):143–211CrossRef
27.
Zurück zum Zitat Chung TC, Petchsuk A (2002) Synthesis and properties of ferroelectric fluoroterpolymers with curie transition at ambient temperature. Macromollecule 35(20):7678–7684CrossRef Chung TC, Petchsuk A (2002) Synthesis and properties of ferroelectric fluoroterpolymers with curie transition at ambient temperature. Macromollecule 35(20):7678–7684CrossRef
28.
Zurück zum Zitat Hattori T, Hikosaka M, Ohigashi H (1996) The crystallization behaviour and phase diagram of extended-chain crystals of poly(vinylidene fluoride) under high pressure. Polymer 37(1):85–91CrossRef Hattori T, Hikosaka M, Ohigashi H (1996) The crystallization behaviour and phase diagram of extended-chain crystals of poly(vinylidene fluoride) under high pressure. Polymer 37(1):85–91CrossRef
29.
Zurück zum Zitat Teyssedre G, Bernes A, Lacabanne C (1995) Cooperative movements associated with the Curie transition in P(VDF-TrFE) copolymers. J Polym Sci Pol Phys 33(6):879–890CrossRef Teyssedre G, Bernes A, Lacabanne C (1995) Cooperative movements associated with the Curie transition in P(VDF-TrFE) copolymers. J Polym Sci Pol Phys 33(6):879–890CrossRef
30.
Zurück zum Zitat Aliane A, Benwadih M, Bouthinon B et al (2015) Impact of crystallization on ferro-, piezo- and pyro-electric characteristics in thin film P(VDF-TrFE). Org Electron 25:92–98CrossRef Aliane A, Benwadih M, Bouthinon B et al (2015) Impact of crystallization on ferro-, piezo- and pyro-electric characteristics in thin film P(VDF-TrFE). Org Electron 25:92–98CrossRef
31.
Zurück zum Zitat Lee JS, Prabu AA, Kim KJ (2010) Annealing effect upon chain orientation, crystalline morphology, and polarizability of ultra-thin P(VDF-TrFE) film for nonvolatile polymer memory device. Polymer 51(26):6319–6333CrossRef Lee JS, Prabu AA, Kim KJ (2010) Annealing effect upon chain orientation, crystalline morphology, and polarizability of ultra-thin P(VDF-TrFE) film for nonvolatile polymer memory device. Polymer 51(26):6319–6333CrossRef
32.
Zurück zum Zitat Bourgaux-Leonard C, Legrand JF, Renault A et al (1991) Annealing effects in ferroelectric poly(vinylidene fluoride-trifluoroethylene) copolymers: real-time studies using synchrotron radiation. Polymer 32(4):597–604CrossRef Bourgaux-Leonard C, Legrand JF, Renault A et al (1991) Annealing effects in ferroelectric poly(vinylidene fluoride-trifluoroethylene) copolymers: real-time studies using synchrotron radiation. Polymer 32(4):597–604CrossRef
33.
Zurück zum Zitat Green JS, Farmer BL, Rabolt JF (1986) Effect of thermal and solution history on the Curie point of VF2-TrFE random copolymers. J Appl Phys 60(8):2690–2693CrossRef Green JS, Farmer BL, Rabolt JF (1986) Effect of thermal and solution history on the Curie point of VF2-TrFE random copolymers. J Appl Phys 60(8):2690–2693CrossRef
34.
Zurück zum Zitat Su R, Tseng J-K, Lu M-S et al (2012) Ferroelectric behavior in the high temperature paraelectric phase in a poly(vinylidene fluoride-co-trifluoroethylene) random copolymer. Polymer 53(3):728–739CrossRef Su R, Tseng J-K, Lu M-S et al (2012) Ferroelectric behavior in the high temperature paraelectric phase in a poly(vinylidene fluoride-co-trifluoroethylene) random copolymer. Polymer 53(3):728–739CrossRef
35.
Zurück zum Zitat Salimi A, Yousefi AA (2003) Analysis method: FTIR studies of β-phase crystal formation in stretched PVDF films. Polym Test 22(6):699–704CrossRef Salimi A, Yousefi AA (2003) Analysis method: FTIR studies of β-phase crystal formation in stretched PVDF films. Polym Test 22(6):699–704CrossRef
36.
Zurück zum Zitat Salimi A, Yousefi AA (2004) Conformational changes and phase transformation mechanisms in PVDF solution-cast films. J Polym Sci Pol Phys 42(18):3487–3495CrossRef Salimi A, Yousefi AA (2004) Conformational changes and phase transformation mechanisms in PVDF solution-cast films. J Polym Sci Pol Phys 42(18):3487–3495CrossRef
37.
Zurück zum Zitat Benz M, Euler WB (2003) Determination of the crystalline phases of poly(vinylidene fluoride) under different preparation conditions using differential scanning calorimetry and infrared spectroscopy. J Appl Polym Sci 89(4):1093–1100CrossRef Benz M, Euler WB (2003) Determination of the crystalline phases of poly(vinylidene fluoride) under different preparation conditions using differential scanning calorimetry and infrared spectroscopy. J Appl Polym Sci 89(4):1093–1100CrossRef
38.
Zurück zum Zitat Park JH, Kurra N, AlMadhoun MN et al (2015) A two-step annealing process for enhancing the ferroelectric properties of poly(vinylidene fluoride) (PVDF) devices. J Mater Chem C 3(10):2366–2370CrossRef Park JH, Kurra N, AlMadhoun MN et al (2015) A two-step annealing process for enhancing the ferroelectric properties of poly(vinylidene fluoride) (PVDF) devices. J Mater Chem C 3(10):2366–2370CrossRef
39.
Zurück zum Zitat Cauda V, Stassi S, Bejtka K et al (2013) Nanoconfinement: an effective way to enhance PVDF piezoelectric properties. ACS Appl Mater Interfaces 5(13):6430–6437CrossRef Cauda V, Stassi S, Bejtka K et al (2013) Nanoconfinement: an effective way to enhance PVDF piezoelectric properties. ACS Appl Mater Interfaces 5(13):6430–6437CrossRef
40.
Zurück zum Zitat Soin N, Boyer D, Prashanthi K et al (2015) Exclusive self-aligned [small beta]-phase PVDF films with abnormal piezoelectric coefficient prepared via phase inversion. Chem Commun 51(39):8257–8260CrossRef Soin N, Boyer D, Prashanthi K et al (2015) Exclusive self-aligned [small beta]-phase PVDF films with abnormal piezoelectric coefficient prepared via phase inversion. Chem Commun 51(39):8257–8260CrossRef
41.
Zurück zum Zitat Patro TU, Mhalgi MV, Khakhar DV et al (2008) Studies on poly(vinylidene fluoride)-clay nanocomposites: effect of different clay modifiers. Polymer 49(16):3486–3499CrossRef Patro TU, Mhalgi MV, Khakhar DV et al (2008) Studies on poly(vinylidene fluoride)-clay nanocomposites: effect of different clay modifiers. Polymer 49(16):3486–3499CrossRef
42.
Zurück zum Zitat Martins P, Costa CM, Ferreira JCC et al (2012) Correlation between crystallization kinetics and electroactive polymer phase nucleation in ferrite/poly(vinylidene fluoride) magnetoelectric nanocomposites. J Phys Chem B 116(2):794–801CrossRef Martins P, Costa CM, Ferreira JCC et al (2012) Correlation between crystallization kinetics and electroactive polymer phase nucleation in ferrite/poly(vinylidene fluoride) magnetoelectric nanocomposites. J Phys Chem B 116(2):794–801CrossRef
43.
Zurück zum Zitat Zhang Q, Xia W, Zhu Z et al (2013) Crystal phase of poly(vinylidene fluoride-co-trifluoroethylene) synthesized via hydrogenation of poly(vinylidene fluoride-co-chlorotrifluoroethylene). J Appl Polym Sci 127(4):3002–3008CrossRef Zhang Q, Xia W, Zhu Z et al (2013) Crystal phase of poly(vinylidene fluoride-co-trifluoroethylene) synthesized via hydrogenation of poly(vinylidene fluoride-co-chlorotrifluoroethylene). J Appl Polym Sci 127(4):3002–3008CrossRef
44.
Zurück zum Zitat Wu Y, Hsu SL, Honeker C et al (2012) The role of surface charge of nucleation agents on the crystallization behavior of poly(vinylidene fluoride). J Phys Chem B 116(24):7379–7388CrossRef Wu Y, Hsu SL, Honeker C et al (2012) The role of surface charge of nucleation agents on the crystallization behavior of poly(vinylidene fluoride). J Phys Chem B 116(24):7379–7388CrossRef
45.
Zurück zum Zitat Martins P, Caparros C, Gonçalves R et al (2012) Role of nanoparticle surface charge on the nucleation of the electroactive β-poly(vinylidene fluoride) nanocomposites for sensor and actuator applications. J Phys Chem C 116(29):15790–15794CrossRef Martins P, Caparros C, Gonçalves R et al (2012) Role of nanoparticle surface charge on the nucleation of the electroactive β-poly(vinylidene fluoride) nanocomposites for sensor and actuator applications. J Phys Chem C 116(29):15790–15794CrossRef
46.
Zurück zum Zitat Mofokeng TG, Luyt AS, Pavlović VP et al (2014) Ferroelectric nanocomposites of polyvinylidene fluoride/polymethyl methacrylate blend and BaTiO3 particles: Fabrication of β-crystal polymorph rich matrix through mechanical activation of the filler. J Appl Phys 115(8):1084–1109CrossRef Mofokeng TG, Luyt AS, Pavlović VP et al (2014) Ferroelectric nanocomposites of polyvinylidene fluoride/polymethyl methacrylate blend and BaTiO3 particles: Fabrication of β-crystal polymorph rich matrix through mechanical activation of the filler. J Appl Phys 115(8):1084–1109CrossRef
47.
Zurück zum Zitat Tiwari V, Srivastava G (2015) Structural, dielectric and piezoelectric properties of 0–3 PZT/PVDF composites. Ceram Int 41(6):8008–8013CrossRef Tiwari V, Srivastava G (2015) Structural, dielectric and piezoelectric properties of 0–3 PZT/PVDF composites. Ceram Int 41(6):8008–8013CrossRef
48.
Zurück zum Zitat Kar E, Bose N, Das S et al (2015) Enhancement of electroactive [small beta] phase crystallization and dielectric constant of PVDF by incorporating GeO2 and SiO2 nanoparticles. Phys Chem Chem Phys 17(35):22784–22798CrossRef Kar E, Bose N, Das S et al (2015) Enhancement of electroactive [small beta] phase crystallization and dielectric constant of PVDF by incorporating GeO2 and SiO2 nanoparticles. Phys Chem Chem Phys 17(35):22784–22798CrossRef
49.
Zurück zum Zitat Mandal D, Kim KJ, Lee JS (2012) Simple synthesis of palladium nanoparticles, β-phase formation, and the control of chain and dipole orientations in palladium-doped poly(vinylidene fluoride) thin films. Langmuir 28(28):10310–10317CrossRef Mandal D, Kim KJ, Lee JS (2012) Simple synthesis of palladium nanoparticles, β-phase formation, and the control of chain and dipole orientations in palladium-doped poly(vinylidene fluoride) thin films. Langmuir 28(28):10310–10317CrossRef
50.
Zurück zum Zitat Lopes AC, Carabineiro SAC, Pereira MFR et al (2013) Nanoparticle size and concentration dependence of the electroactive phase content and electrical and optical properties of Ag/poly(vinylidene fluoride) composites. Chem Phys Chem 14(9):1926–1933CrossRef Lopes AC, Carabineiro SAC, Pereira MFR et al (2013) Nanoparticle size and concentration dependence of the electroactive phase content and electrical and optical properties of Ag/poly(vinylidene fluoride) composites. Chem Phys Chem 14(9):1926–1933CrossRef
51.
Zurück zum Zitat Ghosh SK, Sinha TK, Mahanty B et al (2015) Self-poled efficient flexible “ferroelectretic” nanogenerator: a new class of piezoelectric energy harvester. Energy Technol 3(12):1190–1197CrossRef Ghosh SK, Sinha TK, Mahanty B et al (2015) Self-poled efficient flexible “ferroelectretic” nanogenerator: a new class of piezoelectric energy harvester. Energy Technol 3(12):1190–1197CrossRef
52.
Zurück zum Zitat Dutta B, Kar E, Bose N et al (2015) Significant enhancement of the electroactive [small beta]-phase of PVDF by incorporating hydrothermally synthesized copper oxide nanoparticles. RSC Adv 5(127):105422–105434CrossRef Dutta B, Kar E, Bose N et al (2015) Significant enhancement of the electroactive [small beta]-phase of PVDF by incorporating hydrothermally synthesized copper oxide nanoparticles. RSC Adv 5(127):105422–105434CrossRef
53.
Zurück zum Zitat Li J, Khanchaitit P, Han K et al (2010) New route toward high-energy-density nanocomposites based on chain-end functionalized ferroelectric polymers. Chem Mater 22(18):5350–5357CrossRef Li J, Khanchaitit P, Han K et al (2010) New route toward high-energy-density nanocomposites based on chain-end functionalized ferroelectric polymers. Chem Mater 22(18):5350–5357CrossRef
54.
Zurück zum Zitat Jayakumar OD, Mandal BP, Majeed J et al (2013) Inorganic-organic multiferroic hybrid films of Fe3O4 and PVDF with significant magneto-dielectric coupling. J Mater Chem C 1(23):3710–3715CrossRef Jayakumar OD, Mandal BP, Majeed J et al (2013) Inorganic-organic multiferroic hybrid films of Fe3O4 and PVDF with significant magneto-dielectric coupling. J Mater Chem C 1(23):3710–3715CrossRef
55.
Zurück zum Zitat Thakur P, Kool A, Bagchi B et al (2015) Effect of in situ synthesized Fe2O3 and Co3O4 nanoparticles on electroactive [small beta] phase crystallization and dielectric properties of poly(vinylidene fluoride) thin films. Phys Chem Chem Phys 17(2):1368–1378CrossRef Thakur P, Kool A, Bagchi B et al (2015) Effect of in situ synthesized Fe2O3 and Co3O4 nanoparticles on electroactive [small beta] phase crystallization and dielectric properties of poly(vinylidene fluoride) thin films. Phys Chem Chem Phys 17(2):1368–1378CrossRef
56.
Zurück zum Zitat Anithakumari P, Mandal BP, Abdelhamid E et al (2016) Enhancement of dielectric, ferroelectric and magneto-dielectric properties in PVDF-BaFe12O19 composites: a step towards miniaturizated electronic devices. RSC Adv 6(19):16073–16080CrossRef Anithakumari P, Mandal BP, Abdelhamid E et al (2016) Enhancement of dielectric, ferroelectric and magneto-dielectric properties in PVDF-BaFe12O19 composites: a step towards miniaturizated electronic devices. RSC Adv 6(19):16073–16080CrossRef
57.
Zurück zum Zitat Garain S, Sinha TK, Adhikary P et al (2015) Self-Poled transparent and flexible UV light-emitting cerium complex-PVDF composite: a high-performance nanogenerator. ACS Appl Mater Interface 7(2):1298–1307CrossRef Garain S, Sinha TK, Adhikary P et al (2015) Self-Poled transparent and flexible UV light-emitting cerium complex-PVDF composite: a high-performance nanogenerator. ACS Appl Mater Interface 7(2):1298–1307CrossRef
58.
Zurück zum Zitat Cho S, Lee JS, Jang J (2015) Enhanced crystallinity, dielectric, and energy harvesting performances of surface-treated barium titanate hollow nanospheres/PVDF nanocomposites. Adv Mater Interfaces 2(10) Cho S, Lee JS, Jang J (2015) Enhanced crystallinity, dielectric, and energy harvesting performances of surface-treated barium titanate hollow nanospheres/PVDF nanocomposites. Adv Mater Interfaces 2(10)
59.
Zurück zum Zitat Thakur P, Kool A, Bagchi B et al (2015) The role of cerium (iii)/yttrium (iii) nitrate hexahydrate salts on electroactive [small beta] phase nucleation and dielectric properties of poly(vinylidene fluoride) thin films. RSC Adv 5(36):28487–28496CrossRef Thakur P, Kool A, Bagchi B et al (2015) The role of cerium (iii)/yttrium (iii) nitrate hexahydrate salts on electroactive [small beta] phase nucleation and dielectric properties of poly(vinylidene fluoride) thin films. RSC Adv 5(36):28487–28496CrossRef
60.
Zurück zum Zitat Yuan D, Li Z, Thitsartarn W et al (2015) [small beta] Phase PVDF-hfp induced by mesoporous SiO2 nanorods: synthesis and formation mechanism. J Mater Chem C 3(15):3708–3713CrossRef Yuan D, Li Z, Thitsartarn W et al (2015) [small beta] Phase PVDF-hfp induced by mesoporous SiO2 nanorods: synthesis and formation mechanism. J Mater Chem C 3(15):3708–3713CrossRef
61.
Zurück zum Zitat Dillon DR, Tenneti KK, Li CY et al (2006) On the structure and morphology of polyvinylidene fluoride-nanoclay nanocomposites. Polymer 47(5):1678–1688CrossRef Dillon DR, Tenneti KK, Li CY et al (2006) On the structure and morphology of polyvinylidene fluoride-nanoclay nanocomposites. Polymer 47(5):1678–1688CrossRef
62.
Zurück zum Zitat Wang Y, Li J, Deng Y (2015) Enhanced ferroelectricity and energy storage in poly(vinylidene fluoride)-clay nanocomposite films via nanofiller surface charge modulation. RSC Adv 5(104):85884–85888CrossRef Wang Y, Li J, Deng Y (2015) Enhanced ferroelectricity and energy storage in poly(vinylidene fluoride)-clay nanocomposite films via nanofiller surface charge modulation. RSC Adv 5(104):85884–85888CrossRef
63.
Zurück zum Zitat Ramasundaram S, Yoon S, Kim KJ et al (2008) Preferential formation of electroactive crystalline phases in poly(vinylidene fluoride)/organically modified silicate nanocomposites. J Polym Sci Pol Phys 46(20):2173–2187CrossRef Ramasundaram S, Yoon S, Kim KJ et al (2008) Preferential formation of electroactive crystalline phases in poly(vinylidene fluoride)/organically modified silicate nanocomposites. J Polym Sci Pol Phys 46(20):2173–2187CrossRef
64.
Zurück zum Zitat Tiwari VK, Kulriya PK, Avasthi DK et al (2009) Radiation-resistant behavior of poly(vinylidene fluoride)/layered silicate nanocomposites. ACS Appl Mater Interfaces 1(2):311–318CrossRef Tiwari VK, Kulriya PK, Avasthi DK et al (2009) Radiation-resistant behavior of poly(vinylidene fluoride)/layered silicate nanocomposites. ACS Appl Mater Interfaces 1(2):311–318CrossRef
65.
Zurück zum Zitat Yu S, Zheng W, Yu W et al (2009) Formation mechanism of β-phase in PVDF/CNT composite prepared by the sonication method. Macromolecules 42(22):8870–8874CrossRef Yu S, Zheng W, Yu W et al (2009) Formation mechanism of β-phase in PVDF/CNT composite prepared by the sonication method. Macromolecules 42(22):8870–8874CrossRef
66.
Zurück zum Zitat Levi N, Czerw R, Xing S et al (2004) Properties of polyvinylidene difluoride–carbon nanotube blends. Nano Lett 4(7):1267–1271CrossRef Levi N, Czerw R, Xing S et al (2004) Properties of polyvinylidene difluoride–carbon nanotube blends. Nano Lett 4(7):1267–1271CrossRef
67.
Zurück zum Zitat Ke K, Pötschke P, Jehnichen D et al (2014) Achieving β-phase poly(vinylidene fluoride) from melt cooling: effect of surface functionalized carbon nanotubes. Polymer 55(2):611–619CrossRef Ke K, Pötschke P, Jehnichen D et al (2014) Achieving β-phase poly(vinylidene fluoride) from melt cooling: effect of surface functionalized carbon nanotubes. Polymer 55(2):611–619CrossRef
68.
Zurück zum Zitat Sharma M, Sharma K, Bose S (2013) Segmental relaxations and crystallization-induced phase separation in pvdf/pmma blends in the presence of surface-functionalized multiwall carbon nanotubes. J Phys Chem B 117(28):8589–8602CrossRef Sharma M, Sharma K, Bose S (2013) Segmental relaxations and crystallization-induced phase separation in pvdf/pmma blends in the presence of surface-functionalized multiwall carbon nanotubes. J Phys Chem B 117(28):8589–8602CrossRef
69.
Zurück zum Zitat Sadasivuni KK, Kafy A, Zhai L et al (2015) Multi functional and smart graphene filled polymers as piezoelectrics and actuators. Graphene-based polymer nanocomposites in electronics. Springer International Publishing, New York, pp 67–90 Sadasivuni KK, Kafy A, Zhai L et al (2015) Multi functional and smart graphene filled polymers as piezoelectrics and actuators. Graphene-based polymer nanocomposites in electronics. Springer International Publishing, New York, pp 67–90
70.
Zurück zum Zitat El Achaby M, Arrakhiz FZ, Vaudreuil S et al (2012) Piezoelectric β-polymorph formation and properties enhancement in graphene oxide-PVDF nanocomposite films. Appl Surf Sci 258(19):7668–7677CrossRef El Achaby M, Arrakhiz FZ, Vaudreuil S et al (2012) Piezoelectric β-polymorph formation and properties enhancement in graphene oxide-PVDF nanocomposite films. Appl Surf Sci 258(19):7668–7677CrossRef
71.
Zurück zum Zitat Abdelhamid E, Jayakumar OD, Katari V et al (2016) Multiferroic PVDF-Fe3O4 hybrid films with reduced graphene oxide and ZnO nanofillers. RSC Adv 6(24):20089–20094CrossRef Abdelhamid E, Jayakumar OD, Katari V et al (2016) Multiferroic PVDF-Fe3O4 hybrid films with reduced graphene oxide and ZnO nanofillers. RSC Adv 6(24):20089–20094CrossRef
72.
Zurück zum Zitat Karan SK, Mandal D, Khatua BB (2015) Self-powered flexible Fe-doped RGO/PVDF nanocomposite: an excellent material for a piezoelectric energy harvester. Nanoscale 7(24):10655–10666CrossRef Karan SK, Mandal D, Khatua BB (2015) Self-powered flexible Fe-doped RGO/PVDF nanocomposite: an excellent material for a piezoelectric energy harvester. Nanoscale 7(24):10655–10666CrossRef
73.
Zurück zum Zitat Wang S, Liu L, Zeng Y et al (2015) Improving dielectric properties of poly(vinylidene fluoride) composites: effects of surface functionalization of exfoliated graphene. J Adhes Sci Technol 29(7):678–690CrossRef Wang S, Liu L, Zeng Y et al (2015) Improving dielectric properties of poly(vinylidene fluoride) composites: effects of surface functionalization of exfoliated graphene. J Adhes Sci Technol 29(7):678–690CrossRef
74.
Zurück zum Zitat Bhavanasi V, Kumar V, Parida K et al (2016) Enhanced piezoelectric energy harvesting performance of flexible PVDF-trfe bilayer films with graphene oxide. ACS Appl Mater Interfaces 8(1):521–529CrossRef Bhavanasi V, Kumar V, Parida K et al (2016) Enhanced piezoelectric energy harvesting performance of flexible PVDF-trfe bilayer films with graphene oxide. ACS Appl Mater Interfaces 8(1):521–529CrossRef
75.
Zurück zum Zitat Andrew JS, Clarke DR (2008) Effect of electrospinning on the ferroelectric phase content of polyvinylidene difluoride fibers. Langmuir 24(3):670–672CrossRef Andrew JS, Clarke DR (2008) Effect of electrospinning on the ferroelectric phase content of polyvinylidene difluoride fibers. Langmuir 24(3):670–672CrossRef
76.
Zurück zum Zitat Lei T, Yu L, Zheng G et al (2015) Electrospinning-induced preferred dipole orientation in PVDF fibers. J Mater Sci 50(12):4342–4347CrossRef Lei T, Yu L, Zheng G et al (2015) Electrospinning-induced preferred dipole orientation in PVDF fibers. J Mater Sci 50(12):4342–4347CrossRef
77.
Zurück zum Zitat Yee WA, Kotaki M, Liu Y et al (2007) Morphology, polymorphism behavior and molecular orientation of electrospun poly(vinylidene fluoride) fibers. Polymer 48(2):512–521CrossRef Yee WA, Kotaki M, Liu Y et al (2007) Morphology, polymorphism behavior and molecular orientation of electrospun poly(vinylidene fluoride) fibers. Polymer 48(2):512–521CrossRef
78.
Zurück zum Zitat Chang C, Tran VH, Wang J et al (2010) Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency. Nano Lett 10(2):726–731CrossRef Chang C, Tran VH, Wang J et al (2010) Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency. Nano Lett 10(2):726–731CrossRef
79.
Zurück zum Zitat Liu ZH, Pan CT, Lin LW et al (2014) Direct-write PVDF nonwoven fiber fabric energy harvesters via the hollow cylindrical near-field electrospinning process. Smart Mater Struct 23(2) Liu ZH, Pan CT, Lin LW et al (2014) Direct-write PVDF nonwoven fiber fabric energy harvesters via the hollow cylindrical near-field electrospinning process. Smart Mater Struct 23(2)
80.
Zurück zum Zitat Hansen BJ, Liu Y, Yang R et al (2010) Hybrid nanogenerator for concurrently harvesting biomechanical and biochemical energy. ACS Nano 4(7):3647–3652CrossRef Hansen BJ, Liu Y, Yang R et al (2010) Hybrid nanogenerator for concurrently harvesting biomechanical and biochemical energy. ACS Nano 4(7):3647–3652CrossRef
81.
Zurück zum Zitat Fang J, Wang X, Lin T (2011) Electrical power generator from randomly oriented electrospun poly(vinylidene fluoride) nanofibre membranes. J Mater Chem 21(30):11088–11091CrossRef Fang J, Wang X, Lin T (2011) Electrical power generator from randomly oriented electrospun poly(vinylidene fluoride) nanofibre membranes. J Mater Chem 21(30):11088–11091CrossRef
82.
Zurück zum Zitat Abolhasani MM, Azimi S, Fashandi H (2015) Enhanced ferroelectric properties of electrospun poly(vinylidene fluoride) nanofibers by adjusting processing parameters. RSC Adv 5(75):61277–61283CrossRef Abolhasani MM, Azimi S, Fashandi H (2015) Enhanced ferroelectric properties of electrospun poly(vinylidene fluoride) nanofibers by adjusting processing parameters. RSC Adv 5(75):61277–61283CrossRef
Metadaten
Titel
Flexible Piezoelectric and Pyroelectric Polymers and Nanocomposites for Energy Harvesting Applications
verfasst von
Chaoying Wan
Christopher Rhys Bowen
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-57003-7_13

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.